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REPELLERS IN REACTION-DIFFUSION SYSTEMS 

V. HUTSON AND W. MORAN 

A B S T R A C T . A technique for discovering when an invariant 
set for a reaction-diffusion system is a repeller in a certain 
strong sense is studied. The criterion is based on a weakening 
of the standard requirements for Liapunov functionals for re-
pellers. The analysis is motivated by the coexistence question 
for several interacting species in mathematical biology. 

1. Introduction. In biological applications, see [4], the follow
ing initial/boundary value problem for a system of reaction-diffusion 
equations in D x R + is often encountered: 

(1.1a) dui/dt = ßiAui + Uifi(u), 

(1.1b) dui/du = 0 (on 3D x R+), 

(1.1c) u(x, 0) = u0{x) (xeD), 

where 1 < i < n and u = {ui,..., un). Here, D is a bounded domain 
in R m with smooth boundary, 3/du denotes differentiation along the 
normal to 3D and A is the Laplacian. The function U{ is the density 
of the ith population, and the boundary condition (1.1b) requires that 
there should be no migration across 3D. Only non-negative solutions 
are of interest, and it should be noted that from the form of the 
equations, each of the sets Ui(x) = 0(x € D) is forward invariant. 

The problem considered here, that of obtaining criteria for the long 
term survival of the species, is one of the most fundamental from the 
point of view of applications. However, precisely how 'survival'ought 
to be interpreted is not clear, and indeed for the much simpler model 
based on the corresponding ordinary differential equations, there have 
been a number of definitions proposed in the literature. The definition 
that will be used here is as follows: the system (1.1) will be said to be 
permanently coexistent if and only if there exists an e > 0 such that, 
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for each continuous ?/o with no component identically zero, there is a 
to(uo) such that 

Ui{x,t)dx>£ (1 <i < n,t >to(uo)). 

Permanent coexistence is thus global in the sense that it ensures that 
the average species densities are eventually repelled from zero in a 
uniform manner; that is, they have asymptotically a certain minimum 
value which is independent of the initial conditions. However there is 
otherwise no restriction on the asymptotic behavior of the system. This 
is of particular importance if the definition is to be biologically realistic, 
for it is well known that even quite simple kinetic systems for three 
species may have complicated asymptotic behaviour such as a strange 
attractor [2], but there is no reason why this should rule out survival, so 
long as orbits are repelled from the boundary (representing extinction). 
For models based on ordinary differential equations, further discussion 
and references to the biological background may be found in [9]. 

From a mathematical point of view, this definition raises a point 
of some interest, for permanent coexistence may be regarded as a 
global stability criterion, but with the requirement that orbits should be 
(uniformly) repelled from a certain invariant set (the boundary in this 
case). This is in contrast with the more usual approach to stability 
where the object is to show that a certain set is an attractor. In 
fact, except in very simple systems of the form (1.1), it is likely to 
be extremely hard to locate the attractor, whereas the technique which 
is described here will allow us to establish stability in the above sense 
in a relatively wide range of applications. 

A possible way of tackling these questions is to reverse the usual 
technique, and to search for a Liapunov functional vanishing on the 
set and increasing along orbits. However, unless the number of species 
is low (usually not greater than two) or the system is quite special, it 
will probably be difficult to find such a functional. Our approach has 
its genesis in a method for ordinary differential equations, see [13, 6, 
8], where the requirements on the Liapunov functional are significantly 
weakened. The basic tool is a result on dynamical systems on a compact 
metric space, the compactness for the orbits of (1.1) being supplied from 
an a priori derivative bound. In §2 the precise assumptions concerning 
(1.1) are described and the a priori bound established. §3 contains the 
central dynamical systems result, and §4 discusses its application to 
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the reaction-diffusion system. Finally, in §5 a specific problem arising 
in mathematical biology is tackled by this method. 

2. Prel iminaries. For H a nice domain in R \ C(Q,R J) , respec
tively C f c(n,R J) , will denote the sets of continuous, respectively k 
times continuously differentiable, functions Q —• R J . When H = Z), 
the usual norms on the corresponding Banach spaces will be denoted 
by || • ||, respectively || • ||^jt. The following assumptions will be imposed 
throughout on the system (1.1). , 

(HI). D is a bounded open domain in R m with C2 boundary. For 
each t, fi G C2(Rn, Ä), and ^ > 0. 

It is reasonable to assume that in realistic biological models, intraspe-
cific competition operates. As a consequence, it will usually be possible 
to show by the methods of [14, Chap. 14] not only that there is an a 
priori L°° bound on solutions (from which existence and uniqueness of 
classical solutions will follow), but also that eventually every solution 
will enter and remain in a fixed bounded L°° neighbourhood of the 
origin. So far as the question of permanent coexistence is concerned, 
it is clearly enough to restrict attention to this neighbourhood. For 
7 c R + , let then 

X0 = {ue C(D,Rn) : u{x) G Y{x G £ ) } , 

So = {u G Xo : for some i, U{(x) = 0(x G £>)}, 

and assume the following. 

(H2). For ^o G C(D, R+), global existence and uniqueness of classical 
solutions hold. Also there is a compact neighbourhood Y of the origin 
0 in R!^ such that Xo is forward invariant, and for each UQ, there is a 
^o(^o) such that the corresponding solution u{-,t) G Xo for t > £o(^o)-

The following two lemmas will be needed in applying the dynamical 
systems result to (1.1). The first, which supplies the required com
pactness, seems well known, but a proof is not readily accessible and is 
sketched below. 

LEMMA 2.1. Let (HI) and (H2) hold. Then there exists m0 < oo such 
that, for all UQ G XQ, solutions satisfy 

(2.1) ll«(-,t)llc»<"»o ( « > ! ) • 
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PROOF. With v = Ui, /i = fa in turn, each equation may be written 
in the form 

dv 
(2.2) —-(iiA-a)v = g(x,t)i 

where 
g{x,t) = aui(x,t) + Ui{x,i)fi (u(x,t)), 

and t>(a;,0) = VQ. It is clearly enough to prove that, given mi, the 
analogue of (2.1) holds for all v such that ||v0|| < mi . In view of (H2), 
it may be assumed without loss of generality that ^o G C2(D, R), for 
otherwise the initial value problem starting at t = \ may be considered. 
Also, there is an m2 such that ||</(-,£)|| < m2(£ > 0). 

By [15, p. 88], for some a, under homogeneous Neumann conditions 
(A — al) generates an analytic semigroup in E — LP(D) for p > 1, and 
with —A the associated operator, there is a 6 > 0 such that Rea(A) > S 
(where a(A) denotes the spectrum of A). Equation (2.2) may then be 
rewritten in an obvious notation as 

with solution 

(2.3) 

dv . _, 

v{t) = e~Mv0 + f e~A(t-^ )G{s)ds. 
JO 

From [5, p. 26], for a > 0, 

(2.4) | |A ae-A < |U < C(a)t-ae-6t, 

where || • \\E is also used to denote the operator norm. Taking some 
a G (0,1), applying Aa to (2.3), and taking norms, we obtain 

\\Aav(t)\\E < \\Aae-A^-^\\E\\vo\\E+ f \\Aae-A^-^\\E\\G(s)\\Eds 
Jo 

< C(a)(rae-St\\v0\\E 

+ max \\G(s)\\E f\t - s)-ae-6^ ds), 
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by (2.4). It follows from the bounds on vo and g that there is an m3 

such that 

(2.5) \\A«v(t)\\E<ms (t>l). 

From the definition of the fractional space Ea [5, p. 29], and a standard 
imbedding theorem [5, p. 39], respectively, 

(2.6) \\Aav{t)\\E = \\v(t)\\Ea, 

(2.7) IKOHo < k\\v(t)\\Ea (0 < v < 2a - ro/p), 

where fc is independent of u. Taking a = 3/4, p = 2m, v = 1, we obtain 
the result on combining (2.5), (2.6), and (2.7). 

LEMMA 2.2. / / (HI) holds, given k, there is a ß > 0 such that for all 
v e C1(D,R+) with \\v\\Ci < fc, 

IMIL1(5)>/?|Hr+1. 

PROOF. Since D has the cone property, there exist a, h > 0 such 
that for each x E D there is ancone K of height h, angle a, with vertex 
at x, which is contained in D. Therefore, Ko C D, where K0 is the 
intersection of K with the closed ball radius ft, center x. Since D is 
compact, there is a point Xo with v(xo) = ||i>||. Take ifo to have vertex 
xo, and let r = r(y) be the distance of y from xo- By the Mean Value 
Theorem, 

v(y) > v{x0) - r(y)k (y E K0,0 < r{y) < Ä), 

where J? = min{ft, v(0)/fc}. Hence, there is a ßi > 0 such that 

\HL*(B)>/hf [»(0)-r fc]rm - 1dr 

= / / ? i K 0 ) ] m + 1 / M m + l)*m] (Ä > »(0)/*), 
\ ft [v(0)/m - *Ä/(m + l)ftm] (ft < »(0)/*). 

When h < v(0)/k, since v(0) < fc, 

«(0)/m - kh/{m + 1) > [v(0)]m+1/[m(m + l)fcTO], 
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and the result follows. 

3. A result on dynamical systems. The basic theorem for the 
reaction-diffusion system (1.1) is deduced from a result for a dynamical 
system on a compact metric space. XQ is of course not compact. 
However, by Lemma 2.1, initial data is smoothed 'uniformly quickly', 
and this suggests that instead of XQ, the phase space ought to be the 
closure of the collection of semi-orbits through XQ after time t = 1. 

For the standard theory (see, for example [14]) the solutions of (1.1) 
generate a dynamical system (7r, X0 , R+). Define X = 7r(X0, [1, oo)), S 
= 7T(5O, [1, oo)). In the sequel the dynamical system (7r, X, R+) is used. 
We often write it(u,i) = ut^~^{u) denotes the semi-orbit through w, 
and, for a subset V C X, 7 + (F ) = Uuev^(u)' ^(u) denotes the H-
limit set of u, and Q(v) = (JveV ft{u). A set M is said to be absorbing 
for V if, and only if, given any u G V, there is a t(u) such that ut G M 
for t > t(u). 

LEMMA 3.1. Under (HI) and_(WÌ), the following hold. 
(i) If for some i and x G D,Ui(x,0) > 0, then U{(x,t) > 0 for all 

x£~D and t > 0. 
(ii) X, 5, X \ S are forward invariant 
(iii) X, S,X \ S are forward invariant, and 7r(X, [1, oo)) C X. 
(iv) X \ S is dense in X 
(v) S is a compact subset of the compact metric space X. 

PROOF, (i). This is a consequence of the maximum principle [14]. 
(ii). X0 is forward invariant by (H2), So from the form of the equations 
(1.1a). The assertion follows from the definition of X, S and (i). Since 
X, S are forward invariant, so are X, S. To show that X \ S is forward 
invariant, first note that So is closed and forward invariant. Also, if 
uot G So for some t > 0, then u0 G So, for otherwise (i) is contradicted. 
Now S C X n So- On the other hand, if u G X, there exist ^o G Xo, 
t > 1 such that uot = tz, and if u G So, by a remark above, UQ € So-
Hence, if u G X H So, there is a t > 1 and u$ G So such that uot = u, 
whence u G S and S_D XfiS0 . Therefore, S = X n S 0 , and S = XfiS0 . 
Finally, if u G X \ S but ut E S for some t > 0, then it G So, and so 
w 6 X (I So = S, a contradiction, (iv). S has empty interior, so X \ S 
is dense in X and so in X. (v). X is obviously relatively compact by 
Lemma 2.1 and the Arzela-Ascoli Theorem, so X is compact. 

The result which follows weakens the requirements which would be 
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imposed in a Liapunov function approach ensuring that S repels orbits 
in a strong sense. The function P may be regarded as a 'weak' Liapunov 
function in that the requirement that P be increasing along orbits 
is weakened in two ways: firstly, it is only required that the basic 
inequality holds on Q(S) rather than in a neighbourhood of the whole 
of 5; secondly, that it need only hold for some t rather than for all 
t > 0. Conditions (3.1) may reasonably be expected to ensure that 
orbits are repelled by 5; one of the main points of the theorem is that 
this is a uniform process in the sense that, after moving away from a 
neighbourhood of S, orbits may not return 'too close' to S. 

THEOREM 3.2. Assume that (HI) and (H2) hold. LetP : X\S -+ R+ 
be continuous, strictly positive and bounded. For u G X define 

a(t.u) = hmini n/ , , v ' J v-^u p(v) ' vex\s r^U) 

and suppose that, for some r > 0, 

(3.1b) s u p a M x f 1 H 5 ^ ) ' 
t>r [o (ueS). 

Then there is a compact set M asbsorbing for X \ S with d(M, S) = 
minn€M d(u, S) > 0. 

PROOF. Observe first that a(t, •) is lower semicontinuous. Also, for 
t,t' > 0 and ueX, 

a(< + ̂ U) = liminf^i±^.« 

> a(t, u) • a{t',ut), 

and therefore, for any U > 0(i = 0 , 1 , . . . , &), 

i=k j=k i—j-1 

(3.2) a(J2u,u) > a(t0,u) FJ a(tj,u £ *,-)• 

We claim that for any T > 0 and u G S, there is &to >T such that 
a(to,u) > 0. By (3.1b) there is a to > r such that a(to^u) > 0, and 
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U > T may be chosen inductively so that a(ti, u(to + . . . + t2_i)) > 0. 
For some n, t* = t0 + . . . + tn > T, and by (3.2), a(t*,u) > 0. This 
proves the claim. _ 

We next show that sup t > r a(t, u) > 1 for any u G S. For h > 0, 
£ > r, set 

£/(M) = {«:a(*,u) > 1 + Ä}, 

and note that each U(h,t) is open. From (3.1a), the U(h,i) form 
an open cover of ti(S), so that by compactness there is a finite set 
F C [r, oo) and an h > 0 such that 

n(S)c (Jtf(M) = w, 

say. Choose any u € S. By what was proved above, and from the 
definition of fi(S), there is a to such that^ ^ € W for £ > to and 
a(to,u) = 7] > 0. Choose n such that (1 + h)nrj > 1. Take inductively 
U e F such that ut0 G l7(Mi) and w(t0 + . . . + t»-i) G U(h,ti). It 
follows from (3.2) that 

a(t0 + . . . + tn,w) > (l + h)nrj> 1, 

which proves the assertion. 
We may now repeat the argument of the previous paragraph and 

show that there is a finite set G C [r, oo) and an h* > 0 such that 

SC \JU{h\t) = Wu 
teG 

say. Let V be a closed neighbourhood of S contained in W\, and put 
N = X\V. _ 

We show that M = 7+(iV) is the required absorbing set. We prove 
first that, given u G F \ S, there is a t > 0 such that ut G N. For if 
this assertion is false, we could define inductively U G G by requiring 
that ul G U{h*,t0) and tx(l + t0 + . . . + t i - i ) G U(h*,U). Then, from 
(3.2), 

(3.3) a(t0 + . . . + tn , t*l) > (1 + / i*) n + 1 . 

Now, by Lemma 3.1(iii), ul eX \H H X C X \ S. Therefore, from 
(3.3), for each n, 

P (ti(l + 1 0 + . . . + tn)) > (1 + / i*)n + 1P(ul) , 
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which contradicts the boundedness of P. 
We finally prove that M is compact. From what has just been 

proven, given any u £ N, there is a tu > 0 such that utu € N. By 
continuity, for each such u, there is an open neighbourhood V(u) of u 
in N such that V(u)tu e. N. By compactness, we may choose U{ such 
that [j^Zi V{ui) = ÏV, and clearly 

is compact. 
Now M is forward invariant, therefore 7+(iV) c M and so 7+(iV) = 

M. Since X \ S is open and forward invariant(by Lemma 3.1(iii)), it 
follows that d(M, 5) > 0. As every semi-orbit intersects iV, the proof 
is complete. 

4. Permanent coexistence for the reaction-diffusion sys
tem. Theorem 3.2 is now applied to the system of partial differential 
equations (1.1) to obtain a criterion for permanent coexistence. Let 
(j) : Y fi R+ —• R + be a strictly positive bounded C1 function. Noting 
that, by Lemma 3.1(i), if u C X \ S each of its components is strictly 
positive, we define 

P(u) = exp([log<l>{u{x))dx\ {ueX\S). 

With 'dot' denoting differentiation along an orbit, from the partial 
differential equations (1.1a) and use of the divergence theorem, for 
ueX\S, 

a(t,u) = P{ut)/P{u) 

(4.1) 

where 

= exp I _\og((/)(u(x,t)) /(f)(u{x,0))) dx\ 

— exp ( / ds I (j) (w(x, s))/(j){u(x, s))dx j 

= exp f / ds I {ip (u(x, s)) + Q (u(x, s))) dx j , 

(4.2) *M = r1)i2p-*fiM> 
1 = 1 a u i 
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The function xj) : Y fi R + —• R is clearly continuous, and its (lower 
semi-continuous) extension to F , also denoted by -0, is defined by 

\l>{u) = liminf xj)(y). 
vex\s 

THEOREM 4.1. Assume that (HI) and (H2) /io/d. Let (f) : F D Ä " —• 
R + 6e a strictly positive bounded C1 function. With xp and Q defined 
by (4.2) and (4.3) respectively, assume that 

(i) ip is bounded below on Y fi Ruf., and /or some r > 0, 

(4.4) sup ds ip (u{x, s)) dx > 0 (u E n(S)) ; 
t>r Jo J^ \ / 

(ii) Q(u) > 0 ( u e I \ S ) . 
TTien £/ie system (1.1) is permanently coexistent. 

PROOF. Evidently P : X \ S —» R+ is continuous, bounded above, 
and strictly positive. With 

$>(£, u) = exp ( / ds j_%l) (u(x, s)) ds 1 , 

from (4.1) and condition (ii) above, a(t,u) > $(t,u) for u € X \ S. 
Since xfi is bounded below, (3.1b) obviously holds. Also, since 

(4.5) liminf ip(v(x,t)) > liminf xp(w) = i\) (u(x, t)), 
veX\S w^u(x,t) 

weYnR+ 

from Fat ou's lemma (after adding a constant if necessary to make the 
integrand non-negative), 

(4.6) liminf / ds l_xp(v(x, s)) dx > ds lip(u(x,s)) dx. 
vex\s Jo JD Jo JD 
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Therefore, for u € fi(S), 

sup a{t, u) = sup lim inf a(t, v) > sup lim inf $(£, v) 
t^T f^T vex\s t^T vex\s 

> supexp f / ds _ip(u(x,s)) dx } (from (4.6)), 

> 1 (from (4.4)). 

This verifies condition (3.1a), and the existence of a compact absorbing 
set at non-zero distance in the sup norm from 5 follows, since by (H2) 
all orbits eventually reach X. An application of Lemma 2.2 yields the 
corresponding L1 lower bound, and this completes the proof. 

Concerning the conditions of the theorem, an inequality of the form 
(ii) is necessary in Liapunov functional methods for reaction-diffusion 
systems, see for example [1]. The condition ensuring that orbits are 
uniformly repelled by S is (4.4), a much weakened version of the usual 
requirement for a Liapunov functional. 

5. An application. When applying Theorem 4.1, knowledge of the 
Q-limit set of the boundary is clearly crucial, that .is, the asymptotic 
behaviour of the (n — 1) species subsystems obtained by setting one 
component zero must be known. For a pair of reaction-diffusion 
equations, a fair amount of information of this type is available, and 
it turns out that under Neumann boundary conditions the O-limit 
sets are often equilibria of the kinetic equations. For three equations 
without diffusion the asymptotic behaviour may be extremely complex 
even for simple reaction terms, and the presence of diffusion will of 
course further complicate matters. However, so far as permanent 
coexistence is concerned, three species systems are relatively tractable. 
The following simple consequence of Theorem 4.1 will enable us to 
show that indeed, in such a context, the permanent coexistence of the 
corresponding kinetic system (which has been studied in a variety of 
cases, see [9] for example) is often enough to ensure that of the reaction-
diffusion system. 

LEMMA 5.1. Assume that (HI) and (H2) hold. Suppose also that 
Q(S) consists of a finite number of spatially homogeneous equilibria 
û~i,... ,ük, say. Then the system (1.1) is permanently coexistent if 
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there exist a\,..., an > 0 such that 

i=n 

J2<*ifi(üj)>o ü = i,...,fc). 
2 = 1 

PROOF. With 0(u) = fl-I? < S 

i=l 

and 
i—n j=m , r, v 2 

so the conditions of Thoerem 4.1 are verified. 

As an application we study a three species system modelling the 
interaction of two prey and a predator, the reaction terms being of 
Lotka-Volterra type. With u\,u2, the densities of the prey, and 223 
that of the predator, consider the system 

— = ui{ai - cut/ i - e12u2 - aiuz) + /nxAux 

— = u2(a2 - euui - e22u2 - a2u3) + /J2AU2 

- J * = u3(-c + ß\u2 + ß2u2 - 7^3) + /Ì3AK3, 

with homogeneous Neumann conditions on dD, the a,i,eij,oti,ßi,c,r 
and fii being strictly positive constants. Let 

B = 
£11 £12 » 1 

£21 ^22 &2 

-ßi - Ä 7 

THEOREM 5.2. Let D be as in (HI). Then the above system is 
permanently coexistent whenever the corresponding kinetic system has 
this property. This is the case if all of the following are satisfied: 

(a) det B > 0; 
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(b) at least one of «1622 > 02^12^2^11 > ^1^21 holds; and 
(c) there is an equilibrium of the kinetic system in R™. vskip7pt 

PROOF. The two species subsystems obtained by putting ui, W2, and 
u% zero in D in turn must first be examined. If us = 0, a competing 
species system is obtained, and it follows from [3] that the Q-limit 
sets are constant equilibria. The same conclusion follows from [12] 
in the predator-prey systems obtained by setting u\ or u<i zero. The 
conditions of Lemma 5.1 are thus satisfied, and the rest is elementary 
algebra, the result following from [10]. 

As is shown in [10], conditions (a), (b), and (c) are essentially 
necessary, for if (c) does not hold, the system is not permanently 
coexistent, whilst if det£? < 0 or both the inequalities in (b) are 
reversed the same conclusion follows. For the kinetic system, and so 
for the reaction-diffusion system, there can be a limit cycle and yet 
permanent coexistence can hold. For the reaction-diffusion system, 
more complex behaviour is possible, and in particular it is known that 
a stable stationary spatially inhomogeneous solution (a pattern) can 
exist, see [11]. The above analysis is also applicable for more general 
reaction terms, for example when there is a switching predator, the 
only difference being that the conditions for the kinetics system are 
more complex, see [7]. 
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