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SOME JESSEN-BECKENBACH INEQUALITIES 

JOSIP E. PEÖARIO AND PAUL R. BEESACK 

1. Introduction. In 1966 E.F. Beckenback [1] (see also [4, p.52] or 
[5, p.81] proved the following generalization of Holder's inequality: 

Let a = ( a i , . . . , an), 6 = (&i,..., 6n) be two n-tuples of positive real 
numbers, and p,q be real numbers such that p~l + q~x = l(p > 1). / / 
0 < m < n, then 

w (È-rnÊ-*r ì (ÈsnÊ*.)"1, 
i l i l 

where 

r . m m ì G/P 

ài = û t ( l < i < m), ài = Ibi^a^/^üjbj \ (m + 1 < i < n). 

Equality holds in (1) i/ anrf on/y z/äi = a». 77ie inequality in (!) is 
reversed if p < l ,p ^ 0. For m = 1, (1) reduces to Holder's inequality. 

In this paper we shall give some generalizations of this result with 
£ replaced by an isotonic linear functional. See especially Corollary 
3, and Remark 4, below. 

2. Main results. Let E be a nonempty set, let ./J be an algebra 
of subsets of E, and let L be a linear class of real-valued functions 
g : E —• R having the properties 

LI: f,geL=> (af + bg)eL for all a, be R; 
L2: 1 € L, Ma* » if f(t) = 1 forteE, then f G X; 
L3: feL,E1eA=>fCEl e L, 

where C ^ is the characteristic function of Ei(CEl (t) = 1 for t e Ei, 
or 0 if t G E\Ei). It follows from L2, L3 that CEl € L for all £ x € A. 
Also note that L contains all constant functions by LI, L2. 

We also consider isotonic linear functionals A : L —• R. That is, we 

Received by the editors on November 26, 1985. 

Copyright ©1987 Rocky Mountain Mathematics Consortium 

629 



630 J.E. PEÖARIC AND RR. BEESACK 

suppose: 
Al: A(af + bg) = aA{f) + bA{g) for f,geL,a,be R; 
A2: / G L, f(t) > 0 on E => A(f) > 0 (A is isotonic). 
Our main tool will be the following well-known result (see [2] for 

example). 

Jessens Inequality. Let L satisfy properties LI, L2 on a nonempty 
set E, and suppose <p is a convex function on an interval I C R. If A 
is an isotonic linear functional with A(l) = 1 then, for all g G L such 
that <j){g) G L we have A{g) G / and 

(2) 4>{A{g)) < A(4>(g)). 

We shall also make use of the fact that if L also satisfies L3, then for 
each Ei e A such that A(CEX) > 0, the functional Ai defined for all 
g G L by Ai (g) = A(gCE1 )/A(CE1 ) is an isotonic linear functional with 
i4i(l) = 1. (See also Lemma 4(1') of [2].) 

THEOREM 1. Let L satisfy properties LI, L2, L3 on a nonempty set 
E, and suppose (f> is convex on a closed interval I C R. Let A be an 
isotonic linear functional with A(l) = 1, and let J be an interval such 
that <t>(I) C J', and F : J2 —• R be a nondecreasing function of its first 
variable. Given Ei G A such that A(CE\EX) > 0, then for any g G L 
such that (j){g) G L we have 

(3) F\A(4>(g)),4>(A(g))} > inf\F[A{<j>{gEuX)),<j>{A{gEuX))}, 

where 

9Eltx{*) = gWCErW + xCs^At). 

PROOF. For brevity, set E2 = E\Ei; we are assuming A(CE2) > 0. 
We clearly have both 

g = gCEl + gCE2,<t>{g) = 4>{g)CEl + 4>{g)CE2. 

Also, 

4>(A{g)) = <t>(A(gCEl)+A(gCE2)) = 4>{A{gCEl) + oz\ 
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where 
a = A{CE2),z = A(gCE2)/A(CE2). 

In addition, 

A(<ß(g))=A(<ß(g)CEl+<fi(g)CE2) = A(<ß(g)CE^ 

>A{(j>{g)CEl)^c(j>{z), 

on using the remark following (2), but with E\ replaced by E2. 
Now, z e I because if / = [a, /?] then a < g(t) < ß for t G E since 

(t>(g) is in L(hence is defined). Thus aCE2{t) < 9{t)CE2{t) < ßCE2{t) 
for all t e E, whence OLA{CE2) < A(gCE2) < ßA{CE2) so a < z < ß. 
A simple modification shows that z G I if either a = -oc or ß = +00. It 
now follows from the above inequality and the nondecreasing character 
of F(.,y) that 

F[A(<f>(g)), d>(A(g))} > F[A(<f>(g)CEl ) + ad>(z), J>(A(gCEl ) + az)\ 

> inf F[A{<t>{g)CEl ) + <r<t>{x),<t>(A{gCEl ) + <rx)] 

= inf F[A(4>(gEl, *)), <t>{A{gEl, x))] 

since 

A{gEl, x) = AfaC^ ) + xA(CE2 ) = A(gCEl ) + ax, 

0 ( t e l , x)(t) = <t>{g(t)CEl (t) + xCjfcW) = 4>{g(t))CEl ( 0 + ^ ) ^ 2 CO-

REMARK 1. There are clearly many variations and generalizations 

of Theorem 1 which have essentially the same proof. For example, if 

F(., y) is nonincreasing for each y e J , then in place of (3) we have 

(3') F[A{4>{g)),4>{A{g))] < suPF[A(<j>(gEl,x)),<j>(A(gEl,x))}. 
xei 

This also follows from (3) just by replacing F there by F\ = -F. 
For another, more extensive, generalization suppose E\ E A for 

1 < i < n with Elf]EJ = 0(2 ^ j) and E = \Jl Ef % setting 
o% = A(CEl),Zi = A(gCEl)/A(CEt) (where we assume all a% > 0), we 
find under the hypotheses of Theorem 1 that if x = [x\,..., xn) , 

n n 

(4) F[A{<P{g)),4>{A{g))\> taf F ^ ^ t e M E ^ ) ] -
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If we set 
n 

1 = 1 

the right-hand side of (4) can be written as 

mînF{A(4>(gEl En,x))A{A{gEl_En,x))}. 

Note, however, that this value is independent of the function g and so 
provides a lower bound for the left-hand side of (4) which is valid for 
all admissible g G L. Similarly, if F(., y) is nonincreasing, then instead 
of (4) we have 

n n 

(4') F[A(<t>(g)),<fi(A(g))} < sup F E M ^ ) , ^ ^ ) ] . 

There are other variations which are intermediate between (3) and (3'). 
For example, if 1 < m < n, and we set xm = ( x m + i , . . . , xn) and 

m n 

9Eu...,En*m(t) = Ytg(t)CEi{t)+ £ XjCEi(t), 
1=1 j=m+l 

then we can prove under the hypotheses of Theorem 1 that 

F[A(4>(g)U(M0))] < sup F[A(4>(gEu...,En,xJ), 
(5) 2m€l"-m 

<KA(gEl9...tEn,xm))]. 

Finally, we observe that in (3), (4) or (5) the lower bounds on the 
right-hand sides depend on the subsets E{ C E (with Ei € A), and 
a possible larger bound (hence a better result) might be obtained by 
allowing the sets Ei to vary. For example, by (3) we have 

(6) F[A(4>(g)),4>{Mo))]> sup ( mf F[ i4 (0 ( t e l f X ) ) , ^ (A( t e l , , ) ) ] ) , 

where A\ = {E\ G A : A(CE\Ei > °}-
We now give an upper bound for F[A((ß(g))i(t>(A(g))] which, unlike 

that in (3'), holds under the same hypotheses on F as in Theorem 1. 
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THEOREM 2. Let all the conditions of Theorem 1 be satisfied, but 
•with I = [m, M] a compact interval, so m < g(t) < m for all t e E. 
Then if a = A(CE\El ) > 0, 

F[A<i>(g)),4,(A(g))}< sup F[A{<j>{g)CEl) 
(7) o<e<<7 

+ 6<j>{m) + {a- e)4>(M), 4>{A{gCEl ) + êm + {tr- B)M)\. 

PROOF. AS in the proof of Theorem 1 we set E2 = E\Ei. Now let 
d(t) = (M - g{t))/{M - m), so g(t) = md(t) + M{\ - d(t)), and set 
ß = A(dCE2). Then 

4>(A(g)) = <t>(A(gCEl ) + A[(md + M (I - d))CE2\) 
= <t>{A{gCEl) + mß + M{o-ß)). 

Also, using the convexity of <f> on /, 

A(<t>(g)) = A[<j>(g)CEl + 4>{g)CE2) 

= A[4>{g)CEl + 4>(md + M(l - d))CE2\ 
< A[4>(g)CEl + {d<t>(m) + (1 - d)<j>(M)}CE2] 
= A(<j>(g)CEl + 4>(m)A(dCE2) + 4>{M)A{{\ - d)CE2) 
= A(<t>(g)CEl ) + ß<j>{m) + (<T- ß)4>(M). 

Since 0 < d{t) < 1, we have 0 < ß = A(dCE2) < A(CE2) = a. The 
result (7) now follows from this, the nondecreasing character of F(., y), 
and the last two displayed results. 

COROLLARY 1. If F(.,y) is nonincreasing on J for each y € J, but 
all other conditions of Theorem 2 are satisfied, then 

F[A(4>(g)U(M9))] > ^ J W ^ 0 ^ 
+ 0(j){m) + (a - 8)(t>{M), <j){A{gCEl ) + 0m + {a- 0)M), 

where a = A(CE\El ) 

This follows by applying (7) to the function F\ — -F. 

We note that the special case E\ - 0 of Theorem 2 was proved as 
Theorem 1 in [6]. If we note that a = crEl and denote the right-hand 
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side of (7) by H(E\), we obtain the best (least) upper bound for 
F[A(<t>(g))i(l>(A(g))] under the hypotheses of Theorem 2 as 

F{A(<f>(g)),<l>(A(g))}< mt H{E,), 

where Ai = {E1 G A : A(CE\EX) = oEx > 0}. 
A generalization of Jessen's inequlaity for convex functions of several 

variables was given in 1937 by E.J. McShane [3]. 

McShane 's Inequality. Let (j) be a convex function on a closed, convex 
set U C R n . Let L satisfy properties LI, L2 on a nonempty set E, 
and let A : L —• R be an isotonic linear functional with A(l) = 1. Set 
L = {G = ( # 1 , . . . , gn) : gi E L for 1 < i < n}, and define A:L-^ R n 

by A(G) = (A(gi),... ,A(gn)). Then A is a linear operator on the 
linear class L. For any G G L for which 0(G) G L we have A(G) G U, 
and 

(8) 4>{A{G)) < AMG)). 

THEOREM 3. Let L satisfy properties LI, L2, L3 on a nonempty set E, 
and let <f>, A, A,G be as in McShane's Inequality, and J be an interval 
such that <t>(U) C J and F : J2 —• R be a nondecreasing function of 
its first variable. Given E\G A such that A(CE\EI) > 0 then, for any 
G E L such that 4>{G) G L, we have 

F[A(0(G)),0(A(G))] > mfrF[A(0(GJg?lfx)),0(A(GJg?lfx))], 

where GEl,x{t) = G(t)CEl{t) + a C ^ i ( * ) • 

PROOF. The proof is similar to the proof of Theorem 1, and we merely 
outline the differences. Set £ 2 = E\E\ and o = A(CE2). Then 

4>(A(G)) = 4>(A(GCEl) + CTZ), z = k{GCE2)/A{CE2), 

AMG)) = A(<j>(G)CEl) + A(<t>(G)CE2) > A{4>(G)CEl) +*0(z) , 

since Ai(g) = A{gCE2)IA{CE2) is an isotonic linear functional on 
L with A\{\) = 1; hence McShane's inequality (8) applies to the 
operator Ax : L —• R n defined by Aa(G) = (Ai(g\)..., A\(gn)) = 
A(GCE2)/A(CE2)- Moreover, by McShane's result, we have z = 
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A1(G) G U. The rest of the proof remains unchanged except for 
notation. 

3. Some applications. First we shall give four applications of 
Theorem 1. 

COROLLARY 2. Let L satisfy properties LI, L2, L3 on a nonempty 
set E and let A be an isotonic functional on L. Suppose E\ G A has 
A(CE2) > 0, where E^ = E\E\. Then for each nonnegative g E L such 
that gp e L(p > 1) and A(gCEl ) > 0 we have 

(9) A(gn1/p/A(g)>A(gp
Ei)

1^/A(gE^ 

where 

9EX (t) = g(t)CEi (t) + {A(gf>CEt )/A{gCEl j}1/«"-1 ' • CEi(t). 

PROOF. First observe that A{g) > A(gCEl) > 0 and A(gEl) > 
A{gCEl) > 0, so both sides of (9) are well-defined. Apply Theorem 1 
with A replaced by Ai (g) = A(g)/A(l), F{x, y) = z1 / p /2/1 / p , 4>{x) = zp, 
with / = J = [0, oo). Then (3) reduces to 

(10) A(9n
1/J>/A(g) > mîiA(gp

EuX)1^/A(gEl,x), 

where 

9El,x(t)=9(t)CE1{t)+*CE2(t)' 

Hence 
9EuX(t) = gp{t)CEl{t) + x*CEl(t). 

By elementary calculus one finds that the minimum value of 

k{x) = {A{ÇPCEI)+X*A{CE2)}
1IP/{A{9CEI) + XA(CE2)} 

for x > 0 occurs for x = {A{gPCEl)/A{gCEl)}
l/(p-l), whence (9) 

follows from (10). 

REMARK 2. As an example of (4) of Remark 1 for the case of 
Corollary 2, we take n = 2. Under the additional assumption that 
ai = Ai(CEl) > 0 (with A1 = A/Ail)), (4) reduces to 

v } ' Kyj - *i,x2>o A{CEl)xi +A(CE2)x2 
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For x\ = 0, the term.on the right-hand side has the value A{CE2)~
1^^ 

where q~l + p _ 1 = 1. For X\ > 0, by setting x = Xïjx\, we are 
concerned with 

inf {A(CEl) + A(CE2)X*>}1/P{A(CE1) + A(CE2)X}. 
x>0 

By a comparison with k(x) above, this infimum is attained for x = 1, 
and has the value AilY^/A^) = A ( l ) _ 1 ^ . Since A{1) > A(CE2) we 
can conclude that 

A{g*)1/P/A{g) > A(l)-1/", 

or 

A(g)<A(gP)1^-A(l)1^. 

This is, of course, just a special case of the generalized Holder inequality 
given in [2;Th. 7]. 

COROLLARY 3. Let L satisfy properties LI, L2, L3 on a nonempty 
set E, and let A be an isotonic linear functional on L. Suppose the 
nonnegative functions / , g : E —• R are such that / p , gq, fg G L, where 
p > l , p _ 1 4-q~l = 1. Suppose also that E\ E A has A(fgCEi) > 0 and 
A{gqCE2) > 0 where E2 = E\EX. Then 

(11) A(n1/P/A(fg) > A(fp
Ei)^/A(fg)-

where 

fEl(t) = f(t)CEi(t) + {9(t)A(fCEl)/A(fgCEl)}
9/p • CE2(t). 

PROOF. We shall apply Corollary 2 to the functional Ai(g\) defined, 
for certain gi : E —• R by Ai(gi) = A(kgi)/A(k), with k = gq E L. We 
have A(k) > A{gqCE2) > 0. By Lemma 4 (1;) of [2], with (f>(u) = up 

convex on / = [0, oo], we have 

{A{g'gi)/A{g«)y> KAWfiyAW) 

for all functions g\ : E —• R for which gqg\ EL and gqg{ E L. We 
note that this is precisely the inequality corresponding to (2) for the 
functional A\(g\) and 4>{u) = up', and this in turn implies the validity 
of Theorem 1, hence also of Corollary 2 for A\. We may thus apply 
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Corollary 2 with the function g replaced by g\ = fg q/p since we do 
have AifaiCEi) > 0 and A\(CE2) > 0 as required 

Now gq
9l = fg and gqgp = / ? , so 

Ai(gï) = A(n/A(g«), AM = A{fg)/A{gq). 

It is easy to verify that (9), with A, g replaced by A\, g, reduces to 

(12) A(n^/A(fg) > AWfcyto/AWgEi), 

where 

0El(t) = 9i(t)CEl(t) + {AirCE^/AifgCE^y^-V • CEM 

Hence, using the fact that l / (p - 1) = q - 1 = q/p, we find that 

9q9EX = g{fCEl + [gA(rCEjA(fgCEl)}
q/pCE2} = gfEl, 

?yEl = PCEX + \9MfpCEl)/A(fgCEl)]
qCE2 = / £ , 

so (11) follows from (12). 

REMARK 3. As in Remark 2, the inequality (4) for the case n = 2, 
reduces in this case to 

A(n1/P/A(fg) > inf A(g^gEl,E2,x)1/p/A(gqgEl,Ea,x), 
X\,X2>0 

with 
ÇE1,E2,x = X\CEX +%2CE2. 

Again, the infimum is attained for x\ = z2 , and now has the value 
^ ( ^ ) 1 / p M ( ^ ) = A{gq)~l/q. The inequality thus reduces to the 
generalized Holder inequality 

A(fg)<A(n1/p-A(gqy. 

REMARK 4. Beckenback's inequality (1) is the special case of Corol­
lary 3 corresponding to the choice 2? = {1 ,2 , . . . , n}, E\ = { 1 , 2 , . . . , m) 
(where 1 < m < n), L = R n , the vector space of all real n-vectors 
a = ( a i , . . . , a n ) , and A{d) = YJ\ai-
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COROLLARY 4. Let the conditions of Corollary 2 be satisfied, except 
that now A(gCE1) = 0 may hold. Given p > l,q = p/{p—l), andß > 0 
such that A(CE2)P

Q < 1 we have 

(13) A(g")1/P - ßA(g) > A(g»Eì, ß)^ - ßA(gEl iß), 

where 

gEuß = GCEl + x0CE2 with xß = {ß"A{fCEl)l\l - ßqA(CE2)]}1/p. 

The right-hand side of (13) equals A(gpCEl)
1/p[l - ß9A{CE2)}

1/q ~ 
ßA(gCEl). 

PROOF. We apply Theorem 1 to the isotonic linear functional A\ (g) = 
A(g)/A{l), with F(x,y) = x1^ - ßA{l)l^y1^\</>(x) = x*J = J = 
[0,oo). The inequality (3) reduces to 

(14) A(9n
1/P - ßA(g) > MQ{A{gluxy'v - ßA(gEl,x)}, 

where gEux = QCEX +XCE2, SO gp
EliX = 9PCE1 +XVCE2- The expression 

in curly brackets is 

K{x) = {A{gPCEl) + xPA(CE2)}
l,v - ß{A{gCEl) + xA(CE2)}. 

By elementary calculus, in case 0 < ß < A(C^ 2 ) - 1 / 9 , we find that the 
minimum value of K(x) for x > 0 occurs for x = Xß, proving (13). This 
minimum value reduces, after some computation, to that stated in the 
final sentence of the Corollary. 

By proceeding as in Remark 2 (using (4) with n = 2), we also find 
that 

A(gi>)1/p-ßA(g)>Oi{ß«A(l)<l, 

A(gn1/P - ßA(g) > A(CEl)
1/p{[l - ßqA(CE2)]

1/q - ßA(CEi)
1/q}(< 0) 

if ßqA{CE2) < 1 < ßqA{l). A noted following (4) the above lower 
bounds are valid for all g G L satisfying the corresponding hypotheses. 

COROLLARY 5. Let the conditions of Corollary 3 be satisfied except 
that now A{fgCEl) = 0 may hold. If0< ßqA{gqCE2) < A{gq), then 

(15) A{nllpA{gq)l/q-ßA{fg)>ACfp
El,ß)llp 
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where 

fEuß = f°E, + X0^"CEa, With 

X0 = {ß*A(r>CEl)/lA(g<>) - FA^CE,))}1'". 

The right-hand side of (lb) equals 

A{FCEl)
l/P[A(g«) - ß«A{g«CE2))

lt« - ßA(fgCEl). 

PROOF. Corollary 5 follows from Corollary 4, in precisely the same 
way as did Corollary 3 from Corollary 2 (and Lemma 4(1') of [2]) by 
using Ax(gi) = A{gqg1)/A(gq) with gi = fg~q,p. We omit the details. 

REMARK 5. In case A(CE2) < 1 (which holds if A(l) = 1 and 
MCEJ > 0) we may take ß = 1 in Corollaries 4 and 5. Then (13) and 
(15) reduce to 

A(gP)1/p - A(g) > A{gt>CEl)
l/p • A(CEl)

1/q - A(gCEl), 

and 

A{f*)1/pAW)1/q-A{fg) > A(rCEl)
l^A(gqCEl)

llq - A(fgCEl), 

respectively. The second of these inequalities is a genuine refinement 
of the generalized Holder inequality [2; Th. 7] for isotonic functional 
since 

A(fgCEl) = A(fCEl,gCEl) < A{rCEl)
l^A{gqCEl)

l/(i 

holds, by [2; Th. 7]. Similarly, the right-hand side of the first inequality 
is also nonnegative. For the case A(f) = fE fdp, the above inequalities 
are weak versions of inequalities of W.N. Everitt (see, for example, [4; 
pp. 54, 86]). 

We conclude by giving an application of Theorem 2, namely 

COROLLARY 6. Let L satisfy properties LI, L2, L3 on a nonempty 
set Ey and suppose <f> is a differentiable function on 1 — [m,M] (-oc < 
m < M < oo) such that <t>' is strictly increasing on I. Let A be an 
isotonic linear functional on L with A{1) = 1, and let Ei e A satisfy 
A(CE2) > 0 where E2 = E\Ex. If m < g{t) < M for t e E, where 
g e L,<t)(g) e L, and we seta = A(CE2),fi = ( 0 (Af ) -0 (m)) / (M-m) , 
then we have either 
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(a) AigCsJ^ m° < <t>' * (p) < A{gCEl ) + Ma, or 
(b) m < (j)' (/i) < A(gC_El) + ma, or 
(c) A(gCEl) + Ma<4>' l(/i) < M. 
Moreover, either 

(16) 
A{4>{g)) - <t>(A{g)) < A(4>(g)CEl ) + a<j>(M) - »[A(gCEl ) + aM] 

in case (a); or 

(17) A(<fi(g)) - 4>(A(g)) < A{<j>{g)CEl ) + <r<P(m) - <j>{A{gCEl ) + am) 

in case (b); or 

(18) A(4>(g)) - 4>(A(g)) < A(<t>(g)CEl ) + a<j>{M) - 4>(A(gCEi ) + aM) 

in case (c). 

PROOF. We apply Theorem 2 to F{x,y)-x-yìor (x,y) e R 2 . By 
(7) we obtain 

A{<j>{g)) - <f>(A(g)) < sup H(0), 
O<0«7 

where 

H{0) = ^ ( 0 ( ^ ) C ^ J + ^ ( m ) + ( a - ö ) 0 ( M ) - 0 ( ^ ( ^ C ^ J ^ m + ( a - Ö ) M ) . 

First we observe that if h(0) = A(gCEl) + Om + (a — 0)M, then 
A{gCEl) + ma < h{0) < A{gCEl) + Ma for 0 < 0 < a. Moreover 
A(gCEl) + M(T < A{MCEI) + MA{CE2) = MA{\) = M, and similarly 
A(gCEx) + mv > m. In addition by the strictly increasing character 
of (j)' we have </>'(ra) < /i < </>'(M), so m < </>' (fi) < M. It follows 
that <t>' (/i) must lie in precisely one of the three intervals listed as 
alternatives (a), (b), (c) in the statement of the Corollary. 

In case A(gCEl) + ma < (j)' l (//) < A(gCEl) + Ma, we find H'{0) = 0 
precisely when <t>'(h(0)) = //, that is when 0 — 0o where 

(M - m)0o = A(gCEl )+aM- <j>n (/i). 

Moreover H(0) < H(0O) then holds. This leads to the bound in (16). 
In case m<<t>' \p) < A(gCEl) + ma(< h(0) for 0 < 0 < a), we have 

H'(0) > 0 for 0 < 0 < a, so H{0) < H{a) and this leads to the bound 
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in (17). Similarly if A{gCEl) + Ma < <\>' '(/x) < M, we have H'{0) < 0 
for 0 < e < a, so H(0) < H{0) and we obtain the bound in (18). 

REMARK 6. In the same way we could give generalizations of Theo­
rem 35 and Corollaries 36, 37 from [5, pp. 136-138]. 
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