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SOME JESSEN-BECKENBACH INEQUALITIES

JOSIP E. PECARIC AND PAUL R. BEESACK

1. Introduction. In 1966 E.F. Beckenback [1] (see also [4, p.52] or
(5, p.81] proved the following generalization of Holder’s inequality:

Let a = (ay,...,a,),b = (by,...,b,) be two n—tuples of positive real
numbers, and p,q be real numbers such that p™' +q 1 = 1(p > 1). If
0<m<n, then

W () (Sew) "> ()" (2an)

m m q/p
& = a;(1<i < m), a,—:{b,»za;f/z:a,-b]} (m+1<i<n).
I1=1 j=1

Equality holds in (1) if and only if a; = a;. The inequality in (1) s
reversed if p < 1,p # 0. For m =1, (1) reduces to Holder’s inequality.

In this paper we shall give some generalizations of this result with
. replaced by an isotonic linear functional. See especially Corollary
3, and Remark 4, below.

2. Main results. Let E be a nonempty set, let 4 be an algebra
of subsets of E, and let L be a linear class of real-valued functions
9 : E — R having the properties

L1: f,ge L = (af + bg) € L for alla,b € R;

L2: 1€ L, that isif f(t) =1 fort € E, then f € L;

L3: feL,Ey€e A= fCg, €L,

where Cg, is the characteristic function of E;(Cg,(t) =1 for t € Ey,
or 0 if t € E\E). It follows from L2, L3 that Cg, € L for all E; € A.
Also note that L contains all constant functions by L1, L2.

We also consider isotonic linear functionals A : L — R. That is, we
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suppose:
Al: A(af +bg) = aA(f) + bA(g) for f,g€ L,a,bER;
A2: feL, f(t)>0o0n E= A(f) >0 (A is isotonic).
Our main tool will be the following well-known result (see 2] for
example).

Jessen’s Inequality. Let L satisfy properties L1, L2 on a nonempty
set E, and suppose ¢ is a convex function on an interval [ CR. If A
18 an isotonic linear functional with A(1) = 1 then, for all g € L such
that ¢(g) € L we have A(g) € I and

(2) B(A(g)) < A(4(9))-

We shall also make use of the fact that if L also satisfies L3, then for
each F; € A such that A(Cg,) > 0, the functional A; defined for all
g € Lby A1(g) = A(gCE,)/A(CE,) is an isotonic linear functional with
A;1(1) = 1. (See also Lemma 4(1’) of 2].)

THEOREM 1. Let L satisfy properties L1, L2, L3 on a nonempty set
E, and suppose ¢ 13 convex on a closed interval I C R. Let A be an
1sotonic linear functional with A(1) = 1, and let J be an interval such
that (I) C J, and F : J2 = R be a nondecreasing function of its first

variable. Given E; € A such that A(Cg\g,) > 0, then for any g€ L
such that ¢(g) € L we have

() FlA(#(9)) #(A(9))] 2 inf F[A($(9E1 .2)), (A(gEs 2)));

where
gEIyx(t) = g(t)CEl (t) + ICE\EI (t)

PROOF. For brevity, set E; = E\Ey; we are assuming A(Cg,) > 0.
We clearly have both

9=9Ckg, +9CE,,8(9) = #(9)Ck, + ¢(9)CE,.
Also,
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where
g = A(CEZ)’ 2= A(gCEz)/A(CEz)

In addition,

A(o(9)) = A(6(9)CE, + ¢(9)CE,) = A(¢(9)CE,) + A(#(9)CE,)

> A(¢(9)CE,) + 0¢(2),

on using the remark following (2), but with E; replaced by E».

Now, z € I because if I = [a, J] then a < g(t) < g for t € E since
#(g) is in L(hence is defined). Thus aCg,(t) < g9(t)CEg,(t) < BCE,(t)
for all t € E, whence aA(Cg,) < A(9CE,) < BA(CE,) so a < z < 8.
A simple modification shows that z € I if either = —co or f = +o0. It
now follows from the above inequality and the nondecreasing character
of F(.,y) that

FIA(#(0)), (A(9))] > FIA((9)CE,) +06(2). §(A(4C,) +02)]
> inf FA(§(g)C5,) + 06(2), 0(A(9CE,) + o))
= inf FIA(4(95,.2)). 9(A(9£,.2))

since

A(gEl ’ ZL‘) = A(gCEl) + zA(CEz) = A(chl) +oz,
¢(9E,,2)(t) = ¢(9(t)CE, (t) + 2CE, (t)) = ¢(9(t))Cr, (¢) + ¢(2)Cr, (¢).

REMARK 1. There are clearly many variations and generalizations
of Theorem 1 which have essentially the same proof. For example, if
F(.,y) is nonincreasing for each y € J, then in place of (3) we have

(3 FlA(4(9)), #(A(9))] < SléII)F[A(¢(gE1,x))»¢(A(gE1 )]

This also follows from (3) just by replacing F" there by F; = -F.

For another, more extensive, generalization suppose E; € A for
1 < i< nwith E;NE; = 8(: # j) and E = U] E;. By setting
0; = A(Cg,), 2 = A(gCg,)/A(CE,) (where we assume all o; > 0), we
find under the hypotheses of Theorem 1 that if z = (z1,...,Zn),

(4)  FIA(4(9)), 6(A(9)) > inf F[Zm z.), Zm:
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If we set n
t)= 3 Cx (1)
1=1

the right—hand side of (4) can be written as
ziél[fn F[A(QS(QEI,...,E,.@))’ ¢(A(gl’71 ----- me))]'

Note, however, that this value is independent of the function g and so
provides a lower bound for the left-hand side of (4) which is valid for
all admissible g € L. Similarly, if F(.,y) is nonincreasing, then instead
of (4) we have

(4)  FlA(4(9)), 6(A(9))] < sup F[Zo, #(z:), Zm,

There are other variations which are intermediate between (3) and (3’).
For example, if 1 < m < n, and we set Z,, = (Tm+1,---,2n) and

n

JE,,....En,im (t) = Zg(t)CE,- (t) + Z ijEj (t)v

Jj=m+1

then we can prove under the hypotheses of Theorem 1 that

FIAG(0). 6 A@) < sup  FIAG(gE,,..520):
) nern

Finally, we observe that in (3), (4) or (5) the lower bounds on the
right-hand sides depend on the subsets E; C E (with E; € A), and
a possible larger bound (hence a better result) might be obtained by
allowing the sets E; to vary. For example, by (3) we have

6) FIA8(9)) 6(A(9))] > sup {mf FlA(4 (gEl.z)),mA(gE,,,))]},

E, €4y

where A; = {E, € A: A(Cg\E, > 0}.
We now give an upper bound for F[A(¢(g)), #(A(g))] which, unlike
that in (3'), holds under the same hypotheses on F as in Theorem 1.
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THEOREM 2. Let all the conditions of Theorem 1 be satisfied, but
with I = [m, M] a compact interval, so m < g(t) < m for allt € E.
Then if o = A(CE\EI) >0,

F[A4(9)), #(A(9))] < 2 F[A(¢(9)CE)
+0¢(m) + (o - 9)¢(M), ¢( (9CE,) + 0m + (0 — O)M)].
PROOF. As in the proof of Theorem 1 we set E; = E\E;. Now let

d(t) = (M —g(t))/(M —m), so g(t) = md(t) + M(1 — d(t)), and set
B = A(dCg,). Then

6(A(9)) = ¢(A(9CE,) + A[(md + M(1 - d))CE,))
= ¢(A(9Ck,) + mB + M(o - B)).

Also, using the convexity of ¢ on I,
A(¢(9)) = Al¢(9)CE, + ¢(9)CE,]

= Al¢(9)CE, + ¢(md + M(1 - d))CE,]
< Al¢(9)Cg, + {dp(m) + (1 — d)$(M)}CE,]

= A(¢(g)CE1 + ¢(m)A(dCE,) + ¢(M)A((1 - d)C,)
A(¢(9)CE,) + Bp(m) + (0 — B)$(M).
Since 0 < d(t) < 1, we have 0 < 8 = A(dCEg,) < A(CEg,) = 0. The

result (7) now follows from this, the nondecreasing character of F(.,y),
and the last two displayed results.

COROLLARY 1. If F(.,y) is nonincreasing on J for each y € J, but
all other conditions of Theorem 2 are satisfied, then

- FlA(4(9)), ¢(A(9))] 2 inf F[A(¢(9)CE,)

+0¢(m) + (0 — 0)$(M), 6(A(9CE,) + 0m + (0 = O)M],
where 0 = A(CE\E,)

This follows by applying (7) to the function F; = —F.

We note that the special case E; = @ of Theorem 2 was proved as
Theorem 1 in [6]. If we note that o = o, and denote the right-hand
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side of (7) by H(F1), we obtain the best (least) upper bound for
F[A(#(g)), #(A(g))] under the hypotheses of Theorem 2 as

FIA((0)). 6(A(0))] < inf, H(EY),

where A; = {E, € A: A(Cg\g,) = 0E, > 0}.
A generalization of Jessen’s inequlaity for convex functions of several
variables was given in 1937 by E.J. McShane [3].

McShane’s Inequality. Let ¢ be a convez function on a closed, convez
set U C R™. Let L satisfy properties L1, L2 on a nonempty set E,
and let A: L — R be an isotonic linear functional with A(1) = 1. Set

L={G=1(g1,---19n) : g €L for 1 <1< n}, and define A: L - R"
by AG) = (A (gl),...,A(gn)). Then A is a linear operator on the
linear class L. For any G € L for which $(G) € L we have A(G) € U,
and

(8) B(A(G)) < A(6(G)).

THEOREM 3. Let L satisfy properties L1, L2, L3 on a nonempty set E,
and let ¢, A, A,G be as in McShane’s Inequality, and J be an interval
such that ¢(U) C J and F : J2 — R be a nondecreasing function of
its first variable. Given E; € A such that A(Cg\g,) > 0 then, for any

G € L such that $(G) € L, we have

F[A(¢(G)), $(A(G))] 2 juf F[A($(GE,x)), $(A(GE, X)),

where G, £(t) = G(t)Cr, (t) + 20p\E, (1).

PROOF. The proof is similar to the proof of Theorem 1, and we merely
outline the differences. Set E2 = E\E; and ¢ = A(Cg,). Then

$(A(G)) = ¢(A(GCE,) + 02), 2 = A(GCE,)/A(CE,),
A(6(G)) = A(8(G)CE,) + A(¢(G)CE,) 2 A(6(G)CE,) + 06(2),
) =

since A;(g A(9CE,)/A(CE,) is an isotonic linear functional on
L with A,(1 ) = 1; hence McShane’s inequality (8) applies to the
operator A, : : L —» R" defined by A (G) = (A1(g1) ..., A1(gn)) =
é(GCEz)/A(CEZ). Moreover, by McShane’s result, we have z =
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A;(G) € U. The rest of the proof remains unchanged except for
notation.

3. Some applications. First we shall give four applications of
Theorem 1.

COROLLARY 2. Let L satisfy properties L1, L2, L3 on a nonempty
set E and let A be an isotonic functional on L. Suppose E; € A has
A(CE,) > 0, where E; = E\E,. Then for each nonnegative g € L such
that g* € L(p > 1) and A(gCg,) > 0 we have

9) A(g°)V/7/A(g) 2 Aldh,)'?/AlgE, ),
where

95, (t) = ¢(t)CE, (t) + {A(¢"CE, ) /A(9CE, )}/ P~V - C, (1)-

PROOF. First observe that A(g) > A(¢Cg,) > 0 and A(gg,) >
A(gCE,) > 0, so both sides of (9) are well-defined. Apply Theorem 1
with A replaced by A;(g) = A(g)/A(1), F(z,y) = z/?/y*/?, ¢(z) = =,
with I = J = [0,00). Then (3) reduces to

(10) A(gP)M? JA(g) > ai:relf} A5, )P A(gE, o),
where
9E,,2(t) = g(t)CE, (t) + 2CE, ().

Hence
g%l,x(t) = gp(t)CEl (t) + xPCE] (t)

By elementary calculus one finds that the minimum value of
k(z) = {A(¢°Ck,) + 2P A(Cr,)}"/?/{A(¢CE,) + A(CE,)}

for z > 0 occurs for z = {A(¢gPCg, )/A(¢CE,)}'/ =Y, whence (9)
follows from (10).

REMARK 2. As an example of (4) of Remark 1 for the case of
Corollary 2, we take n = 2. Under the additional assumption that

o1 = A1(Cg,) > 0 (with A; = A/A(1)), (4) reduces to

1+ A(CE,)25}”
e ¢ {A(CE)a] + A(Cry)sB}?.
A" P/Alg) 2 il e + A(Cs, o
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For z; = 0, the term. on the right-hand side has the value A(CEg, )_1/ q,
where ¢! + p7! = 1. For z; > 0, by setting z = z2/z;, we are
concerned with

inf {A(Cp,) + A(CE,)e"}/*{A(C,) + A(Cr, )z}

By a comparison with k(z) above, this infimum is attained for z = 1,
and has the value A(1)1/7/A(1) = A(1)7%/9. Since A(1) > A(CE,) we
can conclude that

A(gP)V?/A(g) 2 A(D)T9,
or
Alg) < A(gP)V/? - A()Ye.

This is, of course, just a special case of the generalized Holder inequality
given in [2;Th. 7).

COROLLARY 3. Let L satisfy properties L1, L2, L3 on a nonempty
set E, and let A be an 1sotonic linear functional on L. Suppose the
nonnegative functions f,g: E — R are such that fP, g9, fg € L, where
p>1,p +q7' = 1. Suppose also that E; € A has A(fgCg,) > 0 and
A(g?CEg,) > 0 where E; = E\E,. Then

(11) A(fP)Y?[A(fg) > A(fE,)VP/A(f9).

where

fE:(8) = f()C, (1) + {g() A(f*CE,) /A(f4CE,)}/? - O, (8).

PROOF. We shall apply Corollary 2 to the functional A;(g;) defined,
for certain g; : E — R by A;(¢1) = A(kg1)/A(k), with k = g? € L. We
have A(k) > A(¢?Cg,) > 0. By Lemma 4 (1) of [2], with ¢(u) = uP
convex on I = [0, 00], we have

{A(9%91)/A(g")}* < A(g°97)/A(g%)

for all functions g; : E — R for which ¢g%; € L and g%} € L. We
note that this is precisely the inequality corresponding to (2) for the
functional A;(g;) and ¢(u) = vP, and this in turn implies the validity
of Theorem 1, hence also of Corollary 2 for A;. We may thus apply
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Corollary 2 with the function g replaced by g; = fg %P since we do
have A;(g1CE,) > 0 and A;(CE,) > 0 as required
Now g%y = fg and g?¢{ = f?, so

A1(g}) = A(f7)/A(g%), Ai(g1) = A(f9)/Alg")-
It is easy to verify that (9), with A, g replaced by A;, g, reduces to
(12) A(f?) 7 1A(f9) > Al9°T5,) 7 /Al¢%FE, ),
where
95, (t) = 01(8)CE, (t) + {A(f*CE,)/A(f¢CE )} "™V - Cr, (1),
Hence, using the fact that 1/(p — 1) = ¢ — 1 = g/p, we find that

gngl = g{fCEl + [gA(prEl /A(fgCEx )]Q/pCE:’} ~= ngl s
9°3%, = J*CE, + [9A(f*Ck,)/A(f4CE,))*CE, = fE,

so (11) follows from (12).

REMARK 3. As in Remark 2, the inequality (4) for the case n = 2,
reduces in this case to

A(fP)!/?[A(fg) 2 inf>0A(g"éz,,EQ,I)’/"/A(g"és,,Eg,z)»
T1,Z22

with
éElyEZ'I = Z‘]CE‘X + I2CE2’

Again, the infimum is attained for z; = z,, and now has the value
A(g9)'/P/A(g9) = A(g?)/9. The inequality thus reduces to the
generalized Holder inequality

A(fg) < A(fP)/P - A(g")/°.

REMARK 4. Beckenback’s inequality (1) is the special case of Corol-
lary 3 corresponding to the choice E = {1,2,...,n},E; = {1,2,... ,m}
(where 1 < m < n), L = R™, the vector space of all real n—vectors
a=(ay,...,a,), and A(a) = Y 7 a;.
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COROLLARY 4. Let the conditions of Corollary 2 be satisfied, except
that now A(gCg,) = 0 may hold. Givenp > 1,q=p/(p—1), and 3 >0
such that A(Cg,)B? < 1 we have

(13) A(g?)!/? - BA(g) > A(3%,,B)"" — BA(3E,.6),
where
gg, .5 = GCE, +25CE, with 15 = {8%A(¢°CE,)/[1 — B*A(CE,))}"/?.

The right-hand side of (13) equals A(g°Cg,)'/?[1 — BYA(CE,)]Y? —
BA(¢CE,).

PROOF. We apply Theorem 1 to the isotonic linear functional A;(g)

A(g)/A(1), with F(z,y) = z'/? — A1)/ y"/P,¢(z) = 27,1 = J
[0,00). The inequality (3) reduces to

(14)  A(")"? - BA(g) 2 nf{A(dh, ,)"/% ~ BA(9: ),

where gg, ; = gCg, +2Cg,, so ngl z= 9°CEg, +2PCg,. The expression
in curly brackets is

K(z) = {A(¢°Cg,) + 2? A(CE,)}"/? - B{A(¢CE,) + zA(CE,)}.

By elementary calculus, in case 0 < 8 < A(CEZ)‘I/ 9, we find that the
minimum value of K(z) for z > 0 occurs for z = zg, proving (13). This
minimum value reduces, after some computation, to that stated in the
final sentence of the Corollary.

By proceeding as in Remark 2 (using (4) with n = 2), we also find
that

A(g”)/P — BA(g) > 0 if BTA(1) < 1,
A(gP)'/? — BA(g) > A(CE,)?{[1 - B°A(CE,)]"/? - BA(CE,)"/"}(< 0)

if B9A(CEg,) < 1 < B9A(1). A noted following (4) the above lower
bounds are valid for all g € L satisfying the corresponding hypotheses.

COROLLARY 5. Let the conditions of Corollary 3 be satisfied ezcept
that now A(fgCg,) =0 may hold. If0 < B9A(¢9CE,) < A(g9), then

(15) A(fP)'/PA(g%)"/9—BA(fg) > A(fE, 5) /P A(g9)"/1~BA(9fE, 5),
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where

fe,8 = fCE, + 239%?CE,, with
25 = {BA(f"CE,)/[A(¢?) — B A(¢°CE,)]}/*.

The right-hand side of (15) equals

A(fPCg,)'/?[A(g) - B1A(¢°CE,)])"/? — BA(f¢CE,)-

PROOF. Corollary 5 follows from Corollary 4, in precisely the same
way as did Corollary 3 from Corollary 2 (and Lemma 4(1’) of [2]) by
using A;(g1) = A(g%91)/A(g?) with g; = fg~9/?. We omit the details.

REMARK 5. In case A(Cg,) < 1 (which holds if A(1) = 1 and
A(Cg,) > 0) we may take 8 = 1 in Corollaries 4 and 5. Then (13) and
(15) reduce to

A(g")M/? — A(g) > A(¢°Cr,)/? - A(CE,)"* - A(¢C,),
and
A(fP) /P A(g7)/1 — A(fg) > A(fPCE,)PA(¢°CE,)"? — A(f¢CE,),

respectively. The second of these inequalities is a genuine refinement
of the generalized Hélder inequality [2; Th. 7] for isotonic functionals
since

A(f4CE,) = A(fCg,,¢Cr,) < A(fCE,)"/?A(¢"Cr,)"/*

holds, by [2; Th. 7]. Similarly, the right-hand side of the first inequality
is also nonnegative. For the case A(f) = [ fdu, the above inequalities
are weak versions of inequalities of W.N. Everitt (see, for example, [4;
pp. 54, 86]).

We conclude by giving an application of Theorem 2, namely

COROLLARY 6. Let L satisfy properties L1, L2, L3 on a nonempty
set E, and suppose ¢ is a differentiable function on I = [m, M](-o0 <
m < M < o) such that ¢’ is strictly increasing on I. Let A be an
isotonic linear functional on L with A(1) = 1, and let E; € A satisfy
A(Cg,) > 0 where E; = E\E,. If m < g(t) < M for t € E, where
g€ L,¢(g) € L, and we set 0 = A(Cg,), p = (¢(M) — ¢(m))/(M —m),
then we have either
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(a) A(9Cr,) +mo < ¢ (u) < A(gCg,) + Mo, or
b)ym<¢ (u)< A(9Cg,) + mo, or
(c) A(9Cr,) + Mo < ¢' ' (u) < M.

Moreover, either

(16)
A(9(9)) ~ #(Al9)) < A($(9)C,) +06(M) ~ ulA(¢CE,) + oM]
+ud (w) - o8 (W)

in case (a); or
(17) A(o(9)) — #(A(9)) < A(4(9)CE,) + 0p(m) — #(A(¢CE,) + om)
in case (b); or

(18) A(d(9)) — #(A(9)) < A(¢(9)CE,) + od(M) — ¢$(A(9CE,) +oM)
in case (c).

PROOF. We apply Theorem 2 to F(z,y) =z —y for (z,y) € R%. By
(7) we obtain
A(é(9)) — ¢(A(9)) < sup H(F),

0<6<o

where
H(0) = A(¢(9)CE, )+0a(m)+(c—0)¢(M)—-¢(A(9CEg, ) +0m+(c—0)M).

First we observe that if h(8) = A(9Cg,) + 6m + (0 — 0)M, then
A(gCEg,) + mo < h(0) < A(9CEg,) + Mo for 0 < § < 0. Moreover
A(gCE,)+Mo < A(MCE,)+MA(Cg,) = MA(1) = M, and similarly
A(gCEg,) + mo > m. In addition by the strictly increasing character
of ¢’ we have ¢'(m) < u < ¢'(M), som < ¢’ "(k) < M. It follows
that ¢’ 1( ) must lie in precisely one of the three intervals listed as
alternatives (a), (b), (c) in the statement of the Corollary.

In case A(gCg,)+mo < ¢’ (1) < A(¢9CEg,)+Mo, we find H'() = 0
precisely when ¢’(h(8)) = p, that is when 6 = 6, where

(M —m)8, = A(gCk,) + oM — ¢’ ().

Moreover H() < H (6,) then holds. This leads to the bound in (16).
Incasem < ¢’ (u) < A(gCE,)+ma(< h(f) for 0 < 8 < o), we have
H'(6) >0 for 0< 0 <o0,s0 H(#) < H(o) and this leads to the bound
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in (17). Similarly if A(¢CE,)+ Mo < ¢’ (u) < M, we have H'() < 0
for 0 < 8 <o, so H(f) < H(0) and we obtain the bound in (18).

REMARK 6. In the same way we could give generalizations of Theo-
rem 35 and Corollaries 36, 37 from [5, pp. 136-138].
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