CONTINUA WITH A DENSE SET OF END POINTS

J.J. CHARATONIK AND T. MACKOWIAK

ABSTRACT. The structure of metric continua with a dense set of end points is investigated. It is shown that a continuum has a dense set of end points if and only if it is either indecomposable or the union of two proper indecomposable subcontinua with connected intersection, each having a dense set of its end points lying outside the composant containing the intersection and such that the intersection is an end continuum in both subcontinua.

A continuum means a compact connected metric space. Throughout this paper X always denotes an arbitrary continuum, and C(X) is the hyperspace of all nonempty subcontinua of X equipped with the Hausdorff distance denoted by dist (see [5; §42, II, p. 47] for the definition).

If $K \in C(X)$ and if for each $L, M \in C(X)$ with $K \subset L \cap M$ we have either $L \subset M$ or $M \subset L$, then K is called an end continuum in X. Note that X is an end continuum in itself. In particular, if $K = \{p\}$, then the point p is called an end point of X (see [3; p. 660, 661]). The set of all end points of X is denoted by E(X). Observe that $K \in C(X)$ is an end continuum in X if and only if K is an end point of the decomposition space X/K of the monotone upper semi-continuous decomposition of X whose only nondegenerate element is K.

Note that if we restrict our considerations to proper subcontinua of a given continuum, then what we call "end continua" here are called "terminal continua" in [4; Definition 4, p.461] and "absolutely terminal continua" in [2; Definition 4.1, p.34]. The same concerns points.

PROPOSITION 1. The set E(X) is a G_{δ} -set

AMS subject classification numbers: 54 F 20 Key words and phrases: composant, continuum, decomposable, dense, end continuum, end point, indecomposable, pseudo-arc, unicoherent. Received by the editors on May 31, 1985, and in revised form on September 30,

^{1985.}

In fact, defining a function g from $C(X) \times C(X)$ into reals by

$$g(K,L) = \min\{\operatorname{dist}(K, K \cup L), \operatorname{dist}(L, K \cup L)\}$$

we see that g is continuous. Therefore the sets

 $F_n = \{x \in X : \text{ there are } K, L \in C(X) \text{ such that } x \in K \cap L \text{ and } x \in X \}$

$$g(K,L) \ge 1/n\}$$

are closed for each $n \in \{1, 2, ...\}$. The equality $X \setminus E(X) = \bigcup \{F_n : n \in \{1, 2, ...\}\}$ shows the conclusion.

This paper concerns continua X having a dense set E(X) of end points. We begin with three simple observations. First, recall that each point of X is an end point, i.e., X = E(X), if and only if X is hereditarily indecomposable. In particular, the pseudo-arc is an example of such a continuum ([3; Theorem 16, p. 662]). Second, note that if we replace a point of the pseudo-arc by a continuum, say an arc (in the sense that the continuum is a remainder of the complement of the point in the pseudo-arc; see [1; Theorem, p. 35]), then we get an indecomposable continuum having the set of end points as a dense proper subset. Third, the one-point union X of two pseudo-arcs P_1 and P_2 with $P_1 \cap P_2 = \{p\}$ also has the considered property: if C_1 and C_2 are composants of P_1 and P_2 respectively, both containing p, then $E(X) = (P_1 \setminus C_1) \cup (P_2 \setminus C_2)$.

PROPOSITION 2. If $\overline{E(X)} = X$, then:

(1) X is unicoherent;

(2) if $K \in C(X)$ and int $K \neq \emptyset$, then $X \setminus K$ is connected;

(3) if $K \in C(X)$, then $X \setminus K$ has at most two components;

(4) X is irreducible;

(5) if X is decomposed into two proper subcontinua A and B, then $\overline{X \setminus A}$ and $\overline{X \setminus B}$ are closed connected domains in B and in A respectively, whose union is X;

(6) X contains at most two distinct proper closed connected domains;

(7) each closed connected domain properly contained in X is indecomposable;

(8) each closed connected domain contained in X has a dense set of its end points.

PROOF 1. Suppose to the contrary that there are two proper subcontinua P and Q of X such that $X = P \cup Q$ and $p \cap Q = M \cup N$, where M and N are nonempty disjoint closed sets. Let sets U and V be open such that $M \subset U$, $N \subset V$ and $\overline{U} \cap \overline{V} = \emptyset$. There are components K_1 and K_2 of $P \cap \overline{U}$ and $P \cap \overline{V}$ intersecting M and N respectively. The unions $K_1 \cup Q$ and $K_2 \cup Q$ are continua. By the Janizewski theorem ([5], §47, III, Theorem 1, p. 172) we have $K_1 \cup Q \neq Q \neq K_2 \cup Q$. Further, $(K_1 \cup Q) \cap (K_2 \cup Q) = Q$. Therefore $Q \subset X \setminus E(X)$. Since int $Q \neq \emptyset$, we have a contradiction with the assumption $\overline{E(X)} = X$.

2. Let $K \in C(X)$ with int $K \neq \emptyset$ be given. Suppose $X \setminus K = M \cup N$, where M and N are nonempty mutually separated sets. Then $K \cup M$ and $K \cup N$ are continua and $(K \cup M) \cap (K \cup N) = K$. Thus $K \subset X \setminus E(X)$. But (int $K) \cap E(X) \neq \emptyset$, which is a contradiction.

3. Suppose to the contrary that there is $K \in C(X)$ such that $X \setminus K$ has more than two components. Then there are three mutually separated nonempty open sets U, V, and W such that $X \setminus K = U \cup V \cup W$ (see [5; §46, IV, Theorem 4, p. 143]). The set $K \cup U$ is a continuum ([5; §46, II, Theorem 4, p. 133]), and since U is open, we have int $(K \cup U) \neq \emptyset$. Thus $X \setminus (K \cup U)$ is connected by (2). On the other hand $X \setminus (K \cup U) = V \cup W$, where V and W are nonempty and separated, which is a contradiction.

4. Now (3) implies that X is not a triod, whence by (1) and the Sorgenfrey result ([6; Theorem 3.2, p. 456]; cf. [2; Theorem 2.12, p. 21]) we conclude that X is irreducible.

5. Since int $A \neq \emptyset$, the set $X \setminus A$ is connected by (2), and so is $\overline{X \setminus A}$. Further, $X \setminus A = \operatorname{int} (X \setminus A) \subset \operatorname{int} \overline{X \setminus A} \subset \overline{X \setminus A}$ implies $\overline{X \setminus A} = \operatorname{int} \overline{X \setminus A}$, which means that $\overline{X \setminus A}$ is a closed domain. The same holds for $\overline{X \setminus B}$. Note that $A \cap B$ is a continuum by (1), and it disconnects X, i.e., $X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B)$, where $X \setminus A$ and $X \setminus B$ are nonempty, open and disjoint. Thus $\operatorname{int} (A \cup B) = \emptyset$ by (2), whence $X = \overline{X \setminus (A \cup B)} = \overline{X \setminus A} \cup \overline{X \setminus B}$. So (5) is proved.

6. By (4) there are two points a and b in X such that X is irreducible between a and b. Let D be an arbitrary closed connected domain in X. Observe that D contains either a or b (or both), because otherwise $X \setminus D$ is a connected set (by (2)) containing both a and b, whence $\overline{X \setminus D}$ is a proper subcontinuum of X containing a and b contrary to irreducibility of X.

Suppose to the contrary that there are in X three distinct closed connected domains. So there are two of them, D_1 and D_2 , containing

the same point of irreducibility, say a. Since the family of all closed connected domains containing a is strictly monotone ([5; §48, III, Theorem 2, p. 195]), we may assume $D_1 \subset \text{int } D_2$. Thus the sets D_1 and $\overline{X}\setminus D_2$ are disjoint, and the latter is a closed connected domain containing the point b ([5; §48, III, Theorem 5, p. 196]). Then the set $X\setminus (D_1\cup \overline{X}\setminus D_2)$ is open and connected ([5; §48, II, Theorem 4, p. 193]), and therefore its closure, D, is a closed connected domain containing neither a nor b, which is a contradiction.

7. Let a closed connected domain D be a proper subset of X. Then by (2) the set $\overline{X \setminus D}$ is a proper subcontinuum of X and we obviously have $X = D \cup \overline{X \setminus D}$. Suppose to the contrary that there are continua P and Q such that $D = P \cup Q$ and $P \neq D \neq Q$. Then at least one of them intersects $\overline{X \setminus D}$. Assume $Q \cap \overline{X \setminus D} \neq \emptyset$. If $P \cap \overline{X \setminus D} = \emptyset$, then $X \setminus (P \cup \overline{X \setminus D})$ is a nonempty (by connectedness of X) open subset of Q, whence int $Q \neq \emptyset$, and by (2) the set $X \setminus Q$ is connected. On the other hand $X \setminus Q$ is the union of two nonempty disjoint open sets, namely $X \setminus D$ and $P \setminus Q = X \setminus (Q \cup \overline{X \setminus D})$. Thus $P \cap \overline{X \setminus D} \neq \emptyset \neq Q \cap \overline{X \setminus D}$. Hence $P \cup \overline{X \setminus D}$ and $Q \cup \overline{X \setminus D}$ are continua. Since $\overline{X \setminus D}$ has the nonempty interior, we have $\overline{X \setminus D} \cap E(X) \neq \emptyset$, and therefore one of the two continua contains the other. Assume $P \cup \overline{X \setminus D} \subset Q \cup \overline{X \setminus D}$. Then $X = P \cup Q \cup \overline{X \setminus D} = Q \cup \overline{X \setminus D}$, whence int $D = X \setminus \overline{X \setminus D} \subset Q$ and thereby $D = \operatorname{int} \overline{D} \subset Q$, which is a contradiction.

8. Let D be a closed connected domain in X. To prove E(D) = Dobserve first that $E(X) \cap \text{int } D \subset E(D)$. Since the set $E(X) \cap \text{int } D$ is dense in int D and int D is dense in D, hence $E(X) \cap \text{int } D$ is a dense subset of D, and so the needed equality follows from the inclusion.

STATEMENT 3. The following conditions are equivalent:

- (9) X is indecomposable and $\overline{E(X)} = X$;
- (10) for each composant C of X we have $\overline{E(X)\setminus C} = X$;
- (11) there is a composant C of X such that $\overline{E(X)\setminus C} = X$.

If (9) is assumed, then, since C is a boundary F_{δ} -set in X and E(X) is a dense G_{δ} -set in X (by Proposition 1) we have (10) by the Baire category theorem. The implication from (10) to (11) is trivial. Finally (11) implies that $X = \overline{E(X)} \setminus \overline{C} \subset \overline{X} \setminus \overline{C} \subset X$, thus the composant C is a boundary subset of X and, consequently, X is indecomposable ([5; §48, VI, Theorem 8, p. 213]). Further, $X = \overline{E(X)} \setminus \overline{C} \subset \overline{E(X)} \subset X$, whence $\overline{E(X)} = X$ and so (9) holds.

It is obvious that an end point of a continuum is an end point of a

subcontinnum containing the point. The next proposition shows that in certain circumstances the inverse also is true.

PROPOSITION 4. Let X be the union of two proper indecomposable subcontinua X_1 and X_2 whose intersection $X_1 \cap X_2$ is connected and is an end continuum in both X_1 and X_2 . Let C_1 and C_2 denote composants of X_1 and X_2 respectively, containing $X_1 \cap X_2$. Then

$$(E(X_1)\backslash C_1) \cup (E(X_2\backslash C_2) \subset E(X).$$

PROOF. By the symmetry of assumptions it is enough to show $E(X_1) \setminus C_1 \subset E(X)$ only. So take a point $p \in E(X_1) \setminus C_1$ and let $L \in C(X)$ contain p. We claim that

(*) if $L \setminus X_1 \neq \emptyset$, then $X_1 \subset L$ and $L \cap X_2$ is connected.

In fact, since X_1 and X_2 are proper subcontinua of X, their intersection separates X between $X_1 \setminus X_2$ and $X_2 \setminus X_1$. Thus $L \cap X_1 \cap X_2 \neq \emptyset$, and thereby $L \cup (X_1 \cap X_2)$ is a continuum. Now $L \setminus (X_1 \cap X_2) = (L \setminus X_1) \cup (L \setminus X_2)$ and the sets $L \setminus X_1$ and $L \setminus X_2$ are both nonempty (the former just by the assumption; the latter since $p \in L \cap (E(X_1) \setminus C_1) \subset L \cap (X_1 \setminus (X_1 \cap X_2)) \subset L \setminus X_2)$ and mutually separated. Thus the unions $(L \setminus X_1) \cup (X_1 \cap X_2)$ and $(L \setminus X_2) \cup (X_1 \cap X_2)$ are continua ([5; §46, II, Theorem 4, p. 133]), the latter of which lies in X_1 and joins p with $X_1 \cap X_2$. Since p is out of C_1 , the continuum is X_1 , i.e., $(L \setminus X_2) \cup (X_1 \cap X_2) = X_1$. Thus $X_1 \setminus (X_1 \cap X_2) = X_1 \setminus X_2 \subset L$, whence $\overline{X_1 \setminus X_2} \subset L$. Since $X_1 \cap X_2 \subset C_1$ and C_1 is a boundary subset of the indecomposable continuum X_1 ([5; §48, VI, Theorem 6, p. 212]), we have $\overline{X_1 \setminus X_2} = X_1$ and so the inclusion $X_1 \subset L$ follows. Now we see that the continuum $(L \setminus X_1) \cup (X_1 \cap X_2)$ equals $L \cap X_2$ (because $X_1 \cap X_2 \subset X_1 \subset L$), and so (*) is proved.

Now let us come back to the point p, and take two continua $L, M \in C(X)$ such that $p \in L \cap M$. If $L \cup M \subset X_1$, then either $L \subset M$ or $M \subset L$ since $p \in E(X_1)$. If $L \setminus X_1 \neq \emptyset$ and $M \subset X_1$, then by (*) we have $M \subset L$. It remains to consider the case when $L \setminus X_1 \neq \emptyset$ and $M \setminus X_1 \neq \emptyset$. By (*) we have $X_1 \subset L \cap M$ and the intersections $L \cap X_2$ and $M \cap X_2$ are both subcontinua of X_2 that contain $X_1 \cap X_2$. Since $X_1 \cap X_2$ is an end continuum in X_2 we have either $L \cap X_2 \subset M \cap X_2$ or $M \cap X_2 \subset L \cap X_2$. Since $X_1 \subset L \cap M$, we see that $L = X_1 \cup (L \cap X_2)$

and $M = X_1 \cup (M \cap X_2)$, whence either $L \subset M$ or $M \subset L$. Therefore $p \in E(X)$ and the proof is complete.

In the next proposition a sufficient condition is presented for density of the set of end points of a continuum.

PROPOSITION 5. If X is the union of two proper indecomposable subcontinua X_1 and X_2 , each having a dense set of its end points, such that the intersection $X_1 \cap X_2$ is connected and is an end continuum in both X_1 and X_2 , then $\overline{E(X)} = X$.

PROOF. Let C_1 and C_2 have the same meaning as in Proposition 4. Applying Statement 3 to X_1 and to X_2 separately, we get

$$\overline{E(X_1)\setminus C_1} = X_1$$
 and $\overline{E(X_2)\setminus C_2} = X_2$,

whence by Proposition 4 we obtain $X = X_1 \cup X_2 \subset \overline{E(X)} \subset X$, and thereby the conclusion holds.

Combining Propositions 2 and 5 we have

THEOREM 6. X is a decomposable continuum with $\overline{E(X)} = X$ if and only if X is the union of two proper indecomposable continua X_1 and X_2 with dense sets of their end points and such that $X_1 \cap X_2$ is an end continuum in both X_1 and X_2 .

Further information about how E(X) is situated in X, when conditions considered above are satisfied, is contained in a proposition below.

PROPOSITION 7. If X is the union of two proper subcontinua X_1 and X_2 whose intersection $X_1 \cap X_2$ is connected, and if C_1 and C_2 denote the composants of X_1 and X_2 respectively, containing $X_1 \cap X_2$, then $E(X) \subset X \setminus (C_1 \cup C_2)$.

PROOF. Pick a point $p \in C_1 \cup C_2$ and assume $p \in C_1$. By the definition of a composant there are continua $P_1, Q_1 \in C(X_1)$ and $P_2, Q_2 \in C(X_2)$ such that $\{p\} \cup (X_1 \cap X_2) \subset P_1 \subset Q_1 \neq P_1$ and $X_1 \cap X_2 \subset P_2 \subset Q_2 \neq P_2$ and $P_1 \setminus (X_1 \cap X_2) \neq \emptyset \neq P_2 \setminus (X_1 \cap X_2)$. So the continua $P_1 \cup Q_2$ and $P_2 \cup Q_1$ both contain p, and we have $(P_1 \cup Q_2) \setminus (P_2 \cup Q_1) \neq \emptyset \neq (P_2 \cup Q_1) \setminus (P_1 \cup Q_2)$. Thus p is not an end point of X.

REMARK 8. As it was said in the beginning, metrizability of the continuum X has been assumed in the whole paper and it was essentially exploited in the presented proofs of some results-see e.g. Proposition 1 and the proof of Statement 3, where the Baire category theorem has been used. If we however replace these "metric" arguments by a condition stated in Proposition 7, then, arguing as above with necessary changes, we are able to show in the nonmetric setting the following result that is slightly weaker that Theorem 6 for the metric case.

THEOREM 9. A decomposable Hausdorff (not necessarily metric) continuum has a dense set of end points if and only if it is the union of two proper indecomposable subcontinua with connected intersection. each having a dense set of its end points lying outside the composant containing the intersection and such that the intersection is an end continuum in both subcontinua.

PROBLEM 10. Does there exist a Hausdorff (nonmetric) indecomposable continuum having a dense set of end points and exactly one composant?

REFERENCES

1. J.M. Aarts and P. van Emde Boas, Continua as remainders in compact extensions, Nieuw Arch. Wisk. (3) 15 (1967), 34-37.

2. D.E. Bennett and J.B. Fugate, Continua and their non-separating subcontinua, Dissertationes Math. (Rozprawy Mat.) 149 (1977), 1-46.

3. R.H. Bing, Snake-like continua, Duke Math. J. 18 (1951), 653-663.

4. J.B. Fugate, Decomposable chainable continua, Trans. Amer. Math. Soc. 123 (1966), 460-468.

5. K. Kuratowski, Topology, vol. II, Academic Press and PWN, 1968.

6. R.H. Sorgenfrey, Concerning triodic continua, Amer. J. Math. 66 (1944), 439-460.

MATHEMATICAL INSTITUTE, UNIVERSITY OF WROCLAW, PL. GRUN-WALDZKI 2/4, 50-384 WROCLAW, POLAND