ON THE SPACE ℓ/c_o

GIORGIO METAFUNE

ABSTRACT. In this paper we correct a mistake contained in [3] and we improve and give simpler proofs of some of the results contained there. We also give a very simple proof of the fact (included in Theorem 5.6 of [5]) that the dual of every complemented subspace of ℓ^{∞}/c_o is isomorphic to $(\ell^{\infty})'$.

Introduction and notation. If T is a completely regular topological space, βT is its Stone-Cech compactification; if S is a locally compact topological space, αS is its one-point compactification. We recall some facts about ℓ^{∞} and ℓ^{∞}/c_o .

 ℓ^{∞} is isometric to $C(\beta N)$ and ℓ^{∞}/c_o is isometric to $C(\beta N \setminus N)$ (cf. **[3]**).

 ℓ^{∞} is a \mathcal{P}_1 -space, that is, it is complemented in every Banach space which contains it with a norm-one projection; $(\ell^{\infty})' = \ell^1 \oplus c_o^{\perp}$ (cf. [2]).

We use = for "isomorphic to" and \equiv for "isometric to".

If $E_n, n \in N$, are Banach spaces, then

$$(\bigoplus_n E_n)_p = \{(x_n) | x_n \in E_n \text{ and} \\ ||(x_n)||_p = (\sum_n ||x_n||^p)^{1/p} < \infty\}, \quad 1 \le p \le \infty, \\ (\bigoplus_n E_n)_\infty = \{(x_n) | x_n \in E_n \text{ and } ||(x_n)||_\infty = \sup_n ||x_n|| < \infty\}$$

and $(\bigoplus_n E_n)_{c_o}$ is the closed subspace of $(\bigoplus_n E_n)_{\infty}$ formed by the sequences (x_n) such that $\lim_n ||x_n|| = 0$.

It is easy to show that $(\bigoplus_n E_n)'_p = (\bigoplus_n E'_n)_{p'}$ if $1 \leq p < \infty$ and $\frac{1}{n} + \frac{1}{n'} = 1$ and $(\bigoplus_n E_n)'_{c_n} = (\bigoplus_n E'_n)_1$, but it is false that $(\bigoplus_n E_n)'_{\infty} = (\bigoplus_n E'_n)_1$ in general (for example, consider the case when the E'_n s are Banach spaces with separable dual).

If Γ is a set of indices let $c_o(\Gamma) = \{(x_\alpha)_{\alpha \in \Gamma} | x_\alpha \in C \text{ and for any}\}$ $\varepsilon > 0|x_{\alpha}| > \varepsilon$ only for a finite number of indices $\}$.

Copyright ©1987 Rocky Mountain Mathematics Consortium 583

Received by the editors on June 27, 1985, and in revised form on November 4, 1985.

If $\Gamma = N, c_o(\Gamma)$ is, of course, c_o . F < E means that F is isomorphic to a complemented subspace of E.

Finally if E is a Banach space, $\chi(E)$ is its *density character*, that is, the smallest cardinality of a dense subset of E.

RESULTS. Theorem (5.4) in [3] purports to prove that $\ell^{\infty}/c_o = \ell^{\infty} \oplus (\ell^{\infty}/c_o)$ and for this the authors use the following result, which they attribute to Goodner:

(*) If ℓ^{∞} is isometric to a subspace M of C(T), T compact Hausdorff, then any complement of M in C(T) is isomorphic to C(T).

First of all, Goodner's result is quite different and is the following (cf. [1]):

"If ℓ^{∞} is isometric to a subspace of C(T), T compact Hausdorff, then there exist subspaces $M, N \subset C(T)$ such that $C(T) = M \oplus N, M$ is isometric to ℓ^{∞} and N is isomorphic to C(T).

This is correct and also holds with *isometric* replaced by *isomorphic* throughout. For an immediate proof it suffices to apply Lemma 1 below, with E = C(T) and $F = \ell^{\infty}$.

In the second place, (*) is false. Indeed, consider the space $\ell^{\infty} \oplus c = \ell^{\infty} \oplus c_o$ and note that $(\ell^{\infty} \oplus c)_{\infty} \equiv C(K)$ where $K = (\beta N) \cup (\alpha N)$ (disjoint topological union). It is clear that every complement of ℓ^{∞} in $\ell^{\infty} \oplus c$ is isomorphic to c which, of course, is not isomorphic to $\ell^{\infty} \oplus c$.

Theorem (5.4) of [3] is true even if (*) is false and it is a simple corollary to the following

LEMMA 1. Let E be a Banach space and let F < E be such that $F^2 = F$. Then $E = E \oplus F$.

PROOF. In fact, there exists a subspace $F_1 \subset E$ such that $E = F \oplus F_1$ and hence $E = F \oplus F_1 = F \oplus F \oplus F_1 = E \oplus F$.

The isomorphism $\ell^{\infty}/c_o = \ell^{\infty} \oplus (\ell^{\infty}/c_o)$ is now a simple consequence of the fact that $\ell^{\infty} < \ell^{\infty}/c_o$ (cf. [3]).

In theorem (5.2) of [3] the authors prove that ℓ^{∞}/c_o is isometric to its square by using some topological properties of $\beta N \setminus N$. This is quite unnecessary. In fact, it suffices to observe that, if $T : \ell^{\infty} \oplus \ell^{\infty} \to \ell^{\infty}$ is given by $T((\xi_n), (\eta_n)) = (\xi_1, \eta_1, \xi_2, \eta_2, \dots)$, then T is an isometry of $(\ell^{\infty} \oplus \ell^{\infty})_{\infty}$ onto ℓ^{∞} and $T|_{c_o \oplus c_o}$ is an isometry of $c_o \oplus c_o$ onto c_o , so that $\ell^{\infty}/c_o \equiv (\ell^{\infty} \oplus \ell^{\infty})_{\infty}/(c_o \oplus c_o) \equiv (\ell^{\infty}/c_o \oplus \ell^{\infty}/c_o)_{\infty}$. We now improve the result in §3 of [3].

THEOREM 1. ℓ^{∞}/c_o is not complemented in any dual space.

PROOF. Let $(A_i)_{i \in I}$ be an uncountable family of pairwise disjoint, open-closed subsets of $\beta N \setminus N$ (cf. [6]).

For each $i \in I$ define $f_i \in C(\beta N \setminus N)$ by $f_i(x) = 1$ (if $x \in A_i$) and $f_i(x) = 0$ if $x \notin A_i$. It is clear that span $\{f_i\} \equiv c_o(I)$ and hence $c_o(I)$ is a subspace of ℓ^{∞}/c_o . If ℓ^{∞}/c_o were complemented in a dual space then, by a theorem of Rosenthal (cf. [5]), $\ell^{\infty}(I) \subset \ell^{\infty}/c_o$. But this is impossible because $\chi(\ell^{\infty}/c_o) = c$ and $\chi(\ell^{\infty}(I)) = 2^{|I|} > c$.

We consider now complemented subspaces of ℓ^{∞}/c_o .

LEMMA 2. Let E a Banach space such that $E = (E \oplus E \dots)_{\infty}$. Then $E' = (E' \oplus E' \dots)_1$.

PROOF. Let $G = (E' \oplus E' \dots)_1$. Clearly G is isomorphic to its square and E' < G. If we prove that G < E' we conclude, by Lemma 1, that E' = G (note that E' is isomorphic to its square too).

Let $F = (E \oplus E \dots)_{c_o}$; then $F' \equiv G$ and F is a closed subspace of $(E \oplus E \dots)_{\infty}$. Let $\alpha : F \to (E \oplus E \dots)_{\infty}$ be the isometric inclusion and let $T : G \to (E \oplus E \dots)'_{\infty}$ be the inclusion map, so that, if $x = (x_n) \in G$ and $z = (z_n) \in (E \oplus E \dots)_{\infty}$, we have $\langle Tx, z \rangle = \sum_n \langle x_n, z_n \rangle$. Then $|\langle Tx, z \rangle| \leq \sum_n ||x_n|| ||z_n|| \leq ||x|| ||z||$, that is, $||T|| \leq 1$.

Moreover, we have that $Tx|_F = x$ for every $x \in G$, i.e.,

$$\langle Tx, y \rangle = \langle x, y \rangle \quad Vy \in F.$$

Consider the diagram $G \xrightarrow{T} (E \oplus E \dots)'_{\infty} \xrightarrow{\alpha'} G$ and let $x \in G$ and $y \in F$. Then $\langle \alpha' Tx, y \rangle = \langle Tx, y \rangle = \langle x, y \rangle$.

This means that $\alpha' T = I_G$; i.e., I_G factors through $(E \oplus E \dots)'_{\infty}$ and hence G < E'.

COROLLARY. $(\ell^{\infty})' = ((\ell^{\infty})' \oplus (\ell^{\infty})' \dots)_1.$

THEOREM 2. Let M be a complemented subspace of ℓ^{∞}/c_o . Then $M' = (\ell^{\infty})'$.

PROOF. By Theorem (5.1) in [3], $\ell^{\infty} < M$. Hence $(\ell^{\infty})' < M'$ and $M' < (\ell^{\infty}/c_o)'$. But $(\ell^{\infty}/c_o)' = c_o^{\perp} < (\ell^{\infty})'$ [2] and therefore we have $(\ell^{\infty})' < M' < (\ell^{\infty})'$. An application of Pelczynski's decomposition method (cf. [4]) together with the Corollary to Lemma 2 concludes the proof.

References

1. D.B. Goodner, Subspaces of C(S) isometric to m, J. London Math. Soc. 3 (1971), 488-492.

2. G. Kothe, Topological vector spaces, vol. I., Springer (1969).

3. I.E. Leonard, J.H. M. Whitfield, A classical Banach space: ℓ^{∞}/c_o , Rocky Mountain, J. Math. 13 (1983), 531-539.

4. A. Pelczynski, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228.

5. H.P. Rosenthal, On injective Banach spaces and the spaces $L^{\infty}(\mu)$ for finite measures μ , Acta Math. 124 (1970), 205-248.

6. R.C. Walker, The Stone-Cech compactification, Springer (1974).

UNIVERSITA DEGLI STUDI DI LECCE, DIPARTIMENTO DI MATEMATICA, VIA Arnesano 73100 Leece Italy.