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ESTIMATING THE NUMBER 
OF MULTIPLICATIVE PARTITIONS 

F.W. DODD AND L.E. MATTICS 

Two factorizations of a positive integer n are considered to be es­
sentially the same if they differ only in the order of the factors. The 
essentially different factorizations of n are called the multiplicative par­
titions of n, and f(n) denotes the number of such partitions (for exam­
p le , / ( l ) = 1 and/(12) = 4). 

In this paper we approximate the function (3/2)/(n) by a multiplica­
tive function g(n). This approximation is then used to conclude that 
f(n) < n(logn)~a for each fixed a > 0 and all sufficiently large n; 
and that f(n) ^ 0(n@) for ß < 1. A further improvement in the ap­
proximation of f(n) enables us to deduce that f(n) < n/logn for all 
n > l , n / 144. 

We owe the initial impetus for this paper to two conjectures made 
by Hughes and Shallit in [3]. They conjectured that f(n) < n for all n 
and that f(n) < n/logn for all n > l ,n ^ 144. In [4] we established 
the first conjecture and the second conjecture (hereafter referred to as 
the Hughes-Shallit conjecture) is established in §4. 

We remark that if a\ > a^ > • • • > ar > 1 and pi is the i™ 
prime, then / ( 2 0 l , 3 a 2 . . .p? r ) is the number of additive partitions of 
the "multi-partite number" (a i ,02 , . . . ,o r ) where addition is defined 
component-wise (see Chapter 12 of [1] for further details). Thus, our 
results may be used to estimate the number of additive partitions of 
(ai,ei2,.. • ,a r)- We further note that / ( 2 a i ) = p(ai), the number of 
additive partitions of oi; and that / (2 • 3---p r) = Br, the r t h Bell 
number (see [9]). 

The related problem of the asymptotics of c{n), the number of mul­
tiplicative partitions of n in which the order of factors is taken into ac­
count, has been studied by a number of people including Erdös, Hille, 
Kalmar, Ikehara, Sen, and Sklar. A comprehensive bibliography is 
given in [8]. We are grateful to the referee for calling our attention to 
this reference. 
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1. Notations and preliminaries. For the remainder of the article 
we will use the notations and conventions described in this section. The 
symbols a 1,02,... , a r , n denote nonnegative integers with ar and n 
positive; and p r denotes the r"1 prime (i.e., p\ = 2,p2 = 3, etc.). Then 
x and the arithmetic functions 0, /i, and F are defined by x = (ai + 
a2 + • • • + ar)/r, 0(r) = log(pip2 • • • Pr), h(r) = 1/pi + l /p 2 + • • • + l /p r , 
and F(n) = ^2d/nf(d). The arithmetic function K is defined by 
K(r) = 2/3 for r = 1,2,3 and by 

r 

K(r) = (2/3)H(4i + 7)/(4Pi-l) 
i=4 

for r > 4. 
The prime factorization of n > 1 will always be assumed to be given in 

the form n = q^q^2 • • • q*r where (71, q<i,..., qr are distinct primes and 
ûi > 02 > • • • > ar > 1. The positive integer pjpg ' ' *Pr*r obtained in 
the obvious manner from n is then denoted by m. Clearly, f(n) = / (m) . 
When r < 5 we frequently use a, ò,c,d, e to denote 01,02,03,04,05, 
respectively. Finally, if the monotonicity of the at is not assumed (i.e., 
only that at > 0, a r > 1), then we denote p^p^ 2 • • -Prr by m ' -

The multiplicative function g is defined as follows: o(2a) = (7/4)a; 
o(3a) = ( l l /4 ) a ; o(p?) = (r + 7/4)a, r > 3. The multiplicative function 
G is then defined by G(n) = Yld/n 9W-

In the course of the article it will be necessary to evaluate f(n) 
for certain values of n < 10^ having no more than 188 positive 
divisors. In order to evaluate these f(n) we developed a program for 
the Commodore 64. With this program we evaluated f(m) for all 
m < 332640 in addition to the other required values of f(n). The 
program is based on formula (1.1) below which is derived in the article 
by Hughes and Shallit. In this formula, H(a,n) is the number of 
multiplicative partitions of n having no factor greater than o. Clearly, 
/ (n) = tf(n,n). 

(1.1) H{a,n) = Y^H{d,n/d). 
d/n 
d<a 

The two propositions and corollary which follow will be used often in 
the remainder of our work. It will be obvious when we use these results 
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and so we will make no further reference to them. 

PROPOSITION 1.1. Ifar = l then f{m') = F(ra ' /p r) . 

PROOF. Since every multiplicative partition of ra' has precisely one 
factor divisible by p r , it follows that 

f{m')= E H(m'/pr)/d) = F(m'/Pr). 

d\m'/pr 

PROPOSITION 1.2. 

/ K ) < /(ra ' • Pr+i/Pr) - fim'lpr) + / ( ro ' / t f ' ) -

PROOF. If ar = l equality holds. Thus, suppose ar > 1 and set 
y = ra' - Pr+i/Pr- For any factorization d\d^- "d8 of ra', let d\ be a 
largest factor divisible by p r , so that replacing di by d\ -pr+i/Pr yields 
a factorization of y. Thus, we see that essentially different factoriza­
tions of ra' yield essentially different factorizations of y, and that no 
essentially different factorization of y with p r+i as a factor comes (in 
this manner) from a factorization of ra' unless the factorization of y 
has ar — 1 factors pr. Consequently, as there are f{m'/pr) — / (ra ' /p? r) 
multiplicative partitions of y having p r+i as a factor and not having 
ar — 1 factors p r , the proposition follows. 

The following corollary is an immediate consequence of the preceding 
two propositions. 

COROLLARY 1.3. We have /(ra7) < /(ra ' • p r + i / p r ) with equality 
when ar = 1. 

2. Comparisons between / and g. The main result of this section 
is Proposition 2.4 which establishes an upper bound, namely (2/3)#(ra), 
for / (n) when n > 1. This result will prove to be instrumental in set­
tling the Hughes-Shallit conjecture as well as in the investigation of 
the growth properties of / (n) . 
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In the proof of the following proposition it is convenient to denote the 
number of multiplicative partitions of n with exactly i factors by Ri(n). 
Since factoring 2 out of each factor of a multiplicative partition of 2a 

with exactly i factors yields a multiplicative partition of 2a~% we have 
Ri(2a) < / ( 2 a " i ) . Also, it is easily established that R2{2a) = [a/2] 
where [ ] is the greatest integer function. 

PROPOSITION 2.1. We have f(2a) < (3/2)a for all a > 0. 

PROOF. From readily available tables of p(a) we see that f(2a) = 
p(a) < (3/2)a for a < 8. Assume, by way of induction, that the 
proposition is true for all nonnegative integers less than a where a > 9. 
Then 

a a 

f(2a) = J2 W ) = 1 + [a/2] + £ Ri(2a) 
i=l i=3 

< l + [a/2] + £ / ( 2 - ' ) 

< l + [a/2] + X: (3 /2r - i 

i=3 

= [a/2] - 1 + (8/9)(3/2)a < (3/2)a. 

PROPOSITION 2.2. Ifr = 2 then f(m') < (l/2)g(mf). 

PROOF. We have m' = 2a • 36 where a > 0 and 6 > 1. We prove the 
result by induction on b. For 6 = 1 and a > 6 we have 

a a 

f(2a • 3) = F(2a) = £ / ( * ) < ^ ( 3 / 2 ) i < 3(3/2)° < (1/2)^(2° • 3) 
t=0 t=0 

and f o r f c = l , 0 < a < 5 , the result is verified by computer evaluation 
o f / (2 a -3 ) . 

Now assume that /(2* • 3') < (1/2)0(2* • 3*) for all nonnegative i and 
0 < j < b. Set A = (l/2)o(2a • 36+1) and B = F{2a • 36) - F(2a) -
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f(2a • 36). Then 

/(2° • 36+1) < /(2° • 36 • 5) - /(2° • 36) + / (2 a ) 

= F(2° • 36) - /(2° • 36) + / (2 a ) 

= F(2 a) + B + / (2 a ) = / ( 2 a • 3) + B + / (2 a ) . 

Since 

B = ^ ^ / ( 2 i . 3 ^ ) - / ( 2 a - 3 6 ) 
i=0j=l 

and / ( 2 a • 36) is a term of the double sum, then 

B < (1/2) E E 0(2 ' • 3 ' ) - (l/2)ff(2° • 3») 
i=0j=l 

b 

= (l/2)G(2a) £ ( 1 1 / 4 ) ' - (1/2)0(2° • 36) 

< ( l /2) ( l l /3){( l l /4) 6 - l}g(2a) - (l/2)g(2° • 3») 

= { 3 2 / 3 3 - ( 4 / 3 ) ( 4 / l l ) 6 } - A 

Also, 

and 

f(2a-3)<(l/2)g(2a-3) = (4/U)»-A, 

f(2a) < (3/2)a = (8 / l l ) (6 /7) a (4 / l l ) 6 A. 

Combining these inequalities we obtain 

/(2* • 3b+1) < { | - (l)(±)b+(^)b+(n)(?)a(n)6} •A 

= {(^((^r4) + |}(^(2-3^). 

Prom this inequality we conclude that f(2a -36+1) < \g{2a -3Ò+1) when 
(i) 6 > 3; (ii) 6 = 1 and a > 4; (iii) 6 = 2 and a > 2. The induction is 
completed by computer evaluation of f(2a • 36+1) for the few remaining 
cases not covered by (i)-(iii). 

LEMMA 2.3. Ifr > 3 then G{m/pr) < (44/4b)g(m). 
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PROOF. Summing the appropriate geometric series we obtain G(2ai ) < 
(7/%(2°i),G(3 a*) < (ll/7)S(3a=), and 

G(pa
r'/pr)<(4/(4r + 3))g(p?). 

Moreover, if r > 3 then 

G(p?)<((4i + 7)/(4i + 3))g(p?) 

for 3 < i < r — 1. Consequently, 

G(m/pr) < (7 /3) ( l l /7) (4 / l%(m) = (44/45)(?(m). 

PROPOSITION 2.4. Ifn>l then f(n) < (2/S)g(m). 

PROOF. If r = 2 then f(n) = f(m) < (2/3)g(m) by Proposition 
2.2. The proposition is also true for r = 1 since /(2) = 1 < 
(2/3)g(2),/(22) = 2 < (2/3)^(22), and, by Proposition 2.1, f(2a) < 
(2/3)g(2a) when a > 3. 

Now assume, by way induction, that the proposition is true for all 
positive integers less than n and greater than 1, and that n has 3 or 
more distinct prime factors. Then since 

f(n) = f(m)<f(m-pT+1/pr) = F(m/pr)= £ f(d), 
d\m/pr 

it follows from Lemma 2.3 and the induction hypothesis that 

/ (n)<l /3 + (2/3) J2 0(d) = 1/3+ (2/3)G(m/pr) 
d\m/pT 

< l / 3 + (2/3)(44/45)f(m). 

Since r > B,g(m) > (7/4)(ll/4)(19/4) > 45/2; and so, 

1/3 + (2/3)(44/45)s(m) < (2/Z)g(m). 

Consequently, f(n) < (2/3)ff(m), and we are done. 
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3. Growth propert ies of / . We now focus attention on the growth 
of / . We will need the crude estimate 

(3.1) ${r) < 16rlogr, r > 1. 

This estimate follows from the inequalities 0(r) < (21og2)pr, and 
pr < 8rlogr/log2, r > 1. The first inequality is well-known [2, p. 
341]; and the second inequality is easily obtained by a slight refinement 
of the proof of Theorem 8.2 in [6, p. 220]. The following obvious lemma 
will be frequently used (often without reference) in the remainder of 
our work. 

LEMMA 3.1. / / i*i, u<i,..., ur are monotonically increasing positive 
real numbers and a\ > a<i > • • • > ar > 1, then 

u\xua£ ...ua
T

r < (u1u<1...uT)x. 

PROPOSITION 3.2. We have f{m)/m < K(r) • exp(-a: • h(r)/4). 
Moreover, if a > 0 and e = exp(l) then f{m) < m/(logm) a when 
K(r) ' {0{r))a < {h{r) • e/(4a))<\ 

PROOF. A simple computation shows that g{m)/m = A- B where 

A = n ( i - i / ( 4 P i ) ) ° s 
i=l 

B = 1 for r = 1,2,3, and 

B = (23/27)0 4 . . . ((4r + 7)/(4pr - 1))°' 

for r > 4. By Lemma 3.1, 

A<f[{i-i/(4pi)r 
2 = 1 

and since (1 — l/(4pi))x < exp(-x/(4pi)), then A < exp(-x • h(r)/4). 
Thus, by Proposition 2.4, 

f{m)/m < {2/S)g(m)/m < (2/3) • B • exp(-a: • h{r)/4) 

< K{r) • exp(-x • h(r)/4). 
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Now suppose that K(r) • (0(r))a < (h(r) • e/(4a))a . Since {h(r) • 
e/(4a))a < x_aexp(x-/i(r)/4), then K{r)i0{r))a < x~a exp(x-h(r)/4). 
Hence 

f{m)/m < K{r) • exp(-x • h(r)/4) < {x • 0{r))~a < {\ogm)~a. 

With the aid of the preceding proposition and an asymptotic formula 
for Bell numbers due to L. Moser and M. Wyman [5], we now charac­
terize the growth of / (n) . 

THEOREM 3.3. (i) For any real number a,f(n) < n/(logn)a for all 
sufficiently large n. (ii) If0<ß<l then f(n) ^ O(n^) as n —• oo. 

PROOF. Proof of (i). We can assume that a > 0. Let 8 be 
the maximum value of (2/3)(28)(16rlogr)a/2 r;£ the positive mini­
mum of x~a exp(x/8) for a; > 1; ro a positive integer such that 
(2/3)(28)(16rlogr)a/2 r < e for all r > r0; and x0 > 1 a number such 
that x~a exp(z/8) > S for all x > x0. Since {4s + 7)/(4ps - 1) < 1/2 
for s > 9, it follows that K(r) < (2/3)(28)(l/2) r . Therefore, by Propo­
sition 3.2, 

f{m)/m < K{r) • exp(-x • h{r)/4) < (2/3)(28)(l/2) r exp(-x/8). 

Thus, by estimate (3.1) and the definitions of e and ro, when r > ro, 

/ ( m ) / m < ( 2 / 3 ) ( 2 8 ) ( l / 2 r ( l / ( £ . * « ) ) 

< 1/(16' x-r\ogr)a 

<l/(x-0(r))a<l/(logm)a. 

Similarly, when 1 < r < ro, and x > xoi 

f(m)/m < (2/3)(28)(l/2) r(l/(5 • x")) < l / ( logm) a . 

Also, when r = 1 (i.e., m = 2a), it follows from Proposition 2.1 that 
for all sufficiently large a, 

f{m)/m < (3/4)° < l / ( logm) a . 

From the three preceding inequalities involving /(ra)/ra, we have that 
f(m) < m/(logm)Q for all sufficiently large m, say all m > mo. Let 
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M be the maximum value of the / (m) satisfying m < rriQ. Then if n 
is sufficiently large and the corresponding m is at most mo, we have 

/ (n) = / ( m ) < M < n / ( l o g n ) a . 

On the other hand, if n is sufficiently large and the corresponding m is 
greater than mo, we have 

f(n) = / (m) < m/(logm) a < n/(logn)a 

and the proof of (i) is complete. ^ 
Proof of (ii). For each positive integer r let Nr = pi - p% - pr, so 

that f(Nr) is just the r™ Bell number. Choose c so that ß < c < 1. 
Since 0(r)/r log r has limit 1 as r —> oo [2, Chapter 22], then for all 
sufficiently large r we have Nf? < exp(crlogr). Moser and Wyman 
give the following asymptotic formula for f{Nr) in [5]: 

f(Nr) ~ (R +1)-*{1 - * ( ^ ( + ™ + 1 0 ) } -exp(r(fl + ^ - 1) - 1) 

where Ä is the unique solution of ReR = r. Since c < 1 it is an 
easy matter to show that /(iV r)/exp(crlogr) —• oo as r —> oo. Thus, 
f(Nr)/N{? —* oo as r —• oo and the proof of (ii) is complete. 

4. The Hughes-Shal l i t conjecture. Theorem 3.3(i) reduces the 
resolution of the Hughes-Shallit conjecture to checking only a finite 
number of cases. In this section we resolve the conjecture in the affir­
mative by improving our estimates of / to the extent that it is necessary 
to only compute f(n) for 131 values of n, all of which are within the 
range of the computer program mentioned in §1. The following propo­
sition reduces the problem to a consideration of / (m) . 

PROPOSITION 4.1. The Hughe&Shallit conjecture is true if f(m) < 
m /log m for all m ^ 144. 

PROOF. If n > 1 is a prime, then f(n) = 1 < n/ logn. Now suppose 
/ (m) < m J log m for all m ^ 144 and that n is composite. If n ^ q\ • g | 
then m •=/=• 144 = 24 • 32 and n > m > 4 so that 

/ (n) = / (m) < m/ logm < n/ logn. 
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If n = qf . ql ^ 144, then n > 34 • 22 = 324 and so, 

f(n) = /(144) = 29 < 324/log 324 < n/ logn. 

Our attack is now obvious, i.e., to verify that f{m) < m/ logm for 
all m 7̂  144. The first giant step in this endeavor is accomplished in 
Proposition 4.3 using our previous estimates of / . First, however, we 
establish the following lemma which will be frequently used in this sec­
tion. 

LEMMA 4.2. IfT(r,x) = (3/2) • K(r) • 0(r) • x • exp(-z • h(r)/4), then 
g{m) • log m/m < T(r, x). 

PROOF. We have log m < x • 0(r) and the proof of Proposition 3.2 
showed that g(m)/m < (3/2) • K{r) • exp(-x • h(r)/A). 

PROPOSITION 4.3. If r < 2 or > 8 then / (m) < m/logm except 
when m = 144. 

PROOF, (for r > 8). We apply Proposition 3.2 with a = 1. The 
following table verifies the result for 8 < r < 12. 

r 

8 

9 

10 

11 

12 

K{r).6{r) 

0.95 

0.53 

0.26 

0.12 

0.05 

h(r) • e/4 

0.99 

1.02 

1.04 

1.06 

1.08 

Thus, we may suppose that r > 13. For s > 9, (4s+7)/(4p s- l) < 1/2, 
and so 

KM < (!K(!><i><£><f x | y »fir < («..xi)-. 
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Thus, using (3.1), we have 

K{r)-0(r) < 16(15.1)(l/2)r(rlogr) 

<16(15.1)(l/2)13(131ogl3) 

< 0.984 < e • A(13)/4 < e • A(r)/4. 

Consequently, / (m) < m log m when r > 13. 
Proof for r = 1. The result follows from Proposition 2.1 since 

/(2°) < (3.2)a < 2a log2a for all a > 1. 
Proof for r = 2. Set m = 2a • 36,a > b > 1, and L(m) = 

(l/2)g(m) - logm/m. Since / (m) < (l/2)#(m), by Proposition 2.2, 
then / (m) -logm/m < L(m), so that / (m) < m log m when L{m) < 1. 
If x = (a 4- 6)/2 > 11 then, by Lemma 4.2, L(m) < (l/2)T(2,x) < 1, 
and so we need only further consider a + b < 21. For a + 6 < 21 
we computed (via a simple computer program) L(m) and found that 
L(m) < 1 with the exception of 50 values of m. The largest of these 
50 values was m = 210 • 39 and this m was also the one with the most 
positive divisors; i.e., all 50 values were within the range of the com­
puter program for / (m) . Computing / (m) for each of these 50 values 
we found that / (m) < m/ logm except when m = 144. 

We need improved estimates for / (m) to deduce that / (m) < 
m/logm for 3 < r < 7. The estimates we have in mind are given 
in Proposition 4.5. The following lemma will be used in the proof of 
Proposition 4.5(1). 

LEMMA 4.4. Ifr = 3 and a^ = 1, then 

f{m') < (ll/24)(16/19)^(m /). 

PROOF. Set a = a\, 6 = Ü2 so that m' — 2a • 36 • 5. The lemma is true 
for a > 0 and 6 = 0 since 

/(2° - 3° • 5) = / ( 2 a • 3) < (\)g(2a • 3) < ( ^ ) ( ^ ) s ( 2 a • 3° • 5). 

Thus, we may assume that b > 1. We proceed by induction on b. The 
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result is true for b = 1 since 
a 

f(2a • 3 • 5) = F(2a • 3) = F(2a) + J^ f(2i • 3) 
t = 0 

= /(2a-3) + £/(2'-3) 
i=0 

<(5M2a-3) + (i)(^(2°-3) 

= 0(^M2-3.5)<(H)(^.3.5). 
If the lemma is true for the positive integer 6, then 

a 

f(2a • 3 6 + 1 • 5) = F(2a • 3Ò+1) = F(2a • 36) + ^ fi2* ' 36+1) 
j=0 

= / ( 2 a - 3 6 - 5 ) + ^ / ( 2 i - 3 6 + 1 ) 
t=0 

- (2i ) ( i ) s ( 2 a ' 3 6 ' 5 ) + (5 )è^ 2 ' - 3 i '+ i) 

completing the induction and the proof. 

PROPOSITION 4.5. 

(1) Ifr = 3 then f{m') < (ll/24)(16/19)a89(m'). 
(2) Ifr = 4 then f{m') < (242/567) (16/19)a3(21/23)a4^(m /). 
(3) Ifr = 5 then f{m') < (42592/111537)(16/19)a3(21/23)a4^(m/). 
(4) Ifr = 6,a6 = 1, then f{m') < (7/20)(16/19)a3(21/23)a4^(m /). 
(5) Ifr = 7,a6 = a7 = 1, then f{m') < (l/3)(16/19)a3(21/23)a4^(m /). 

PROOF. Proof of (1). Set ai = a, a<2 = 6,03 = c. We use induction 
on c. Lemma 4.4 shows the proposition is true for c = 1. Now assume 
that 

f{2i • 3J • 5*) < (11/24)(16/19)*0(2* • V • 5*) 
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for all nonnegative i, j and 0 < k < c. Set 

A = (ll/24)(16/19)c + 1s(2a • 36 • 5C+1) 

and 
B = F(2a • 36 • 5C) - F(2a • 36) - f(2a • 36 • 5C). 

Then 

f(2a • 36 • 5C+1) < f{2a • 3Ò • 5C • 7) - /(2° • 36 • 5C) + /(2° • 36) 

= F(2a • 3* • 5C) - /(2° • 36 • 5C) + /(2° • 36) 

= F(2° • 36) + B + /(2° • 36) 

= /(2° • 36 • 5) + B + / (2° • 36). 

Since 

a b c 

i=0 j=0k=l 

and f(2a • 36 • 5C) is a term of the triple sum, then 

= (a)G<2°'3')è4*-(M)(î5)C!"2''3t5'> 

Also, 

/ (2 -3 ' .5 )<( l i ) (15) 9 (2- .3» .5)=( i ) C .^ 

and if 6 > 0, then 

/(2° • 3") < ( i) f f(2° • 3*) = ( n ) ( i ) C • A -
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Combining these inequalities we obtain 

^ = (s)(ï5p<2°^+'> 
when b > 0. Finally, when 6 = 0 we have 

/ ( 2 a • 3° • 5C+1) = /(2° • 3C+1) < (\)g(2a • 3C+1) 

£ ( ä ) ( S ) C + l f f ( 2 a - 3 ° - 5 C + 1 ) 

and the induction is complete. 

The proofs of (2) and (3) are almost identical to the proof of (1). For 
example, to prove (2) we first use (1) to establish the result for a± = 1. 
We then use (1) and induction as in (1) to finish the proof. To prove 
(4) we use (3) and proceed as in Lemma 4.4. Finally, to prove (5) we 
use (4) and proceed as in the 6 = 1 case of Lemma 4.4. 

PROPOSITION 4.6. If 3 < r < 5 then f(m) < m/logm. 

PROOF. The proof is similar to the r = 2 case. For m = 2° -3Ò -5e, m = 
2° • 36 • 5e • 7d, and m = 2a • 36 • 5e • 7d • 11e respectively, let 

11 1 f\ 

i(3,m) = ( ^ ( j g ) 0 ^ ™ ) ' ioSm/m: 

L(4,m) = ( | | ) ( ^ ) C ( | ) d f f M -logm/m, 

and 
_,c , .42592 16^,21^ , . . . 

( , m ) = ( Ï Î Î 5 3 7 ) ( Ï 9 ) (23^ 9 ^ ' l o g m / m -

It then follows from (l)-(3) of Proposition 4.5 that / (m) < m/logm 
when the corresponding L-value does not exceed 1. Using Lemma 4.2 
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we have the following: 

L(3,m)<(^)^)T(3,x)<l 

^^OS^ 4 '^ 1 
when x = {a + b + c)/3 > 10; 

L(4,m)<(\ 

when x = (a + b + c + d)/4 > 8.8; and 

when x = (a + 6 + c + d + e)/5 > 6.6. Thus, for r = 3,4 and 
5 respectively, we need only further consider values of m given by 
a + 6 + c < 29, a + ò + c + d < 35, and a + 6 + c + d + e < 32. 
For each of these values of m we computed the corresponding L-value. 
We observed that none of the L-values in the r = 5 case exceeded 1; 
there were exactly 22 values of m in the r = 4 case having L-value 
greater than 1; and there were exactly 59 values of m in the r = 3 case 
having L-value greater than 1. The largest of these 81 values of m was 
m = 28 • 38 • 5, whereas the one with the largest number of positive 
divisors was m = 27 • 36 • 52. Thus, all 81 values of m were within the 
range of the computer program for / (m) . By actual computation of 
f(m) we found that f(m) < m/logm for each of the 81 values of m. 

The only cases left to consider are when r = 6 and r — 7. The fol­
lowing lemma simplifies our work in these two remaining cases. 

LEMMA 4.7. 

(1) Ifr = 6 and f(m) > m/logm, then a^ = 1. 
(2) Ifr = 7 and f(m) > m/ logm, then ae = 07 = 1. 

PROOF. Suppose that ae > 2 so that o» > 2 for 1 < i < 6. A slight 
modification of the proof of Proposition 3.2 then gives 

2 23 27 31 
( g ) 0 M • logm/m < ( ^ ( ^ ( ^ ^ M ' e x P ( - x * MO/4) • logm 

s<|><i><|W> 



812 F.W. DODD AND L.E. MATTICS 

for r = 6 and r = 7. A computation shows that the right side of the 
inequality is less than 1 when x > 1 and 6 < r < 7. Thus, by Proposi­
tion 2.4, f{m) < m/logra when ÜQ > 2 and 6 < r < 7. 

PROPOSITION 4.8. If 6 < r < 7 then f(m) < m/logm. 

PROOF. In view of Lemma 4.7 we may suppose that a6 = 1 when 
r = 6, and a^ = a-j = 1 when r = 7. Then, by Proposition 4.5(4)-(5) 
and Lemma 4.2, 

/ ( m ) - l o g m / m < ( ^ ) ( ^ ) ( | ) T ( r , x ) , 

and a computation shows that for 6 < r < 7 and x > 1 the right side 
of the ineqaulity is less than 1. 

The resolution of the Hughes-Shallit conjecture is now at hand. 

THEOREM 4.9. The Hughes-Shallit conjecture is true. 

PROOF. Immediate from Propositions 4.1, 4.3, 4.6, and 4.8. 

Adendum-Asymptotic Behavior of / (n) . After this article was 
accepted for publication it was brought to our attention by Professor 
Carl Pomerance that he in collaboration with Paul Erdös and E.R. 
Canfield in [7] obtained asymptotic results superior to those of Theo­
rem 3.3. Indeed, in their article, they show that f(n) = nL(n)~ 1 + A ; ^ n \ 
where L(n) = exp[lognlogloglogn/logn] and k(n) is a function with 
linin—oo k(n) = 0. It is an easy exercise to deduce our Theorem 3.3 
from this result. Their result, however, cannot be used to solve the 
Hughes-Shallit conjecture since the behavior of k(n) is known only to 
asymptotically. 
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