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1. Introduction. Usually a genuinely good theorem finds its way from 
the technical formulations and generally cumbersome proofs of the re
search literature into books. In the hands of generations of bookwriters, 
a once forbidding theorem becomes an old friend whose proof is, if not 
simple, then at least polished, elegant, and compelling. Examples of this 
phenomenon in analysis are the Riesz Representation Theorem, Picard's 
Little Theorem, and Mergelyan's Theorem. 

The subject of the present paper is an anomaly when viewed in the 
above light. In spite of the fact that it is a central, significant, and easily 
formulated result which bears directly on any first course in complex 
analysis, few people seem to be familiar with it. Fewer still know how to 
prove it, and there seems to be no optimal or canonical proof. Before we 
state the result in question we recall that the Riemann Mapping Theorem 
asserts that if D Q C is simply connected and not equal to all of C and 
if J £ C is the unit disc then there exists a biholomorphic (one-to-one, 
onto, holomorphic) mapping/: J -» D. Now we have 

THEOREM A. Let D £ C be a bounded, simply connected domain which 
is bounded by a C°° smooth Jordan curve. Iff: J -• D is any biholomorphic 
mapping then f and all its derivatives have continuous extensions to the 
closure of J. Furthermore, f~l and all its derivatives have continuous exten
sions to the closure of D. 

COROLLARY. If Dh D2 are bounded, simply connected domains with C°° 
boundary and f: Di -> D2 is biholomorphic then f and all its derivatives 
extend continuously to D\. 

The proof of the corollary is almost immediate. For the Riemann Map
ping Theorem guarantees the existence of biholomorphic maps <pji J -* 
Dh 7 = 1 , 2 . Theorem A guarantees that each <ps- and all its derivatives 
extend continuously to J. Likewise, each pj1 and all its derivatives extend 
continuously to Dj. Finally 
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h = <p2lof°<Pi'. â -* â 

is biholomorphic, hence (see [11], p. 271) is a Möbius transformation. 
In particular, h and all its derivatives extend continuously to À. Thus we 
may conclude that 

/ = Ç2 ° h o (p{1 

has the desired properties. 
More generally, it follows from Theorem A that if / : Dx -> D2 is a 

biholomorphic map between multiply connected domains in the plane with 
C°° smooth boundaries, then/and all its derivatives extend continuously 
to D\. Indeed, to prove this, it suffices to find conformai maps <f>;- of Dj 
onto domains Oj such that the boundaries of ß , are real analytic Jordan 
curves, and such that <fij and <f>jl, together with their derivatives, extend 
continuously to the closures (j = 1, 2). Then h = (j>2 ° / ° ĵf1 ls a biholo
morphic map of Oi onto Q2 which extends holomorphically past the boun
daries via the Schwarz Reflection Principle. Hence, / = <j>2

1 ° A o ^ and all 
its derivatives extend continuously to Z^. The domains Oj and the maps 
<f>j are constructed in a standard way as follows. 

Suppose D is a multiply connected domain in the plane whose boundary 
curves are C°° smooth Jordan curves. Let D° be the (simply connected) 
domain obtained from D by filling in the holes of D. Let gQ: D° -> J be the 
inverse of the Riemann mapping function associated to D°. Let 0° = 
go(D). The domain 0° is biholomorphic to D and the outer boundary of 
0° is a real analytic curve. Choose a point b in one of the holes of Q°. The 
transformation (z — ò)"1 maps Q° to a bounded domain D1. Repeat the 
procedure above to get a conformai mapg\\ Dl -> Q1 where 01 is a domain 
with /wo boundary components that are real analytic curves. It is clear 
that this procedure can be continued until a map (j>: D -> 0 is obtained 
where Q is a domain whose boundary curves are all real analytic. The map 
(j) is a composition of maps g{ and (z — ò/)-1. Since these maps and their 
inverses extend, together with their derivatives, continuously to the boun
daries, so does (j). 

Apart from its aesthetic interest, Theorem A and its corollary are fun
damental in that they allow one to do function theory on a smoothly 
bounded, simply connected domain by pulling it back to the disc. An 
example of this technique is given in Section 7, where we discuss boundary 
regularity of the Dirichlet problem. 

We now give some background to put Theorem A in perspective. A 
good complex analysis course usually contains the celebrated theorem of 
Caratheodory ([3], 1913) to the effect that a biholomorphic mapping 
between two regions Dx and D2, each bounded by a (not necessarily 
smooth) Jordan curve, extends continuously and univalently to a homeo-
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morphism between the closure of Dx and the closure of D2. Less well 
known is that Painleve, in his Paris thesis ([9], 1887), proved a version of 
Theorem A. The proof was doubted by Harnack, who questioned the 
assertion (made without proof by Painleve in [9]) that a biholomorphic 
m a P / : A -* A with D having C1 boundary, extends univalently to dA. 
Painleve defended his theorem in his paper [10] in which he proved that 
if D is a simply connected domain bounded by a C1 curve and/ : J -+ D 
is biholomorphic then/has a continuous univalent extension to Ä. 

Of course Painlevé's result in [10] has been forgotten since it is (drama
tically) subsumed by Caratheodory's. However the result of Painlevé's 
thesis is quite independent of Caratheodory's, and involves different 
ideas. Other authors who poineered the study of boundary smoothness, 
by considering Green's potentials, were Kellogg [5] and Seidel [12]. Results 
very rapidly became quite technical, and the theory became bound up 
with very delicate pointwise questions about regularity for Green's poten
tials and Dirichlet problems (for some of the best modern results along 
these lines we refer the reader to the papers of S. Warschawski ; for in
stance, see [13]). 

It is safe to say that most questions related to Theorem A are com
pletely understood, and they were resolved sufficiently long ago that the 
subject may be perceived to not be of current interest. But analogous 
questions for domains in Cw, n > 1, are of great current interest (indeed 
the major questions are still open), and have led us to re-examine the 
situation in C. Tt is our intention here to present a fairly simple and self-
contained proof of Theorem A, based on ideas developed by one of us 
(see [2] and references therein) for use in Cn. 

Before we begin discussing the ideas of the proof, a few more remarks 
of a heuristic nature are in order. First, it is unreasonable to expect smooth 
boundary behavior of a biholomorphic m a p / : J -> D if D itself does 
not have smooth boundary. For instance, if D is a simply connected do
main whose boundary has a corner, then conformality forces any biholo-
morphis map of A to D not to have a continuously differentiate extension 
to the closure of A. Thus if we want the derivatives up to order k of a 
biholomorphic map / : A -+ D to extend continuously to dA, we would 
expect to hypothesize that the Jordan curve bounding D is Ck (actually 
one has to assume a bit more—see the remarks at the end of this article). 

At the opposite end of the spectrum, we may consider what happens 
when 3D is real analytic. In that case, the Schwarz reflection principle 
may be applied to see that / continues holomorphically past every point 
of 9 A. 

The paper of Kerzman [6] gives an elegant method of studying boundary 
regularity of biholomorphic maps using the regularity theory of the Diri
chlet problem on smoothly bounded domains in C. This regularity theory 
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unfortunately cannot be considered standard knowledge (for, say, a first 
year graduate student), and it is difficult to give a self-contained presenta
tion of the necessary ideas. The proof which we give is instead based on 
ideas arising from the theory of the Bergman kernel (see [7]). However, 
in order to keep the presentation elementary, we have developed the 
necessary tools in a completely ad hoc fashion. Those familiar with the 
theory of Hilbert spaces with reproducing kernels will see more elegant 
or natural ways to do some of the work (see Section 2 for more on the 
Hilbert space point of view), but our goal here has been to give a presenta
tion which is self-contained and accessible to a student with just one 
semester's background in complex analysis. 

2. The Idea of the Proof.In this section, we sketch the proof of Theorem 
A. Striving in this section for elegance and clarity, we shall (in this section 
only!) use some Hilbert space language and Lebesgue measure theory. 

The Bergman projection plays a key role in our proof. For now, we 
shall define the Bergman projection in terms of Hilbert space. In § 4, we 
shall construct the Bergman projection in an ad hoc fashion using only 
basic facts from complex analysis. If D is a bounded domain in C, then 
the space L2(D) of square integrable complex valued function on D forms 
a Hilbert space with inner product given by <w, v> = $D uvdm. Here, 
dm denotes Lebesgue measure (or area measure) on R2 = C. The space 
A2(D) of holomorphic functions on D contained in L2(D) forms a closed 
subspace of L2(D). Indeed, it is a relatively simple consequence of the 
Mean Value Property that if /?, are holomorphic functions that converge 
to h in L2(D), then h must also be holomorphic on D. Since A2(D) is a 
closed subspace of L2(D), the orthogonal projection P of L2(D) onto 
A2(D) is defined. This operator P is the Bergman Projection associated to 
D. It is very useful in the study of holomorphic mappings because of the 
following transformation formula. 

If f: Di -• D2 is a biholomorphic mapping between bounded domains 
in C, then the Bergman Projections Pi and P2 associated to Dx 

and D2 transform according to 

r •((p*p)°f) = Pi(f -(<p°f)) 

for all <p in L2(D2). 

Here,/ ' -(<p°f) is shorthand notation for the function f'(z)-cp(f(z)) defined 
on Dx. See Proposition 4.3.1 below. 

The idea of the proof of Theorem A is now fairly easy to describe. We 
wish to prove that if Dx and D2 are bounded by C°° smooth closed Jordan 
curves, then/and all its derivatives extend continuously to Di. We might 
hope to find a function <p with the following properties. 
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(2.1) P 2 ç > = l 

(2.2) ^belongs to 0(2)2) and vanishes to high order on the boundary 
of2)2. 

If we have such a function, then (see § 5) 

/ ' = / ' • (1 of) = / ' . {(P2<p) of) = Ptf' . (<pof)). 

Now f'(<p °f) should be well behaved near the boundary of D\ since cp 
vanishes to high order on the boundary of D2', and initially we have some 
control (by Cauchy estimates) on the boundary behavior of/'. Further
more, we might hope that Pi projects functions that are well behaved near 
the boundary to similar functions. If this is the case, then/ ' = Pi(fr((p°f)) 
should also be well behaved. 

The remainder of this paper is devoted to showing that this wishful 
thinking can be solidified into a proof. 

3. Review of Some Facts about Infinitely Differentiable Functions. In this 
section we review some notions from real variable theory which will al
ready be familiar to experts in analysis but may be less familiar to others. 
A good reference for all these matters is [4]. 

If U S C is open, ke {0, 1 ,2 , . . . }, and / : U -> C,then we say t h a t / 
is k times continuously differentiable on C/and write/e Ck(U) if all partial 
derivatives off of orders up to and including /c, exist on U and are con
tinuous. We say that / i s infinitely differentiable on £/and write/e C°°(U) 
i f / 6 Ck(U) for every k ^ 0. Finally, if £ ^ c is not necessarily open and 
f:E-+C then we say t h a t / e Ck(E) (resp. C°°(E)) if there is an open U => 
E and an / e Ck(U) (resp. C°°(C/)) such that f\E = f 

All of the definitions in the preceding paragraph apply equally well to 
a function/: U -+ C (resp./: E -» C) with U £ R (resp. E e R) provided 
partial derivative is replaced by ordinary derivative. 

EXERCISE. Let A £ C be the unit disc and À = A U da be its closure. 
A function/: Â -» C satisfies/e Ck(Â) if and only if all partial derivatives 
of/| j of order not exceeding k extend continuously to Â. 

Notice that implicit in the above discussion is the convention that 
C°(U) (resp. C°(E)) denotes the continuous functions on £/(resp. E). 

LEMMA 3.1. There is a C°° function u: R -» R such that 
(i) 0 ^ u(x) ^ 1 for all x 

(ii) u(x) EE 0 for x è 0 
(iii) w(x) = 1 for x ^ 1 

COROLLARY 3.2. Let 0 < e < 1. There is a C°° function wÊ: R -+ R 
such that 
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(3.2.1) - l ^ w ^ l V j c e R 
(3.2.2) u£(x) = - 1 ifx è -e/2 
(3.2.3) u£(x) = 1 ifx ^ e/2 
(3.2.4) u'£(0) * 0. 

This paper deals with simply connected domains with C°° boundary. 
We should like to discuss these now in some detail. 

DEFINITION 3.3. Let D ç C be a bounded, simply connected domain 
with boundary curve consisting of the simple, closed curve y\ [0, 1] -> C. 
We say that D has Ck boundary if r e Ck [0, 1], f(t) # 0 for all t, and 

^ r ( 0 ) = ^ r ( 0 for ally £ * . 

We define C°° boundary similarly. 

If D ç C is a given domain and z e C, it will be convenient to let 

dD(z) = inf \z — w\ = distance of z to 3D. 
w^dD 

Now we will state another nice, and much more practical, way to think 
about domains with C°° boundary. 

PROPOSITION 3.4. If D is a bounded, simply connected domain with C°° 
boundary, then there is a C°° function r: C -• R such that 

(3.4.1) D = {zeC:r(z) < 0} 

(3.4.2) Vr(z) * 0 for all z G BD. 

Such an r is called a C°° defining function for D. 

PROPOSITION 3.5. Let D ç C be bounded and simply connected with C°° 
boundary. Let r be any C°° defining function for D. Then there is a number 
C0 > 0 such that 

\r(z)\ ^ C0 • dD(z), all zeD 

A final definition is as follows. If D ç C is a bounded, simply con
nected domain with C°° boundary and / : D -> C is Ck, we say that /van
ishes to order k on 3D if any derivative of / on D, up to and including 
(k — l)th order, vanishes on 3D. 

EXERCISE. I f / e Ck(D\ r is a C°° defining function for Z>, and there is 
a constant C such that 

|/(z)| g CKz)|* 

then/vanishes to order Ä: on 3Z). 



CONFORMAL MAPS 29 

4. The Bergman Kernel and Projection. It is generally agreed that the 
space L2( — %, %) of square integrable functions on the interval ( — %, n) 
is the natural space in which to study Fourier series YLakeiM- We shall see 
that an L2 space of analytic functions plays an important role in the 
theory of conformai mappings. If D is a bounded domain in C, we define 
L2(D) to be the space of continuous, complex valued functions <p on D 
such that \<p\2 is Riemann integrable over D. We define an inner product 
for functions in L2(D) via 

<9,</>>D = $DV(z)$(zìdVt. 

Here dVz = dx dy is the usual Riemann element of area. Note that the 
Schwarz inequality guarantees that (<p, (J>}D is well-defined. The L2 

norm of <p is defined to be \\<p\\D = «#>, <p}D)1/2. The subspace A2(D) of 
L2(D) consisting of analytic functions will be seen to have many important 
connections with conformai maps. 

Suppose/: Dx -> D2 is a biholomorphic mapping of Dx onto D2. If we 
let u(x, y) = Re/(x -f iy) and v(x, y) = lmf(x + iy), then we can view/ 
as a mapping T(x, y) = (u(x, y), v(x, y)) of Di c R2 into R2. The Cauchy-
Riemann equations are (du/dx) = (dv/dy) and (dv/dx) = —(du/dy); thus, 
the Jacobian Determinant \T'\ satisfies 

= u\ + v2 = \f\x + /y)|2. 

This fact gives rise to a particularly simple change of variables formula for 
conformai maps and is at the heart of much of the reasoning in this paper. 

4.1 CHANGE OF VARIABLES FORMULA. Suppose/: Di -> D2 is a biholo
morphic mapping of Di onto Z>2. Let F: D2 -> Z>i denote the inverse of 
/ . If ÇD is in L2(D2) and <p is in L2(Di), then 

(4.1.1.) f f(z) - ^)(/(z)) - ^ ) ^ K 2 = f çp(w) - F'(w) - <P(F(w))dVw. 

To be more precise, if <p and <J) are as above, then the operators A\ and 
A2 defined via 

ylirfz) = / ' (* ) •?</•(*)) 

and 

= Det 
wx 

_v« 

— vx 

ux 

A2<J>(w)=F'(w) • <JKF(w)) 
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Mipllzh = \WWDV 

\\A2(1>\\D2 = W\Dv and 

(Ax<p, (/>yDl = (cp, A2<j>yD2-

PROOF. Since \f'\2is equal to the real Jacobian determinant of /when 
viewed as a mapping from R2 into R2, the standard change of variables 
formula yields 

Similarly, \\A2(/>\\D2 = \\(/>\\Dv Finally, 

0 % ) , ^ = f r(z)<p(f(z))W)dVz 

= f \f\zW<p(f(z))FVWWUW)dVz 
J Di 

= f f{w) F'(w)4,(F(w))dVw = <<p, y ^ V 

(Note that here we have used the identity f'(z) = l/F'(f(z)).) 

4.2 THE BERGMAN KERNEL. Let A denote the unit disc and suppose 
h(z) is in A\A). We shall now derive the Bergman integral formula 

(4.2.1) ^) = TL-(i-=WÄ ( w )^-

The function KA(z, w) = l/7r(l — zw)2 is known as the Bergman kernel 
for the unit disc. 

PROOF OF (4.2.1). First, we note that the formula is true when z = 0. 
Indeed, the Cauchy integral formula yields that h(0) = (l/2ic) ß* h(reid)d6. 
If we integrate this formula against rdr, we obtain 

h(0) = 2 [lh(0)rdr = \ f * P* h(reid)dOrdr. 
Jo % Jo Jo 

But this last is just polar coordinates for 

We shall use the formula h(0) = </*, (l/^)>j together with the change 
of variables formula (4.1.1) to prove (4.2.1). 

If a e A, we let <pa(z) = ((z + a)/\ + âaz)). This function is a biholo-
morphic mapping of A onto itself. Notice that <pa(0) = a and that 
^(0) = 1 - M2. Let 0a(w) = <p~\w) = ((w - a)/(l - äw)). Now 
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(1 - W)h{ä) = <p£0) h(<pM) = ~ ^/a{z)K<Pa(z))dVz = < y v ( / * ° ^ ) , £ > „ 

(by (4.1.1)) 

^ J j (1 - flw)2 " 

Thus (4.2.1) is proved. 

Let D be a bounded simply connected domain in C. We now wish to 
derive a Bergman integral formula for D. To be precise, we seek a func
tion KD(z, w) defined on D x D such that 

1) KD(z, w) is analytic in z and conjugate-analytic in w; 
2) ID\KD(Z, w)\2dVw < oo for each z e D, 
3) #£>(z, w) = ^ ( w , z), and 
4) If h e A2(D), then 

h(z) = §DKD(Z, w) h(w)dVw. 

If such a function exists, it is unique. Indeed, if K\(z, w) and K2(z, w) both 
satisfy properties (l)-(4), then consider 

/ = J ^ i f o w) K2(w, b)dVw = K2(a, b). 

Notice that 

1=LKi(w'a) K2(0, w)dVw=Ki(b'a)' 
Hence Ki(a, b) = #i(&, a) = I = I = K2(a, b). The three main ingredi
ents we shall use to construct KD(z, w) are 

A) The Bergman integral formula (4.2.1) for the disc, 
B) The existence of the Riemann mapping function associated to Z>, and 
C) The change of variables formula (4.1.1). 

The Riemann mapping theorem asserts that there is a one to one con-
formal mapping F of D onto J . Le t / = F~l. Let z be a point in D and let 
a = F(z). Observe that for any h e A2(D) the change of variables formula 
yields : 

f'(a)h(f(a)) = ^K,(a, w)f\w) h(f(w))dVw 

= ^ ^ ( a , F ( C ) ) n O Ä ( O ^ K c . 
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If we multiply this equation by F\z) = I If (a) and replace a by F(z), we 
obtain 

Kz) = J V ( z ) K,(F(z), F(Q) F 7 © h(QdV:. 

The function KD(z, w) = F'{z)Kà(F{z), F(w)) F'{w) is easily seen to satisfy 
(l)-(4) and is therefore the unique Bergman kernel for D. 

4.3 THE BERGMAN PROJECTION. If p e L2(D), then we define a function 
PDcp on D via 

PD<p(z) = f KD(z, w)<p(w)dVw. 
J D 

Notice that if h e A2(D), then PJi = h. The operator PD is called the 
Bergman projection for D. If we retrace some of the steps in the con
struction of KD(z, w), we can derive an important transformation rule 
for the Bergman Projection. 

PROPOSITION 4.3.1. Let F: D -• â be a one to one conformai mapping of 
the simply connected domain D onto â and let f = F~l. Then Pj(f'(<p ° / ) ) 
= / ' • ((PD<P) °f)for all <p in L2

C(D). 

PROOF. 

Pj(f'(<P°f))(z) = 

= §jKJ(z,w)-f'(w)-<p(f(w))dVw 

J D 

= Tmw '(i>)(/(z)) 

= f(z)'(PDfp)(f(z)). 

5. Some Key Lemmas. Throughtout this section, D will denote a simply 
connected domain in C bounded by a C°° smooth closed Jordan curve. 
By 3.4, we may suppose that D has C°°defining function r: D = {zeC: 
r(z) < 0}. Most of the wishful thinking in § 2 hinged on the possibility 
of cooking up a function satisfying properties (2.1) and (2.2). We shall 
now show how such a (p can be constructed on D. 

The construction of <p rests on the following lemma (in this lemma 
A = (32/3JC2) + (d2/dy2) is the usual Laplace operator) : 

LEMMA 5.1. PD(A(dr2)) = 0 for any function din C°°(D). 

PROOF. We shall show that 
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I hA{ßr2)dV = 0 

for each function h in A2(D). Setting h(w) = KD(z, w) then yields the Lem
ma. The idea of the proof is to apply Green's identity 

f uAvdV= f vAudV + f (up- - v-f^-W 
JD 3D JdD\ on dnj 

with u = h and v = 6-r2. Since h is holomorphic, h is harmonic and 
\DvAu = 0. Furthermore, since Or2 vanishes to second order on 3Z), the 
boundary integral also vanishes. But because h may not be in C2(D), we 
must be careful. Let re(z) be equal to r(z) + e if r(z) g — £ and be equal 
to zero if r(z) > — e. If e > 0 is small, then the set Z>£ = {z: re(z) < 0} 
is a domain bounded by a C°° smooth Jordan curve; the closure of D£ 

is contained in D. Note that 0rf vanishes to second order on dD£ and that 
A(0r2) converges uniformly on D to A(0r2). Thus, if A e ^2(Z)), then 

f hA(6r2)dV = lim f hA(6r2)dV 
J D S-+QJD 

hA(0r2)dV = 0, = lim I i 

where the last equality is by the Green's Identity argument. Thus 
PD(A(dr2)) = 0. 

Now we can construct the function ç. 

LEMMA 5.2. For each positive integer s, there is a function <ps in C*\D) 
such that Ppcps = 1 and a constant Cs such that \<ps{z)\ ^ CsdD(z)s for all 
z in D. 

PROOF. We shall use induction. The first function <pi will be given by 
<Pi = 1 — A(0ir2) where 0\ is to be chosen. Note that PD<p\ = PD\ — 
PDA(0ir2) = 1 by Lemma 5.1. Therefore, (by 3.5) we need only concern 
ourselves with choosing 0\ in such a way that \<pi(z)\ ^ <?k(z)|. Now <pi = 
1 - A{dxr

2) = 1 - r2AOx - 4rV#i • Vr - lO^r? - Ird^r. We would 
like to set 0\ = {2\Vr\2)~l. Then, using 3.5, we have 

|1 - A(dxr
2)\ = \r(-rAdi - 4Vd1 • Vr - 7Jdx • Ar)\ g Kx\r(z)\ ^ CxdD(z). 

However, the fact that Vr vanishes at points inside D (where r takes its 
minimum value, for example) presents a problem. To solve the problem 
we multiply by a C°° function % on D which is identically 1 near the boun
dary of D and is identically 0 away from the boundary of D. Now set 
0i = %/(2|V/-|2). Then <px = 1 - A(ßxr

2) = r0x where 0X is in C°°(J5). 
Thus, because of 3.5, we have constructed a function which satisfies the 
conclusion of the Lemma when s = Ì. 
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Suppose we have constructed functions ^ , <p2, . . . , (ps-i which satisfy 

i) Pipi = 1, i = 1,2, . . . , * - 1 

ii) p.. = r<0f- for G); in C°°(5). 

We shall use the same idea used to construct <pt to construct a suitable 
<ps. We shall choose a function 0, in C°°(5) so that p, = </>s_i - J (rs+10s) 
satisfies (i) and (ii). Once again, (i) is automatically satisfied because of 
Lemma 5.1. Now 

0>,_i - A(r^6s) = rs-^s-i - r*+1 A6S - 2(s + l)r*Vr . V05 

- J (J + l)r*-! 05|Vr|2 - (s + l)r*0,Jr. 

If we choose 

es = X$s-
s(s + 1) |Vr|2 ' 

then <ps = rs0s where 0S is in C°°(D). Once again, 3.5 finishes the proof. 
The induction is complete. 

Next, we prove a simple estimate for the Bergman kernel associated to 
the unit disc A. Let s be a positive integer. 

LEMMA 5.3. The Bergman kernel for the disc, Kâ{z, w) = (1/TT)(1 — zvv)~2, 
satisfies 

max 
zŒA 

£-**.") gii+JlLrf^)-^. 

PROOF. A simple induction reveals that dsjdzsKA{z, w) = ((s + \)\jn) 
(w5/(l — zvv)5+2). The maximum principle allows us to deduce that 

max jjTK&>") 
(s + 1)! = -^——-— max 

ze9J |1 - ZH>|*+2 

è ^ + 1 ) ! (min |1 - zw|)"5-2. 
ze9J 

Now \(z — w)/(l — zw)\ = 1 whenever z is in dA and vt> is in A. 
Hence min2Œaj |1 — zw\ = minzGaj \z — w\ = dj(w), and this completes 

the proof. 

We must prove one last lemma. This lemma will allow us to conclude 
tha t / ' • (<p of) behaves well near dA when cp vanishes to high order on dD. 

LEMMA 5.4. Suppose f: A -> D is a biholomorphic mapping of the unit 
disc onto a domain in C bounded by a C°° smooth Jordan curve. There is a 
constant c such that 

dD(f(z)) è cdjz) 
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F I G . 1. 

for all z in J , 

PROOF. Choose a positive real number R such that a disc of radius R 
can be rolled around the inside boundary of D without ever touching 
more than one boundary point. Let p be a point in dD and let Cp denote 
a circle of radius R contained in D that is internally tangent to dD at p 
with center 0^. We shall consider points w that lie along the segment 
joining p to 0^. See Figure 1. 

The Poisson Kernel P(z, • ) for the disc enclosed by Cp is given by 

Notice that if Ç is on Cp, then 

R* Oh 

2TT|C - z|2 

mo*l(R-ìw-°fL[^ìw-°^ ì^dM. 2% (2R) STTR 

Let F = f~l. We shall now apply the Poisson integral formula to the func
tion F(z) on the disc enclosed by Cp. We obtain 

F(w) = f P(w, QF(QdOz 
v Cp 

(see [1], p. 165-166). Hence, because P(z, Q is a positive function, 

\F(w)\ ^ f P(w, 0 \F(O\d0ç. 
J Cp 

Furthermore, since $cpP(w> QdO^ = 1, we find that 
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dj(F(w)) = 1 - \F(w)\ 

è f P(w, Q(l - \F(0\)dd: 
v Cp 

Now k(p) = (1/8TI\R) JC/, (1 - l^(OI)^öc is a positive continuous function 
of the point p in the compact set dD. Hence, there is a constant c > 0 
such that AO) > (1/c) for all /? in 3D. Therefore dA(F(w)) ^ (l/c)dD(w) 
for all w in D with ^(w) < /?. The continuous function dj(F(w)) attains 
a minimum value on the compact set {we D:dD(w) ^ R}. Thus, by en
larging c if necessary, we obtain that dA{F(w)) ^ (\lc)dD(w)ïor all w in 
D. Replacing w by f(z) in this inequality yields 

dD(f(z)) è cdâ{z\ 

6. The proof. All the ingredients for the proof are on the table. All we 
have left to do is to put them together. 

Let s be a positive integer. We will show that (ds/dzs) f(z) is a bounded 
function on J. In § 4, we proved that PA(f • (#>°/)) = / ' • ((PD<P) °/)- Lem
ma 5.2 allows us to choose a function cp = (ps+2 such that PD(p = 1 and 
\<p{z)\ <; cdD(z)s+2. We now wish to show that 

(6.1) \f(z)<p(f(z))\ ^ (constant)^(z)^i. 

We know that \<p(f{z))\ S cdD(f(z))s+2 ^ (constant)^ (z)s+2 by Lemma 
5.4. Thus, if we show that \f'(z)\ < (const.)dA(z)~1, then we will have the 
desired estimate. 

Fix a point z in â and let Bz denote the disc about z of radius dâ(z). 
Now f'(z) = (1 J7zdà{z)2) IßJ'dVbythQ averaging property of holomorphic 
functions,and so\f'{z)\^{\l7zdA{z)2) P l l ß J / l ^ v i a Schwarz's Inequality. 
Furthermore, || \\\Bz = (area Bz)

1/2 = %1/2 dA(z) and 

n/'ik^ II/'L = ( £ I / I 2 ^ ) 1 / 2 

= ( f IdvY2 = (Area Z>)1/2. 

Thus \f'{z)\ ^ ((1/TT) Area D ) 1 7 2 ^ ) - 1 as desired. This establishes (6.1). 
We now know that 

r = r .(\of)=f> .((pD(p)of) 

where \f\z)<p{f{z))\ ^ (constant)c/j(z)5+1. For the last equality we have 
used Proposition 4.3.1. Writing out the projection, we see that 
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&M--£rf'-4£:(W-<9-f>y> 

-I d'-1 

and we are able to conclude that \ds/dzsf(z)\ ^ (contant) for z e A because 

^ (constant)*/^) - 5 - 1 
sup -a£r**>») 

(by Lemma 5.3) and because of (6.1). 
We have proved that all the derivatives o f /a re bounded functions on 

A. But, if g is holomorphic on A, then 

\g(z) - g(w)\ è (sup |g'(OI) \z - w| 

where L denotes the line segment joining z to w. Hence, whenever / ( s + 1 )(z) 
is bounded on A, we are able to conclude that/ (5 )(z) extends continuously 
t o i . 

We now know t h a t / e C°°(J). We would also like to know that F = / _ 1 

e C°°(D). This will follow via the Inverse Function Theorem from the fact, 
which we are about to prove, that V/(z) ^ 0 for z e BA. 

Let z0 e dA. We may assume that z0 = 1. Let w0 = /(z0). Choose a point 
p0 which lies along the outward pointing normal vector to dD at w0 so that 
the circle with center p0 and radius \p0 — w0\ touches D only at w0. See 
Figure2. Let ae C satisfy |#| = 1 and a/(w0 — p0) = l/|w0 — p0\. The 
function 

A(w) = Re( - ) 

FIG. 2. 
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is harmonic on D, is in C°°(D), and attains its maximum value M on D at 
vv0. Thus 

g(z) = h(f(z)) - M 

is harmonie on A, is in C°°(Â), g{z) < 0 for z e Â\{\}, and g(l) = 0. We 
will now show that (dg/dr)(l) > 0. Then the Chain Rule implies that V/(l) 
^ 0, as desired. The Poisson Integral Formula for the disc yields that 

«w-irf^*^-
Hence 

1 

because 

^ - £!:•&?<-«•»* * 4iT - *-

• _ pid\2 = |r - e*\2 = 4 ' 

Therefore 

wW^h£-^e)de>o 
because — g(e*e) > 0 for 6 # 0. This completes the proof of Theorem A. 

7. An Application of Theorem A. Theorem A has considerable intrinsic 
interest. However, it is also a fundamental tool when putting into practice 
the dictum that doing function theory on a bounded simply connected 
domain is equivalent to doing function theory on the disc. In this section 
we provide an example of how this dictum is applied. 

We noted in the introduction that the regularity theory for the Dirichlet 
problem may be used to give a short proof of Theorem A. Here we provide 
a converse : 

THEOREM B. Let D be a bounded, simply connected domain in C with C°° 
boundary. Letf: 3D -+ C be a C°° function, and let u e C(D) be the solution 
to the Dirichlet problem on D with boundary dataf: 

Au = 0 on Z), 

u\dD = /• 

TheninfactueC°°(D). 

PROOF. Suppose we already knew the assertion to be true for D — A, 
the disc. Then we would proceed as follows : let 

0: A-*D 



CONFORMAI. MAPS 39 

be a conformai map. By Theorem A, 0 has a C°° continuation to A, which 
we continue to denote by 0. Then / = f°(0\dj) e C°°(dA). Since we are 
assuming that the theorem has been proved on the disc, we then know 
that the solution to the Dirichlet problem on the disc given by 

Aü = 0 

Ü\dd = / 

is C°° on A. Since (by Theorem A) 0~l e C°°(D), it follows that u = ü o 0-i 
e C°°(D). Also 

Au = 0 on D 

and 

"\dD = / • 

This proves the theorem, modulo our assumption. So we are reduced to 
proving Theorem B' below. 

THEOREM B'. Iff e C°°(dA) then the Poisson integral off (the solution to 
the Dirichlet problem with boundary dataf) is C°° on A. 

The proof of Theorem B' is accomplished by direct estimation, since 
the Poisson kernel for the disc is explicit. See [15] for details. 

8. Concluding Remarks. We have already commented that if dD is Ck 

and / : A -» D is conformai then it does not necessarily follow that / ex
tends to be Ck on A. A nice counterexample for k = 1 has been provided 
by Webster [14]. let f(z) = (z - l)/log(z - 1), D = f(A). Then it is 
straightforward to check that dD is C1 bu t /does not extend C1 to dA. 

It is true, and follows for instance from elliptic regularity theory, that 
if dD is Ck then a conformai mapping / : A -> D will extend Ck~x to Z> 
and moreover that any derivative fj/ = (djdx)j(dldyY f withy + / ^ 
h — 1 will satisfy a Lipschitz condition of the form 

sup \fjAz)-M*)\ ^ Q | z - w | w 

2 , W £ j 

for any ö > 0. Even more refined results may be obtained if one introduces 
more sensitive measures of smoothness than Ck (see the theory of integral 
order Lipschitz-Zygmund spaces in [8]). 

As Warschawski points out in [13], the hypothesis that dD be smooth 
along a whole arc is somewhat restrictive. In [13], he considers the situa
tion where dD is smooth at just one point and studies smoothness to the 
boundary of a conformai map. This is very delicate and can be described 
no further here. 

While the proof of our Theorem A is elementary, it is not simple. There 



40 S. R. BELL AND S. G. KRANTZ 

would be real merit in a genuinely simple proof, both for expository rea
sons and because it might lend ideas to the several variable situation where 
much less is known. We hope that this paper will inspire someone to find 
an easy proof of Theorem A. 
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