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UNIQUE SOLVABILITY OF AN AGE-STRUCTURED 
POPULATION MODEL WITH CANNIBALISM 

DAVID W. ZACHMANN 

A B S T R A C T . A modification of the McKendrick-Von Foer­
ster population balance equation is used to model populations 
in which: (i) no individual lives past age a = L and (ii) young 
individuals, 0 < a < L* < L, are cannibalized by the older, 
L* < a < L individuals. The balance equation is formulated 
as an equivalent integral equation and the contraction map­
ping principle is used to establish the unique solvability. The 
existence and stability of equilibrium solutions are considered. 

1. Introduction. Let p = p(t, a) denote the population density of 
individuals of age a at time t and let 

Dp = lim l(* + M + ft) - l ( M ) 
/i—o h 

if pis continuously differentiate, then Dp = -^ + ^ * ^ n e McKendrick-
Von Foerster population balance equation, McKendrick 1926, Von 
Foerster 1959, states 

Dp = -ip 

where 7 is a nonnegative quantity, often called the death modulus, 
which determines the rate of removal of individuals from the popula­
tion due to death. As noted by Gurtin and MacCamy, 1974, the death 
modulus, 7, may depend on p, total population density, age, and time, 
etc. 

The equations considered in this paper are based on the above popu­
lation balance equation and were motivated by a desire to model pop­
ulations in which 

(i) individuals live to a maximum age of a = L; 
(ii) young individuals, 0 < a < L* < L are preyed upon (cannibal­

ized) by the older individuals, L* < a < L. 
The conditions (i) and (ii) are idealizations of those exhibited by 
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many insect and fish populations. Let 

IL* 
(1.1) P(t)= f p{t,a)da 

denote the density of older, predatory individuals in the population at 
time t. Conditions (i) and (ii) are incorporated into the population 
balance law as follows. 

(1.2) Dp = ^6{t,a,P{t))Pi ô(t,a,P(t)) € R + £ < - < ^ 

(1.3) Dp = p, A € R + , L* < a < L, t > 0 
L — a 

(1.4) p(t,0) = B(t,P{t)) = J ß{t,a,P{i))p(t,a)da, t > 0 

(1.5) p{0,a) = 0(a)i 0 < a< L 

where R + = {x : x > 0}. In equation (1.2) the death modulus 
8{t,a,P) is motivated by (ii). If ôp > 0, equation (1.2) reflects a 
situation in which the death rate of the young increases with the 
number of predatory individuals in the population. If young individuals 
are removed at a rate proportional to the number of encounters between 
young and old, then the death modulus in equation (1.2) could be taken 
to be a constant multiple of P(t). 

With a death modulus as in equation (1.3), it follows from equation 
(2.6) that 

*{a) = ( ^ 3 ^ ) , ^* < a < L, A > 0 

represents the probability that an individual of age L* survives to age 
a, given a maximum life span of a = L. Large values of A corre­
spond to a high initial mortality rate, while small values of A indicate 
most individuals survive nearly to age L. This behavior of 7r(a) allows 
representation of many observed mortality curves. See, for example, 
Slobodkin, 1961, Figure 4.1. The death modulus of Eq. (1.3) has been 
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used by Stafford et al., 1983, to describe grasshopper survival curves. 
Equation (1.4) asserts that the number of "newborns" is dependent 

on the size of the population of older individuals. B is assumed to 
be a continuous function from R + to R + . The initial age distribu­
tion in the population is given by 0(a), where 0 is assumed to be a 
nonnegative-valued continuous function. For the initial population dis­
tribution to be consistent with the birth dynamics, it is assumed that 

0(0) = B(P(0)). 

The above consistency condition ensures that p(t,a) is continuous 
across the line t = a. 

Models incorporating cannibalism in age-structured population have 
been considered by Gurtin and Levine. In their approach the effects 
of cannibalism are accounted for in the birth dynamics in contrast to 
incorporating the cannibalism in the death modulus as is done here. 
Swick has considered populations in which individuals have a finite 
maximum life span. To ensure no individual lives past age a = L, 
Swick's model allows the death modulus to become unbounded as a 
approaches L, but away from a = L requires the death modulus to be 
bounded by one. This boundedness requirement away from a = L is 
not imposed here. Also, of the hypotheses Ho through iJ5 assumed 
in Swick, 1977, hypotheses Hi^H^ and H$ fail to hold for the model 
equations (1.1)-(1.5). Wollkind and Logan, 1978, and Wollkind, Hast­
ings and Logan, 1980, have also considered populations with finite life 
span. In their analysis the death modulus was independent of P and 
a. 

For 6 > 0 the system (1.1)-(1.5) represents a cannibalistic popula­
tion. However, for the special case 6 = 0 the situation is quite differ­
ent. When 6 = 0 equation (1.2) states that the death rate of young 
individuals is zero so the system represents a population in which the 
young are perfectly protected. 

2. Existence. The goal in this section is to establish the exis­
tence of a solution to the model equations (1.1)-(1.5). Let C+[0,T] 
denote the class of nonnegative-valued functions which are continuous 
for 0 < t < T. Assume the functions 0(a),6(a,t,P) and ß(a,t,P) are 
continuous and that 6 satisfies a Lipschitz condition in P. 
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DEFINITION. p(t, a) is a solution to the system (1.1)-(1.5) for 0 < t < 
Tif 

(i) p(t, a) > 0,0 < a < L and p(t, a) = 0, a > L. 
(ii) P(t) defined by (1.1) is in C+[0,T]. 

(iii) Dp exists and pP satisfy equations (1.1)-(1.5). 
The existence of a solution is established as follows. First it is shown 

that the system (1.1)-(1.5) has a solution if and only if P(t) satisfies 
a Volterra integral equation. A local existence result, existence of a 
solution for T sufficiently small, is then established. Finally, a global 
solvability result is established with the aid of an a priori estimate of 
the solution. 

THEOREM 2.1. Let T = min{L*,L - L*}. p(t,a) is a solution of 
equations (1.1)-(1.5) forO<t<T if and only if P e C+[0,T] satisfies 
(2.1) 

[L*+l /L-a\x / /-L*+*-a x 
+ / 6(a-t)(- — J exp(- 5 ( s , a - ^ + s,P(s))c?sJc?a. 

PROOF. If p(t,a) is a solution of equations (1.1)-(1.5), 0 < t0 < T, 
0 < a < L* and ~p(h) = p(to + A,ao + A), then equation (1.2) implies 

% = -S{tQ + A, a0 + A, P(to + h))p{h) 
an 

which can be integrated to obtain 

~p(h) = p(0) exp I- / 6(t0 + s,ao + s, P(t0 + s))ds\ 

or 
(2-2) 

p(t0 + A, a0 + A) = p(*o, ao) exp ( - / Ä(i0 + s, a0 + s, P(*o + «))<kj. 

If 0 < a < t < T, in equation (2.2) set ao = 0, A = a and ^ = ^ — a to 
obtain 
(2.3) 

p(£, a) =B(t — a, P(£ — a)) exp f - / 6(t — a + s, s, P(t — a + s))ds), 

0<a<t<T. 
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If 0 < t < a < £*, in equation (2.2) set to = 0,h = t and a0 = a — t to 
obtain 

(2.4) p(t,a) = 0(a-t)exp(- / 6(8,a-t+s,P(s))ds)i 0<t<a<L*. 
Jo 

If p{t, a) is a solution of equations (1.1)-(1.5), 0 < t0 < T, L* < a < L 
and 'p(h) as above, then equation (1.3) implies 

dp -Xp 

dh L — ao — h 

which, when integrated, yields 

L — ao — h \ A 

« = » ( ^ 1 L - ao 

or 

(2.5) p(t0 + h,ao + h) = p(*o,a0)( r ) . 
\ L — ao / 

If L* < a < L*+t,t < T, inequation (2.5) set ao = £*,ft = a—L*,to = 
t — a + L* to obtain 

(2.6) , ( M ) = ,,(t_a+ £•,£*) ( i^=£) \ 

From equation (2.4) it follows that 

p^-a+L*, / ,*) = 0(L*-*+a-L*)exp f- / <S(s ,a-^s , F l e t e i 

so equation (2.6) can be written as 
(2.7) 

/ pL*-jrt — a . / r ^ 

/>(*, a) =0(a - t) exp ( - / 6(s, a-t + s, P{s))ds) (j^jr) > 

L* < a < L* + *, * < T. 

If L* + £ < a < L, £ < T, in equation (2.5) set to = 0, h = t and 
ao = a — t to obtain 

(2.8) p(t,a) = 0{a-t)( L ~~ a \ , L* +t < a < L,t <T. 
\ Li — a ~r~ t ' 
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Now, from equation (1.1), (2.7) and (2.8), it follows that if p(t,a) is a 
solution of equations (1.1)-(1.5), then P satisfies the integral equation 
(2.1) 

To establish the converse assume P G C+[0, T] satisfies equation 
(2.1). Since 6 is nonnegative, p(t, a), defined by equations (2.3), (2.4), 
(2.7) and (2.8), is clearly nonnegative. From equations (2.2) and (2.5) 
Dp is seen to exist. Finally a straightforward calculation shows p, P 
satisfies (1.1)-(1.5) which completes the proof of Theorem 2.1. 

In the proof of Theorem 2.1 it may not be apparent why T was chosen 
to be the minimum of L* and L — L*. Requiring T < L* limits the 
effect of the birth dynamics to the victim population so that the integral 
equation (2.1) for P does not depend on the birth function. Since B 
is, in general, nonlinear, the restriction T < L* precludes one source of 
nonlinearity from the integral equation for P. If T is not required to 
satisfy T < L — L*, then the density of the predatory segment of the 
population could not be expressed as simply as in equations (2.7)-(2.8), 
but would instead be a composition of such expressions. 

It is convenient to express the integral equation (2.1) in abbreviated 
form as 

P{t) = G{t) + F{P(t)). 

where 

(2.9) GW = £+^ (o_ t)(_£z£_)A
da 

and 
(2.10) 

F(P(T)) = 
rL*+t / L - a \ x / fL'+t-o x 

y . * { a ~ * K i r r w e x p ( y «(*,*-* + *,poo)<fo). 
It is clear that F maps C+[0,T] into C+[0,T]. It is also clear that 
for t bounded away from zero that G(t) is a continuous, nonnegative 
function. However, since (/£_~^ ts)A is discontinuous at t = 0, a = L, 
it is not immediate that G is continuous at t = 0. 

LEMMA. / / G(0) is defined to be fL. 9(a)da, G(t) is continuous at 
t = 0. 
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PROOF. Let 

M = max 0(a) 
0<a<L 

p L T \ r L 

G(t) - G(0) = / 0(a - t) ( ~a ) da- 0(a)da 

which, letting a = a — £, implies 

G(t)-G(0) = £ \(a)((L
 L°J)X -ljda- J\{a)da. 

Since 

for L* < a < L — Mt follows from the last equation that 

m) - G(o)i < M(£_< (i - (k^iyya+ty 

To complete the proof of the lemma it is sufficient to show 

approaches zero as t approaches zero. For 0 < A < 1 it follows from 
(2.11) that 

\ L — a / V L — a / L — a 

Thus, in the case 0 < A < 1, 

which approaches zero as t approaches zero. 
For 1 < A it follows from (2.11) that 

M^)As>-(^r=x:H>-(?)(^)'. 
7 = 1 
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where N is any positive integer satisfying N > X and ( ^ ) = ((N-J)\JÏ) 

is a binomial coefficient. If À > 1, then 

In the above sum of integrals the term with j — 1 has already been 
seen to have limit zero as t tends to zero. For 1 < j < TV, 

fL-t(-±-yda=t^L-L^-i-tl-j 

!L* \L-aJ \ l-j 

which clearly approaches zero with t. This completes the proof of the 
lemma. 

The next result establishes the local existence of a solution to the 
integral equation (2.1) and, in view of Theorem 2.1, to the system 
(1.1)-(1.5). In the next theorem the time T for which existence of a 
solution can be assured may be smaller than the time T in Theorem 
2.1 for which equation (2.1) is equivalent to equations (1.1)-(1.5). 

THEOREM 2.2. Assume 5($,a,P(*)) satisfies 

\6(t,a,P(t)) - «(t,a,Q(t))| < a\P(t) - Q(t)|, a G R + . 

IfT< min{Z/*, L — L*} and T < yj^, then the sequence 

Po(t) = G(t), Pn(t) = G(t) + F(Pn.1(t)), n=l,2,.. 

converges to a function P(t) G C+[0,T] which satisfies equation (2.1). 
Moreover, P(t) is the only solution of equation (2.1) in C+[0,T]. 

PROOF. From the lemma and the fact that F : C+[0,T] - • C+[0,T], 
it follows that if the sequence Pn{t) converges to P{t), then P(t) G 
C+[0,T]. To show the Pn(t) converge, first note that 

\P1(t)-P0(t)\ = F(P0(t))<TM 

file:///L-aJ
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where the last inequality follows immediately from equation (2.10) and 
O<0(a-t)< M. For n > 2, 

\Pn(t) - Pn-i(t)\ = | P (P n - i ( 0 ) - F ( P n - 2 (t))l 

j exp ( - / £(s,a — £ + s,Pn_i(s)ds)ds) 

-exp( / 6(s,a — t + s,Pn_2(s))ds) Ida 

<M exp ( - / (s,a — £ + s,Pn_i(s)ds)dsj 

-exp I / 6(s, a - £ + s, Pn_2(s))dsJ da. 

The last inequality and |e x — e"2'! < \x — y\ for x, y > 0 shows 
(2.12) 

rL*+t rL*-\-t-a 
\Pn(t) - P„-i(t)l < M y ^ | y <5(s,a - t + s ,P n - i (s) ) 

<5(s,a - £ + s,Pn_2(s))ds da 

<Ma {L* +t-a) max |Pn-i(«) - Pn-2(s)| 
JL* 0<s<T 

= Ma(t2/2) max |Pn_i(s) - Pn-a(») | 
0<s<T 

so that 

MaT 2 

0 ^ T | P n ( 0 - ^ n - l ( O I < - y - 0 | ^ r | P n - l W - P n - 2 W | . 

Using the above and \Pi(t) — Po (Ol ^ ^ M in an induction argument 
yields 

a n ~ 1 M n T 2 n _ 1 

™tfT \Pn(t) - P„ - l (0 l < ^ T i • 

Now the ratio test shows that X)£Li |Pn(0 ~ Pn-i(01 converges uni­
formly for 0 < t < T and therefore that Pn(t) converges uniformly for 
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0 < t < T provided 

MaT2 ^ „ [2 
< 1 or T < /X 

V Ma 
2 V Ma' 

To complete the proof of Theorem 2.2 assume P, Q € C+[0, T] satisfy 

P(t) = G(t) + F(P(t)) and Q = G(t) + F(Q(*)). 

Then, by (2.12), 

max |P(0 - Q(0I < ^ ^ - max |P(s) - Q(s)\ 

which, since MaT2\2 < 1, is a contradiction unless <2(£) is identically 
equal to P{t). 

Theorem 2.2 shows that the integral equation (2.1) can be uniquely 
solved for P{i) on 0 < t < T0 = T. Then, from Theorem 2.1, it 
follows that p(t,a) satisfying equations (1.1)-(1.5) can be found for 
0 < a < L , 0 < t < TQ. NOW, using p(To,a) in place of 0(a) in the 
above local existence argument, P(i), and thus p(t, a), can be advanced 
over the time interval T0 < t < T\. The time step 7\ is restricted by 
Ti - T0 < min{L*, L - L*} and 

Ti-T0<W , mi = max p(T0,a). 
V mia o<a<L 

Repeating the local existence argument allows the solution p(t,a) to 
be advanced successively over the intervals TJ_i < t < T ,̂ i = 1,2, • • •, 
where T{ - T^_i < min{L*, L - L*} and 

r t--r i-i< \ / , mi max p(Ti-i,a). 
V mia o<a<z/v J 

A global existence result cannot be obtained unless the situation 
X ^ i ( ? i — Ti-i) < oo, which occurs when m^ increases too rapidly, 
can be ruled out. To establish the global existence of the solution to 
equations (1.1)-(1.5) it is sufficient to show that the solution can be 
advanced to an arbitrary, fixed time t = T* with a sequence of local 
arguments with time steps Ti — Ti-\ bounded away from zero. 
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THEOREM 2.3. Assume B satisfies the growth condition B(t,P(t)) < 
bP{t),b> 0. If Ti - Tt_i = At, where At > 0 satisfies 

At<mìn{L*,L-L*} 

At < \ / T 7 - > M = max 0(a) 
~ V Ma o<a<L v ' 

M\G 

and, for T* > L*, 

A * < y ^ , M^bMiL-L*) 

At<xf-^—, M2=Mle
bV*-L*\ 

V M<io 

Then Theorems 2.1 and 2.2 can òe wserf to advance the solution 
P(t),p(t,a) of equations (1.2)-(1.5) to the time t = T*. 

PROOF. TO establish Theorem 2.3 it is sufficient to show p satisfies 
the a prioiri estimates 

p(t,a) <9{a), t<a<L 

p{t,a) <bM{L-L*), a<t<L* 

and 

p(t,a) <bM{L-L*)eb^-L^ ,L*<t<T*, 0 < a < L. 

The first of these estimates follows immediately from equation (2.4), 
(2.7) and (2.8). To establish the second estimate note that equations 
(1.2) and (1.3) imply Dp < 0, so 

p(t, a) < B(t - a, P(t - a)) < bP(t - a). 

Since p{t,a) < M for t < a < L*,P{t - a) is bounded by M(L - L*) 
for a < t < L* and the second estimate follows. 

Finally, consider the case L* < t < T*,0 < a < L. From p{t,a) < 
bP(t — a) it is seen that the extreme case which must be considered in 
obtaining an a priori estimate on p(t, a) is that in which P increases 
at the maximum rate allowed by the growth condition on B. In this 
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case p{t,a) < bP{T*), for L* < t < T*,o < a < L, so it remains only 
to estimate P{T*). Integrating 

from a = L* to a = L yields 

dP 

SO 

^<p(t,L*)<bP(t-L*). 

If P is increasing, then P(t) > P(t - L*) and dP/dt < bP(t) from 
which it follows that P{t) < P{L*)eb^-L'\ Thus P(T*) < M(L -
L*)eb(T.-L') o r 

p{t,a) < bM(L - L*)eb(T'-L'\L* <t<Tt0<a<L 

which completes the proof. 

COROLLARY. / / B is uniformly bounded, B(t, P(t)) < B* then Ai 
need only satisfy 

A ^ m i n d M - r , ^ , ^ } . 

3. Existence and stability of equilibrium solutions. Suppose 
the birth and death dynamics in the model do not depend explicitly on 
time. Then the system (1.1)-(1.4) has the form 

(3.1) P(t)= I p{t,a)da 
JL* 

(3.2) Dp = --/(a, P)p, 0 < a < L* 

(3.3) Dp = p, L* < a < L 
L — a 
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(3.4) p(0,t)= ß{a,P)p{t,a)da. 
JL* 

Let P be a fixed positive number and let ~p = ~p{a) be continuous 
for 0 < a < L and continuously differentiate for 0 < a < L* and 
L* < a < L. An equilibrium solution is defined to be a pair P,~p satis­
fying (3.1)-(3.4). Cushing and Salem, 1982, and Cushing, 1983, 1984, 
1985 have studied the existence and stability of equilibrium solutions 
of a system of the form (3.1)-(3.4). In place of the specific death modu­
lus given in (3.2)-(3.3), Cushing assumes a general, continuous death 
modulus. It appears that many of his results could be modified to ap­
ply to the problem considered here. 

THEOREM 3.1. There exists an equilibrium solution if and only if P 
satisfies 

T T * 

(3.5) J / 3 ( a , P ) ( i ^ ) A r f a e x p ( - | 1(a,P)da)=l. 

Moreover, if P satisfies (3.5), the corresponding equilibrium density 
function is given by 

pL pa 
(3.7) p(a) = / ß(a,P)p(a)da • exp(- / ^{h,7)dh), 0 < a < L\ 

JL* JO 

PROOF. In equilibrium (3.2) reads 

p'(a) = -7(a,P)p, 0 < a < L*, 

which is easily integrated to obtain 

~p{a) = poexp f- / r){h,P)dh\, 0 < a < L*, 

where the constant po is given by 

(3.8) p0= I ß(a,P)p(a)da. 
JL* 
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Similarly, integrating (3.3) yields 

r * 

(3.9) p(a) = Po (^^ ) A exp (-j 1(a,P)daji L* < a < L. 

By putting p from equation (3.9) into (3.8) and dividing out po, it fol­
lows that condition (3.5) is necessary for the existence of an equilibrium 
solution. If condition (3.5) holds, then it is easy to verify that ~p, given 
by equations (3.6)-(3.7), satisfies the system (3.1)-(3.4). Thus, equa­
tion (3.5) is necessary and sufficient for the existence of an equilibrium 
solution and the proof is complete. 

In the case 7(0, P) = 0, the content of equation (3.5) is that 
each individual must be replaced for equilibrium to persist. For 
7(0, P) > 0 equation (3.5) asserts that, in addition to replacing itself, 
each individual must produce an excess equal to the number it will 
consume during its predatory stage. 

For the remainder of the section assume the birth modulus in equation 
(3.5) is age-independent and let 

(3.10) ß = ß(P), 

denote the per capita reproduction rate. Also assume the death 
modulus 7, in equation (3.2) has the form 

(3.11) 1 = <rP, ° = const. > 0 

Equation (3.11) can be used to model a situation in which the removal 
rate of young is proportional to the number of encounters between 
young, prey, and older, cannibalistic individuals. 

COROLLARY 3.2. If ß and 7 are as in equations (3.10)-(3.11), then 
an equilibrium solution exists if and only if P satisfies 

(3.12) h^JLßCP) exp(-aPL*) = 1. 

Moreover, if P satisfies (3.12), the corresponding equilibrium density 
function is given by equation (3.6) for L* < a < L and 

(3.13) p(a) = Pß(P) expi-aTa), 0 < a < L*. 
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PROOF. Equation (3.12) follows immediately by putting expressions 
(3.10)-(3.11) into condition (3.5). All that must be verified is the 
continuity of the density function ~p defined piecewise by equations (3.6) 
and (3.13). Comparing (3.6) and (3.13) evaluated at a — L* we find 

P{\ + 1) =pß(p)exi?i_apL*) 

which is seen to be equivalent to condition (3.12) so ~p is continuous. 
To examine the stability of an equilibrium solution to the system 

(3.1)-(3.4), set 

p = p(a)+ti(*,a), 0 < a < L V > 0 

p = -p[a) + v(t, a), L* < a < L, t > 0 

P = P + p(t), t>0. 

For the birth and death dynamics defined by (3.10)-(3.11), a calculation 
shows that to first order in the perturbations u, v and p, the following 
system must be satisfied. 

(3.14) ut + ua = -aPu - crpp, 0 < a < L*, t > 0 

(3.15) vt + va - — v, L* < a < L, t > 0 
Li — a 

(3.16) p = I vda, t > 0 
JL-

(3.17) u(0,t) = (PßP(P) + ß(P)), t>0 

(3.18) u(t,'Lm) = v{t,L*), t>0. 

To continue the linearized stability analysis, set 

(3.19) u = U(a)ezt, v = V(a)ezt, p = p0e
zt 
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in the system (3.14)-(3.18) to obtain 

(3.20) zU + U' = -aPU - ap0p{a), 0 < a < V 

(3.21) zV + V'= - T ^ — V, L* <a<L 
L — a 

(3.22) Po= [ V{a)da 
JL* 

(3.23) U(0) = [Pßp(P) + ß(P)}po 

(3.24) U{L*) = V{L*). 

Since ~p{a) is given by equation (3.13) for 0 < a < L*, (3.20) can be 
solved, subject to (3.23), to give 

U(a) = Po(Pßp(P) + 0(F) - aPß(PYa~l)y^+^a. 

Solving (3.21) for V yields 

V(a) = const. e~za{ f ~ ° )*. 
Xy — .L 

Using the continuity condition (3.24) to fix the constant in the last 
equation gives 

v -„(WMP, + «?> - ^ ' p ' f - " ) « - ( ^ ) > . 
Finally, if the last equation is integrated from a = L* to a = L, it 
follows from equation (3.22) that z must satisfy the equation 
(3.25) _ _ 

(^WP)-^T,-1))/>°(^)^=1-
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Since the perturbations (3.19) decay in time if and only if the real part 
of z is negative, we have the following result. 

THEOREM 3.3. The equilibrium solution P, ~p is stable if and only if 
all solutions z of (3.25) have negative real part. 

THEOREM 3.4. A sufficient condition for an equilibrium solution to 
be unstable is 

(3.26) ßp(P)>orß{P)L*. 

PROOF. Let F{z) denote the expression on the left side of equation 
(3.25) and consider the case of real z with z > 0. Evaluating F at z = 0 
gives 

F(0) = (PßP(P) + ß(P) - aPß(P)L*)^-

which, in view of (3.12), shows 

F(0) = P(ßp(P) - aß{P)L* + exp(<7PL*). 

Thus, if (3.26) holds, then F(0) > 1. Since lim*-«, F(z) = 0, it follows 
from the intermediate value theorem that F(z) has a positive solution, 
and the equilibrium solution is unstable. 
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