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ARITHMETIC PROGRESSIONS IN LACUNARY SETS
T.C. BROWN AND A.R. FREEDMAN

ABSTRACT. We make some observations concerning the
conjecture of Erdos that if the sum of the reciprocals of a
set A of positive integers diverges, then A contains arbitrarily
long arithmetic progressions. We show, for example, that one
can assume without loss of generality that A is lacunary. We
also show that several special cases of the conjecture are true.

1. Introduction. The now famous theorem of Szemerédi (7] is often
stated:

(a) If the density of a set A of natural numbers is positive, then A
contains arbitrarily long arithmetic progressions.

Let us call a set A of natural numbers k-good if A contains a k-
term arithmetic progression. Call A w-good if A is k-good for all
k > 1. We define four density functions as follows: For a set A
and natural numbers m,n, let A{m,n] be the cardinality of the set
AN{m,m+ 1,m+2,...,n}. Then define
8(A) = liminf 2027 A“’"]

n

5(A) = hmsup [1 n]

1
u(A) = lim min élm_uuﬁl and
n m>0

n
(A) = lim max AP Lm+n]
n m>0 n

It can be seen that the limits in the definitions of u and @ always exist.
These four “asymptotic” set functions are called the lower and upper
“ordinary” and the lower and upper “uniform” density of the set A
respectively. They are related by

u(A) < §(A) < 6(A) <u(A)
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for any set A.

Szemerédi actually proved:

(b) If u(A) > 0, then A is w-good. Hence we also have

(¢) If 6(A) > 0, then A is w-good.

In fact, Szemerédi proved the following “finite” result (which we state
in a general form to be used later):

(d) Let € > 0 and k € N = {1,2,3,...}. Then there exists an
ng € N such that if P is any arithmetic progression of length |P| > ng
and A C P with |A| > €|P)|, then A is k-good.

It is not hard to prove (without assuming the truth of any of the
statements) that (b), (¢) and (d) are equivalent.

Erdds (1] has conjectured that the following stronger statement holds:

() f ACN and ), 1 = 0o, then A is w-good.

By 3_4(1/a) we mean of course ), ,(1/a). The proof (or disproof)
of (e) is, at present, out of sight. In fact, it has not even been proved
that )~ 4(1/a) = oo implies that A is 3-good (compare Roth [6]). That
(e)=>(c) can be seen as follows: If §(A) = & > 0, then there exists a

sequence of natural numbers 0 = ng < n; < ng < ..., such that, for
each 1,
A[l)nl] > E and ni—l < E.
n; 2 n; 4
Then
k k
1 1 A[n,-_l +1, n,'] A[l, n,;] - N1
> > Tl Tl s Zioml Tl
)DEED DS L LSRN g
A ;9% i=1 i=1
e € ke
>Sk(=—-=-)=—

and so ) ,(1/a) = co. Assuming (e), it follows that A is w-good.

Hence Erdos’ conjecture is indeed stronger than Szemerédi’s theorem.
Note also that Erdds’ conjecture, if true, would immediately answer in
the affirmative the long-standing question of whether or not the primes
are w-good.

In the next section we make some observations regarding this conjec-
ture, and we show that several special cases of the conjecture are true.
Other observations can be found in Gerver [3,4] and Wagstaff (8].
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2. Main results.
(2.1). First we consider the “finite form” of Erdos’ conjecture.

THEOREM 1. Fiz k, and assume that for all sets A C N,
Y 4(1/a) = oo then A is k-good. Under this assumption, there ez-
ists T such that if ) ,(1/a) > T, then A is k-good.

(Gerver (3] has this result under the stronger hypothesis that if
> 4(1/a) = oo then A is (k + 1)-good.)

PROOF. We may assume k > 3. Suppose the theorem is false. We
will construct a set A such that ) ,(1/a) = oo and A is not k-good.
Choose a finite set Ay such that Ag is not k-good and ) ,(1/a) > 1.
Let p; be prime, p; > 2max Ag, and choose a finite subset A; of
{tp1|t > 1} such that A, is not k-good and }_ 4 (1/a) > 1. Let p; be
prime, p; > 2max A;, and choose a finite subset A, of {¢tp2|t > 1} such
that A is not k-good and }_ 4, (1/a) > 1. Continuing in this way, we
obtain finite sets Ag, A;, ... such that for each 7 > 0, A; is not k-good,
min A;4; > pi4; > 2maxA;, each element of A;; is a multiple of
Pit1,and 3_ 4 (1/a) > 1.

Let A = (JA;. It is clear that ) ,(1/a) = co. To show that 4 is
not k-good, it suffices to show that every 3-term arithmetic progression
contained in A must be contained in a single set A;.

To this end, suppose that z < y < 2z, with z,y,2 € A and
z2—y=y—1z. Let y € A;. Then z € A; also, since otherwise z —y >
min A;4; — max A; > maxA; >y —z. Thus y,2 € A; C {tpi|t > 1}.
Hence z is divisible by p;, so z > p; > max A,;_1, and = € A;. This
finishes the proof of Theorem 1.

COROLLARY 1. The following statement is equivalent to statement
(e):

(f) For each k € N, there exists T € N such that if 3 ,(1/a) > T,
then A s k-good.

We state next a lemma which will be useful later.

LEMMA 1. Let Fy, F5,... be a sequence of finite subsets of N such
that for each i, F; is not k-good and minF;y; > 2maxF;. Then
F = F; is not (k + 1)-good.

(The proof of Lemma 1 is contained in the proof of Theorem 1 above).
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(2.2). Now we define an increasing sequence, a; < az < az < ..., of
natural numbers to be lacunary if d, = an4+; —a, — 00 as n — oo and
to be M-lacunary if, furthermore, d, < dn+; for all n. We shall think
of such a sequence simultaneously as a sequence and as a subset of N.
Any lacunary sequence A has u(A) = 0 (see [2]), so that Szemerédi’s
theorem does not apply.

A subsequence of a lacunary sequence is lacunary, but the correspond-
ing statement, unfortunately, does not hold for M-lacunary sequences.
It is known that if the real series ) ¢; is not absolutely convergent,
then there exists a lacunary sequence B such that Eie g ti diverges (see
Freedman and Sember [2]). It follows that if A C N and }_ ,(1/a) = oo,
then there exists a lacunary sequence B C A such that > 5(1/b) = co.
Thus we have the following

THEOREM 2. The following statement is equivalent to statement (e).
(8) If A is a lacunary sequence and ) 4(1/a) = oo, then A is w-good.

Hence we need only investigate lacunary sequences when contemplat-
ing the Erdos conjecture.

It can also be shown that if > ¢; = oo and ¢; > 0 for all ¢, then there
exists an M-lacunary sequence B such that ), pt; = co. (We omit
the rather cumbersome proof of this statement.) But notice that this
does not imply that statement (h) below is equivalent to statement (e)!

This is too bad - because we now prove (h).

THEOREM 3. The following statement 1s true.
(h) If A is M-lacunary and )_ 4(1/a) = oo, then A is w-good.

PROOF. Let A = {a; < a2 < a3z < ...} be an M-lacunary sequence
with infinite reciprocal sum. Assume there is a k£ such that d; < d;4«
for each i, where d, = ant1 — an,n > 1. We show that a;4;x > j2/2
for all t > 1,5 > 0. Indeed,

Qitjk = 0i +di +dig1+ - +digjk—1
2di +dipk +digor +- -+ dit G-k
>1+2+3+--+j5>j5%/2

(Note that to obtain the first inequality we have merely omitted some
terms from the sum).
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But then
[ ] [ o] oo [o <]
1 1 1 1
i + + -4
o= 2
<k(1+ Z ]—2) < 00, a contradiction.
J=1
Hence, for each k, there is an ¢ such that d; = d;+x, whence
Gi,Qi41,...,0i1k+1 are in arithmetic progression and A is w-good.

The following is an immediate corollary.

COROLLARY 2. If A i3 a finite union of M-lacunary sets and
Y 4(l/a) = 0o, then A is w-good.

(2.3). We now use some slightly expanded arguments to show that
statement (g) holds for some special sequences which are not M-
lacunary (but are nearly so).

THEOREM 4. Let A = {a; < a3 < a3 < ...} be any set. Suppose
there are intervals I, = [sp,tn] with tp < Spy1 Such that

Suppose further that for each n,dy < dx+1 if Sn < k <tn. Then A is
w-good.

PROOF. We will arrive at a contradiction if we assume that there is
a K € N, such that d; < d;;x whenever 7,7 + K belong to the same
interval I;. Then, for any K, we have that there exists an 7 such that
di =diy; = --- = diy g so that a;,a:41,...,8i+K+1 are in arithmetic
progression.

To we get the required contradiction we proceed as follows: If n,
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n+K,n+2K,...,n+cK € I;, then

1 1 1 1
— + + ..
an dn+K  Qn42K An+cK
< ! + 1 + 1 +
“an Gn+dn apn+dp+doyx
1

+
an +dn +dnyx +- -+ dn+(c-—1)K

(b constant).

> 1 b b
‘ < <
< Z an + (]2/2) Van ~ \/as;

=0

Hence,

[ o]

< 00,

kel I i=1 V%

1 _ Kb 1
Z—<mand > o < Kb

Qa
Kel; k

contrary to assumption.
Using a similar technique we can prove the following theorem.

THEOREM 5. Let A = {a; < a2 < a3 < ...} be a set. Suppose
I, = [Sn,tn] are intervals with t, < Spy1 such that d; < diyy if
Sp €1 < tp and dy,—1 < ds,,,. Then, if ZkeUl,.(l/ak) =00, A
18 w-good.

(2.4). We now define new density functions A and) in terms of
lacunary sequences: For all sets A, let X(A) = 0 if A is finite or a
finite union of lacunary sequences and otherwise let A(4) = 1. Define
MA) = 1 — X(N — A). These densities, taking only 0,1 values, may
seem a little odd. The definition could be improved so that A\ becomes
“continuous” and has the correct value on an (infinite) arithmetic
progression etc. However, this would not suit our purposes any better.
One can prove that for any A C N

A(A) < u(A) < §(A) < 5(A) <u(A) < X(A)

and so, in analogy to Szemerédi’s 'I; heorem, it is natural to ask about
the arithmetic progressions in A if A(A) > 0.
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THEOREM 6. There ezists a set A such that X(A) > 0 and A is not
w-good.

PROOF. Let B; = {1!,2!,...,¢!}. B, is not 3-good. Let (H;) be the
sequence of sets

(BlaB17327 Bl’ B2aB3aBl’B27BSaB4aBla"')
Let f; be an increasing sequence of integers such that f; = 0 and
min(fi+1 + Hit1) 2 2max(f; + H;)

and define A = |J,(f; + H;). By Lemma 1, A is not 4-good. (By
choosing f; sufficiently quickly increasing one can even make A not
3-good.) Finally, A(A) = 1 since otherwise A = LiJL2J---U Lk
where each L; is a lacunary sequence. Whenever H; = B4, we have
|fi + H;] > k and so some L; has at least two members in f; + H;.
Hence we may find a fixed 7 such that

Ly [\(fi + Br+1)| 2 2

for infinitely many 7. Then L; has infinitely many differences d; <
(k+1)!, and so L; is not lacunary.

(2.5). Let us consider “relative density”, that is, “the density of A
relative to B” where A C B. The definitions are:
1,b;
6(A|B) = lim inf [z ]

1—00
b ,b
u(A|B) = lim min —[—mj'—'l—]

n—oom>0 n

6(A|B) and u(A|B) are obtained by replacing “inf” with “sup” and
“min” with “max” respectively. One can show, as before, for any
A,B,A C B, that

u(A|B) < §(A|B) < 8(A|B) < u(A|B).

Let B be M-lacunary and ) g 1/b = oo. Then, by Theorem 3, B
is w-good. We ask whether A C B and the relative density of A
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positive imply that A is also w-good. The answer is “yes” if u(4|B) > 0
(Theorem 7), “no” if §(A|B) > 0 (Theorem 8) and the question is open
for §(A|B) > 0.

THEOREM 7. If B is M-lacunary, > g1/b = o0, A C B and
u(A|B) > 0 then A i3 w-good.

PROOF. By (the proof of) Theorem 3 there are arbitrarily large n,m
such that
P ={bms1,bms2,.. . bmyn}

is an arithmetic progression. By the definition of u(A|B) we have
|[ANP| > €|P| where e = (1/2)u(A|B) and |P| is arbitrarily large.
Thus, by Szemerédi’s Theorem (d) we have, for any k, that |A() P| is
k-good if |P| is sufficiently large. Hence A is w-good.

THEOREM 8. There exists an M -lacunary sequence B with 3 5 1/b=
oo and an A C B with 6(A|B) > 0 (= 1 in fact) such that A is not
3-good.

PROOF. (leaving most of the details to the reader). Let F =
{15,21,3!,...},b1 = 1 and define b,4+1 = b, + d, where the d,’s
have the following properties: For all ¢,d; € F and d; < d;4;-
Furthermore, the set of natural numbers N can be partitioned into
consecutive pairwise disjoint intervals J;, J3,J3,... such that if r is
odd, then, for ¢ € J,,d; = diy; and EieJ, 1/b; > 1, and, if r is
even, then, for ¢ € J,,d; < dit1,b; > 2b;—; and |J,| > (max J,_;)%
Clearly B = {by,bz,...} is M-lacunary and ) g1/b = oco. Let
A= {bklk € U' Jz,'}. Then

5(A|B) > lim /2|

4 |J2fl+max J2r-1

One can also see that A is not 3-good since a; > 2a;—; holds.

(2.6). Theorems 4,5, and 7 notwithstanding, it seems to be difficult
to generalize the notion of M-lacunary even slightly and still prove the
corresponding case of the Erdos conjecture. In this connection let us
define a lacunary sequence A to be Mk-lacunary (where k > 0) if, for
all 7,7,7 < j, we have d; < d; + k. Clearly the Mp-lacunary sequences
are just the M-lacunary sequences. For no k # 0 are we able to prove
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that Mg-lacunary and 3~ ,(1/a) = co imply w-good. We can show if A
is My-or My-lacunary with Y ,(1/a) = co then A is 3-good. We prove
first a lemma which may have independent interest:

LEMMA 2. If A = {a; < az < a3z < ...} is any subset of N and
ZA 1/a = oo, then, for anyt > 0, there exists an i such that diy; < d;
for j=0,1,...,t. (Of course, dy, = apny1 —ay.)

PROOF. The method is familiar by now: Suppose there is a t such
that, for each ¢, there exists j € [1,¢] with d; < d;4;. Then we can find
a sequence (jp,) such that

di < ditj, <digjiaz <---(Jn € [L,2]).

It follows that
ad 1

Z <tz St§)01+(1+2+~-+3)<00'

o 001+(11+ “+Js)

THEOREM 9. Let A be M;-or Ma-lacunary and y_ 4,(1/a) = co. Then
A 13 3-good.

PROOF. By the definition of Mj-lacunary and Lemma 2 we have: for
any t > 0 there is an 7 such that

di—eSdH-dei .7.=0,1""3t,

where e = 1 or 2. Hence, in the sequence (d;), we have arbitrarily long
blocks where the d; take on only two (in case e = 1) or three (in case
e = 2) values. Such long blocks must contain two consecutive subblocks
with identical composition (see Pleasants [5]). These two subblocks will
determine three terms of the sequence A in arithmetic progression.

This last result suggests a conjecture which is related to van der
Waerden’s theorem on arithmetic progressions and which would imme-
diately imply that M-lacunary with ) 4(1/a) = oo implies that A is
3-good.

Conjecture. Let z; be a sequence of positive integers with 1 <
z; < K. Then there are two consecutive intervals I, J, of the same
length, with 3, z; = Zje 7 Z;. Equivalently, if a; < a2 <... satisfy
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an4+1 — an < K, all n, then there exist £ < y < z such that z + 2 =2y
and a; + a, = 2ay.
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