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DIRECT SUMS AND PRODUCTS
OF ISOMORPHIC ABELIAN GROUPS

JOHN D. O'NEILL

Introduction. Suppose G is a reduced abelian group and I and J
are infinite sets. When can the direct product G equal the direct sum
AWY) for some subgroup A? If G is a torsion group, then G must be
torsion by Corollary 2.4 in [3] and the answer is easy to determine. In
Theorem 1 we provide an answer for all cases where |G| or [I| is non-
measurable. We then present, in Example 2, a group decomposition
G! = AY) where G is reduced and unbounded. There is another
unusual decomposition of G! which occurs whenever |I| is measurable
and seems worth mentioning. We do this in Example 3.

In this paper all groups are abelian. By G! and G(¥) we mean the
direct product and direct sum respectively of copies of G indexed by I.
If I is a set, then |I| is measurable if there is a {0, 1}-valued countably
additive function g on P(I), the power set of I such that u(l) = 1
and u({7}) = 0 for each ¢ € I. The letter N denotes the set of natural
numbers. Unexplained terminology may be found in [2].

THEOREM 1. Let G be a reduced group and let I and J be infinite sets.
If |G| or |I| is non-measurable, then G = AY) for some subgroup A if
and only if G = B® C, where B! = T) for some bounded subgroup
T and CT = C\) = Ck for some positive integer k.

PROOF. Sufficiency is clear so we assume G = A(Y) and derive the
stated conditions. Write X = []; G; = ®;A; where ¢; : G; — G is an
isomorphism for each 7 and A; = A for each j.

(A) Suppose |G| is non-measurable. Let f; : X — A; be the obvious
brotection and let (S, +,-) be the Boolean ring on S = P(I). Also let
K = {s € S : there is an n, in N such that n, f;([], Gi) = 0 for almost
all 5} and set H = ([], G; : s € K). Clearly K is an ideal in S. Thus
H consists of the elements in G with support in K. The crucial fact
for our proof is that K is a ~-ideal in S (i.e., if {s, : n € N} is an
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orthogonal family in S, then ), s, € K for some k in N). For a
proof of this fact, based on the work of S. Chase, see Theorem 1.5 in
(3]. From Theorem 1.5 and Lemma 1.2 in 3] then we deduce: (a) S/K
is finite and there are orthogonal elements u;,...,u, in S which map
onto the atoms of S/K; (b) if {sm : m € M} is a set of orthogonal
elements in S and |M| is non-measurable, then Y,/ sm € K for some
cofinite subset M’ of M; (¢) if K = UK, where K; C K3,C ...,
then K = K}, for some k. From (c) we conclude that mH C &,, A; for
some m in N and some finite subset J; in J. For each u, in (a) above
let L, = {zn(g) : g € G} where z,(9) = 3_, ¢;'(9)- Plainly L, is
a subgroup of X isomorphic to G. We claim X = L; ®---® Ly ® H.
Let £ = ) ; z; be an element in X and write z = ) ( Es z;) where
sg = {i € I: ¢s(z;)} = g. Since the family {s, : g € G} partitions
I by (b) above EG,(Z z;) € H for some cofinite subset G’ in G.
Moreover, for g € G\G', sg Y anu, +v with a, =0 or 1 and v € k;
thus 30, z; = 3, @nZn(9) + 3, Ti — 2, an(X,,, i), which is in
YL, + “H. Therefore z € >L,+Hand X =) L, + H. Suppose
that y; +- - -+yx +2 = 0 where each y,, isin L, and z is in H. Since u,
is not in K but the support of z is in K, there is an ¢, in u, at which
z has 0 component. Since the u, are orthogonal, the definition fo L,
implies each Y,, is 0. Therefore z =0 alsoand X =L, ®---® Ly ® H,
as desired. Let I; be a set of k elements, one from each u,. Then
X = &fLn @[]\, Gi = ©fLn © H so H =[]} ;, Gi. We may then
assume m ][, Gi € @4,A;. Let r = |J1| and let G = B@® C and
A =T @ U where B and T are maximal m-bounded direct summands
of G and A. We can now write

(1) X=B'®@¢D®E=TY) @V oW where D=CFKEx=C!V =
Ur,W=UU) and mE CW.

Now B! and T(J ) are max1mal m-bounded summands of X so

(2) B! = TW) and ¢! = U(Y). By the Exchange Property (Theorem
72.1 in [2]) for maximal m- “bounded summands B ©eDoE=B'o
V & W. We may assume (replace D @ E by its projection to V & W)
that D@ E equals X ®W. Since mE is still in W, by Lemma 1.7 in [3]
we have DO E =V @ W' where W = W' C D. By the modular law,

B)YD=DnNnVeW andV =K®&DNYV for some K.
By (1) and (3) we obtain

@) Ck=DnveUD =DnVeVY) =DnVve(KeDNV)V) =
v =y = u)) = (Ck)(J =~ W),
Now (2) and (4) yield C! = CV) = Ck.
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(B) Suppose |I| is non-measurable. By Corollary 1.9 in [3] there are
positive integers k and r and decompositions G = B&C,A=T & U
with B bounded such that: B! = T()) 0T = U) and U = K@ L
where C* = L @ U(Y). We can show, as in (3) of part (A), that
Ck =) = () and the proof is complete.

We now show that G need not be bounded to satisfy the conditions
of Theorem 1.

EXAMPLE 2. If I and J are infinite sets, there exists a reduced
unbounded group G such that G = G = G/),

PROOF. Consider the cartesian product (1 x J)" with typical element
(41,71,92,72,...). Let H be any unbounded reduced group. Let G be
the set of all functions f : (I x J)¥ — H such that, for each k and each
fixed 41,1, ..., 4k, f(51, 71, - -, 5k: Jks Tkt 15 Jk41, - - - ) = O for almost all
Jk (one can think of G as [1;9s1I;®s...H). Now G is a group under
component-wise addition and it is easy to see that G = (G(Y))!. But
this implies G = G = G(¥).

If |I| is measurable, then G', for any group G, has an unusual de-
composition we would like to mention. This decomposition generalizes
examples found on page 184 in [1] and page 161, vol. II, of [2].

EXAMPLE 3. Let I be a set of measurable cardinality and let G be
a group. There is a decomposition G! = L @ M where L = G and
G g M=gl

PROOF. Write G! =] ; Gi where ¢; : G; — G is an isomorphism for
each ¢. Let y : P(I) — {0,1} be a countably additive function such
that u(I) = 1 and p({s}) = 0 foreachi € I. If = }_, z; is an element
in GI, write z = EG(ESg z;) where sy, = {¢ € I : ¢i(z;) = g}. The
S¢’s partition I and p(s,;) = 1 for at most one g. Define f : GI — G
by f(z) = Y, pu(s,)g for each z in GI. If two subsets of P(I) have
measure 1, so does their intersection. It follows that, for each z,y in
G, f(z + y) = f(z) + f(y) so f is a homomorphism. Let M be the
kernel of f and let L = {3, ¢;1(g) : g € G}, the diagonal subgroup of
G'. It is easy tosee that G! = LOM,L=Gand GV g M. Ifje I,
then G! =L&[];y,;Giand M =], G ~ Gl
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