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SOLUTIONS OF EQUATIONS OVER 
w-NILPOTENT GROUPS 

S.M. GERSTEN 

While studying the general question of solving equations in groups, I 
came across the curious fact the Newton's algorithm applies in a vari­
ety of noncommutative situations. In particular, if G is an o;-nilpotent 
group and w G G * (t) is an equation with exponent sum et(w) — ±1 , 
then w(t) = 1 has a unique solution in Ui(Z[G\). Here Z\GX is the 
completion of the integral group ring Z[G] in the IQ-^IC topology, IQ 

the augmentation ideal, and U\ refers to units = lmod/G-
More generally, let A be a ring equipped with a descending filtration 

{<7n} of two sided ideals (so CTQ = A,Oi • Uj Ç (JÌ+J). Assume A is 
complete-i.e. the canonical map A —> lim- A/an is an isomorphism. 
Let U\ (A) denote the group of units of A congruent to 1 modulo o\. 
Let w GU\ (A) * (t) be such that et(w) is a unit in A. Then the equation 
w(t) = 1 has a unique solution in Ui(A). 

Applied to QG, where G is fg torsion free nilpotent, this implies the 
classical result that U\ (QGA) contains the Mal'cev completion [2] of G. 

A quick homological proof is offered of the Kervaire conjecture for 
w-nilpotent groups. I am aware there are other proofs based on resid­
ual properties. With that out of the way, the proper topic of this paper, 
uniqueness of solutions, can begin. 

This work was done while I was on sabbatical leave from the Univer­
sity of Utah. 

1. Existence of solutions. Let G be a group, G(t) the free prod­
uct of G with an infinite cycle (£), and w(t) G G(t). Let et(w) be the 
exponent sum of t in w(t). The Kervaire conjecture is that G injects 
in G(t)/N, where N is the normal closure of w(t) in G(£), provided 
et(w) = ±1 . This is equivalent to the existence of a group G\ contain­
ing G as a subgroup and an element x € G\ such that w(x) = 1. 

Let r n (G) denote the lower central series of a group G; thus TQ(G) = 
G and T n + i (G) = (G, Tn(G)). Similarly, if p is a prime number, let 
rn,p(G) be the p-lower central series; thus T0iP(G) — G and r n + i ) P (G) 
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is generated by all commutators [g, x] and xp, where g G (2, z G TnìP(G). 

THEOREM 1.1. Let w G G(t) and let K be the kernel of the map 
G —» G(t)/N, where N is the normal closure of w in G{t). 

(a) Ifet(w) = ± 1 , then K C n n r n ( G ) 
(b) If p is a prime such that p \ et(w), then K Ç finrn>p(G). 

PROOF. Let X = K{G, 1) be an Eilenberg-MacLane space. Let 
Y = X V S/ Vw e2, so y is gotten from the one point union of 
X with a circle S} (a generator of ^(S1) has been identified with 
i) by attaching a 2-cell e2 via a map de2 —• X V S} representing 
w G 7Ti(X V Si) = G(t). Then TTI(Y) = H =: G{t)/N by the van 
Kampen theorem [4]. If et{w) = ± 1 , it follows that H*(Y,X) = 0; 
so H.{X) -+ H.(Y) is an isomorphism. Now TTI(F) = H = G(t)/N; 
to construct a / f ( i / , 1) from y , it is necessary to attach r-cells to Y 
with r > 3. Let Z D Y be the if (# , 1) so constructed. It follows 
that Hi(Y) —• Hi(Z) is an isomorphism if 2 = 1 and an epimorphism 
if i = 2. Hence Hi(G) —• Hi(H) is an isomorphism for i = 1 and an 

epimorphism for i = 2. It follows [6] that G/Tn(G)=>H/Tn(H), all n. 
In particular, if C f i n r n G. The argument for r n , p is similar, based on 
the observation that if p f et(w), H.(Y, X; Zp) = 0 . 

COROLLARY 1.2. If G is u-nilpotent and et(w) = ±1, then G imbeds 
in H = G(t)/N. 

PROOF. Recall G is said to be u;-nilpotent if nnrn(<3) = {1}. The 
theorem then implies K = {1}. 

REMARK. The same argument applies to systems of equations. We 
record the result. Let G{t\,... ,£n) be the free product of G with the 
free group of rank n freely generated by t\,..., tn. Let lu i , . . . , wn G 
G{t\,..., tn) be such that the matrix M = (etj{wi)) has determinant 
d. Let K be the kernel of the map G —• G(t\,..., tn)/N where N is 
the normal closure of wi, • • • , wn. Then K Ç f1nrn(G) if d = ±1 and 
if C n n r n ) P (G) if p is a prime such that p + d. 
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2. Filtered rings. Let A be an associative ring with unit. A 
filtration on A is a family of two sided ideals anin > 0, such that 
GQ = A,o~n 2 flVi+i} and Oi • &j Ç <TÌ+J. The family of ring homomor-

phisms A/an+\ —> A/an define a map A—>\im~- A/an. We say A is 
separated if Kerj = 0 and A is complete (with respect to the given fil­
tration) if y is bijective. In any case, l im- A/an =: A* is a filtered ring, 
filtered by the family <jAm = lim-(<7m +<Tn/<rn), and A* is complete [1]. 
In addition A/an ~ A*/an*{oY all n ([1; Corollary 10.4]). The kernel of 
the canonical map j : A —• A* is nncrn. 

Suppose now that A is a filtered ring complete with respect to the fil­
tration {an}. Define U\{A) = {x G A\x = l(modcri)}. Clearly U\(A) 
is closed under multiplication, and if x = 1 — y G Ï7i(vl), y G <7i, then 
of1 = 1 + y -f 2/2 + • • • converges, so U\ (A) is a group under multipli­
cation. 

THEOREM 2.1. Suppose the filtered ring A is complete. Let w G 
Ui(A) < t > be such that e = et(w) is a unit in A. Then the equation 
w(t) = 1 has a unique solution in U\{A). 

PROOF. We shall produce a sequence xn G o\ such that 
( 1 ) 3 1 = 0 
(2) w(l + xn) = l(mod(jn) 
(3) xn+i =a;n(mod<7n) 

If this is done, then the family {l + :rn-h<Tn G A/an} defines an element 
1 + x G U\{A) which is a solution w(l + x) = 1, and the existence of a 
solution follows. We need a lemma. 

LEMMA 2.2. Let x G auz G an{n > 1) and let 1 + y = (1 + x ) - 1 . 
Then (1 + x + 2)"""1 = (1 + y - 2)(moc((7n+i). 

PROOF. Just compute (1 + x + z)(l + y — ^)(mod<jn+i). 
The sequence {xn} is constructed by induction with x\ = 0. Observe 

that w(l) = 1 (moderi) since w G E/I(J4)(£), so condition (1) is satisfied. 
Assume that £1,0:2,... , £ m have been found such that xi = 0, (2) is 
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valid for n < m and (3) is valid for n < m. Let 
r 

w(t) = Y[(l + ai)t£i, 
i=l 

Si = ±l,a» £ (Ti, J2ï=i £i = e- Let z G <rm, and compute iu(l + xm + 
z)(mod<rn+i). We see tu(l + z m + z) = ü i^ iC 1 + ai)0- + xrn + z)£i 

= {ez + w{\ + xm))(mod(Tm+i), 

where Lemma 2.2 was used to evaluate (H-xmH-^)_1 . But w(l+xm) = 
l(mod<rm), so write w(l + xm) = l - a , a G am . Now we want z such 
that w(l + xm + z) = l(mod<7m+i) i.e., ez = a(mod<rm+i). But e 
is a unit in A, so z = e~la is uniquely determined (modo-m+i). Set 
xm_}_i = Xm + e_1a. Then check (1), (2), (3) when they make sense, 
and the induction is complete. 

Proceeding to uniqueness, we see another solution w(l + y) = 1 yields 
a sequence {yn} of elements in <Ti satisfying (1), (2), (3). We show by 
induction on n that yn = xn(modan). This implies 1 + y = 1 + x i n 
A = lim— A/an. Assume then that Xi = ^(moda») for i < n. Then 
xn+i = z n = yn = yn + i(mod(jn). Thus z n+i = z n + z,?/n+i = xn + z/ 
with 2, 2; € <rn. But referring to the existence proof, we see z = e~xot = 
z'(mod<7n+i), where a = 1 - w{\ + xn) . Thus zn+i - y n + 1 € <rn+i 
and the induction is complete. This completes the proof of 2.1. 

REMARK. If n is a unit in A, the theorem applies to tn (1+a) - 1 , a G <7i. 
That is, (1 -ha) has a unique n™ root in U\{A). It is given by the usual 
binomial formula E ^ o ^ i " ) 0 * - I n particular (x{n) e Z[l/n]. 

If in addition A is commutative, the content of 2.1 is exactly the abil­
ity to extract n t J l roots in U\ (A) when n is a unit of A. 

COROLLARY 2.3. If A is a Q-algebra, then U\(A) is a D-group [2]; 
that is, for each n ^ 0, the n t n power map x —> xn is a bijection. 

COROLLARY 2.4. If we Ui(A)(t) has et(w) = ± 1 , then w(t) = 1 has 
a unique solution in Ui(A). 

We give two examples of filtered rings. Only the second will be stud­
ied in the next section. 
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EXAMPLE 2.5. Let A be a graded ring. Thus A = U Ì € N A Ì , J 4 » 

an abelian group, and Ai • Aj C Ai+y. Let crt = Hj>ij4y. Then 
4 A = n * e N ^ a n d ui[Ä) =z {(at)*eN,ai G i4*,a0 = 1}. 

EXAMPLE 2.6. Let A be a ring and J a two sided ideal. Let an = In, 
This determines the J-aic filtration on A. In particular, if G is a 
group and R is commutative ring, we may form Ä[C?], group ring co­
efficients in R} and let I be the augmentation ideal, kernel of map 
R[G] —> R} g —• 1, g G (7. Then -ß[(7] may be completed in the I-adic 
topology. 

3. Group rings. We want to apply the results of the preceding 
section to solve equations in groups. We work mainly with the integral 
group ring Z[G]. Complete in the 7-adic topology (I = augmentation 
ideal) to get Z[G]A. There is a canonical homomorphism 

G±U1{Z[G\) 

given by /(</) = 1 + {g — 1); (gr — 1) € 7. To solve equations in G, we 
need to know when / is injective. The next result gives the answer for 
fg groups. 

THEOREM 3.1. If f is injective, then G is w-nilpotent. Conversely, 
if G is fg and u)—nilpotent, then f is injective. 

PROOF. We know Z[G]yin*= Z[G]/In ([1; Corollary 10.4]). Let Gn 

be the kernel of the composition G -f UX(Z\G\) -> Ui(Z\G)/In\. Thus 
Gn = {x S G\x - 1 G In}. We claim Gn/Gn+i is a central subgroup 
of G/Gn+i. But if x G G, y € Grn, then /(xyaf1) = xyaf"1 — 1 = 
( l + ( * - l ) ) ( y - - l ) ( l + ( « - 1 - l ) ) = (y-l)(mod J" + 1 ) (using (y-1) G J m ) . 
Hence / (syx *) = /(y)mod J n + 1 , or xyx *y * € G n + i . 

Thus {Gn} is a descending central series for G. But Ker / = C\nGni so 
if / is injective, OnC?n = {1}. However, the lower central series {Tn(G)} 
descends fastest among descending central series, so Tn(G) Ç Gn. Thus 
rïnrn(G) = {1} and (7 is w-nilpotent. 

Assume now G is fg and nilpotent. By a theorem of K.A. Hirsch, 
G imbeds in a product Ax B where A is finite nilpotent and B is fg 
torsion free nilpotent ([2, p. 10]) (G is even of finite index in A X 2?, 
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but we do not need this fact). Consider the commutative diagram. 

G • AxB 

^(Z)[G]A) • P i ( Z [ A x B D > UiiZM^xU^ZiBY) 

If we show A —* £/i(Z[A]x) and B —> f/i(Z[B]') are both injective, the 
result follows for G by a diagram chase. 

But for B, fg torsion free nilpotent, Jennings Theorem [2, p. 43] 
asserts that C\nI

n = {0} where / is the augmentation ideal in Q[B]. 
Thus Q[B] —• Q[BY is injective and the result follows by a diagram 
chase. 

As for A, finite nilpotent, A = YlpAp where Ap is the Sylow 
p-subgroup of A. Another diagram chase shows it suffices to prove 
Ap —• Ui(Z(ApY) is injective. But again D n / n = {0}, where J is the 
augmentation ideal of Z[AP] [5, p. 107, Example 14], and the result 
follows. 

Summarizing, G —• Ui(Z[GY) is injective if G is fg nilpotent. Sup­
pose now G is fg u>-nilpotent. Then the kernel of the canonical map 
G —• n n G/Tn(G) is trivial. Consider the commutative diagram 

G - ^ - UG/Tn(G) 

CMZIGH • UUi(Z[G/Tn(G)]') 

The right vertical arrow is injective as the product of injections. The 
result follows by a diagram chase. This completes the proof of Theorem 
3.1. 

EXAMPLE 3.2. If G = (*|*p),p prime, then Z[G] = Z[[x]]/((z+l)*-l) 
and / : G — I/i(Z[GD i s S i v e n hY / W = x + l. 

In contrast, Q[G\* = Q[[x]]/((x + l ) p - 1) ~ Q[[x]]/{x) ~ Q, since 
^ ± ^ i i s a u n i t . 

X 



w-NILPOTENT GROUPS 851 

If G is free on £1, • • • , tn, then Z[G]A= Z{{xi, • • • , xn}}, completion 
of the free associative noncommutative algebra on z i , - - - ,x n . Here 
f(ti) = 1 4- Xi is the Magnus imbedding [2, p. 27]. 

Let us deduce some corollaries of 3.1. 

THEOREM 3.2. Let G be a fg u-nilpotent group. Let w G G < t > 
have et(w) — ± 1 . Then w(t) = 1 has a unique solution in Ui(Z[GY). 

PROOF. We have identified G with its injective image in Ui(Z[G\). 
The result follows from Corollary 2.4. 

This result can be viewed as a strengthening of 1.2. In fact, the so­
lution of w(t) = 1 is constructed by an algorithmic procedure. 

THEOREM 3.3. (MAL'CEV). If G is a fg torsion free nilpotent group, 
then G imbeds in a torsion free V-group [3]. 

PROOF. G —• U\{Q[G\) is an imbedding by Jennings theorem. But 
Ui(Q[GY) is a P-group by corollary 2.4. 

The minimal P-subgroup containing G is called the Mal'cev comple­
tion of G and is a functor from fg torsion free groups to P-groups. 
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