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IMAGES AND QUOTIENTS OF SO(3, R): REMARKS 
ON A THEOREM OF VAN DER WAERDEN 

W. W. COMFORT AND LEWIS C. ROBERTSON 

1. Introduction. We present an elementary proof of the following special 
case of a general theorem of B. L. van der Waerden: Every homomor-
phism from the rotation group SO(3, R) to a compact topological group 
is continuous. An equivalent property of SO(3, R), whose analogue is 
false for every infinite, compact, Abelian group, is this: No totally 
bounded topological group topology for SO(39 R) is finer than the usual 
topology. The proof follows from a lemma which has an additional con­
sequence: algebraically, the group SO(3, R) is simple. 

2. Background. In the context of (Hausdorff) topological groups, a 
powerful algebraic property—namely, the property that the group in 
question be Abelian—can have powerful topological consequences. Here 
are two examples of what we have in mind. (1) Every infinite Abelian 
group admits a totally bounded topological group topology [14], [6], but 
for non-Abelian groups the corresponding statement fails [8] (p. 296 ff.), 
[17] (p. 157), [20], [30], [12] (pp. 348-351). (2) Every infinite Abelian group 
admits a non-discrete metrizable topological group topology [16], [6], 
[23], but there are non-Abelian groups which become topological groups 
only under the discrete topology [24], [1] (§ 13.4). 

The present paper originates with a question of much the same flavor : 
Can a compact topology on an infinite group be maximal among totally 
bounded topological group topologies? A simple argument (which we 
record below), based on classical cardinality constraints, shows that for 
Abelian groups the answer is "No". There exist, however, non-Abelian 
topological groups which show that the answer is "Yes". This is essentially 
a result, over a half-century old, due to B. L. van der Waerden [28]; as 
our Introduction suggests, our approach is via consideration of the exis­
tence of discontinuous homomorphisms into compact groups. 

Our goals in this paper are to identify and describe the modern setting 
and vocabulary appropriate to van der Waerden's theorem, to provide 
an elementary proof from first principles of the result as it concerns spe­
cifically the compact group SO(3, R), and to record some consequences 
of the theorem which are not mentioned explicitly by van der Waerden. 
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We are indebted to Paul R. Halmos for providing in conversation 
(Toronto, August, 1982) helpful and detailed guidance concerning a 
critical step in the argument. 

For our purposes, a topological group is a triple G = <G,», ^~> such 
that <G, •> is a group, <G,«^> is a Hausdorff topological space, and the 
function <a, by -> ab"1 from G x G to G is continuous. As is well known 
[12] (§ 8), the Hausdorff separation property in this context guarantees 
that every topological group is a Tychonoff space, i.e., a completely 
regular Hausdorff space. 

The identity element of a (topological) group G is denoted eG, or e when 
confusion is impossible; for a e G, the set of neighborhoods of a is denoted 
JfG{a) or simply jV{a). 

A topological group G is said to be totally bounded if for every U e 
jVie) there is a finite subset F of G such that G = FU. It is clear that a 
compact group, and each of its subgroups in the inherited topology, is 
totally bounded. Further, the product of any set of totally bounded 
groups is totally bounded. This may be proved directly with ease or it 
may be deduced from the Tychonoff product theorem and the following 
result of Weil [29]: Every totally bounded topological group G is home-
omorphic with a (dense) topological subgroup of a compact group; this 
compact group, which is unique up to an isomorphism which fixes G 
pointwise, is called the Weil completion of G and is denoted G. 

In the following theorem, whose purpose is to illuminate our perspec­
tive on van der Waerden's theorem, we collect from the literature several 
results concerning the existence of totally bounded group topologies. 
Because the statements are not new, we include only enough details of the 
proof to convey to the reader the flavor of the full arguments involved. 

THEOREM 2.1. Let G be a group and let & be the set of topologies £T for 
G such that <G, ^ > is a {Hausdorff) totally bounded topological group. 

(a) The set 0& is non-empty if and only if for e ^ x e G there are a com­
pact group K(x) and hx e Horn (G, K(x)) such that hx(x) # eK(x). 

(b) If G is Abelian then @ # 0 ; 
(c) If & # 0 then there is £f e @ such that every 2T e <% satisfies 3" 

c=j^; 

(d) If ST e & then there is a proper extension of 8T in 0& if and only if 
there exist a compact group K and a discontinuous homomorphism from 
<G, ^ > to K\ 

(e) If G is infinite and Abelian and if '<G, 8T} is compact, then the equi­
valent conditions of(d) are satisfied. 

PROOF, (a) If ST e {% then for e ^ x e G one may take for K(x) the Weil 
completion of <G, ^"> and for hx the inclusion of G into K(x). Conversely 
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when K(x) and hx are defined for e ^ x e G, let / be the isomorphism from 
G into \[xK(x) defined by i(p)x = hx(p). The topology 3T for G defined 
by the requirement that / be a homeomorphism into \[xK(x) satisfies 
. f e l . 

(b) A standard argument based on the fact that the circle group T is 
divisible shows that for e ^ x e G there is hxe Horn (G, T) such that 
hx(x) T̂  1. Thus (b) follows from (a). 

(c) Define 

sé = {<p~KU): <p G Hom(G, K), K is a compact group, 

It is easy to check that the family sé satisfies 
(i) for A e sé there is B e sé such that BB'1 <= A ; 

(ii) for x G A e sé there is B e sé such that xB Œ A; 
(iii) for A e sé, x e G there is B e sé such that xBx~l c A ; and 
(iv) if A{ e sé for i < n(n < co) then f| ,• A{ G J / . 

It then follows easily, as in [12] (4.5), that the family {xA : x e G, A e sé} 
is a base for a topological group topology if on G. It is clear that i f is 
as required. 

(d) It is clear from the proof of (c) that for £T G & we have <F ^ i f 
if and only if Jf^sryie) # J / . 

(e) It is a special case of the famous duality theorem of Pontrjagin [21], 
[22] and van Kampen [15] that the (discrete) dual group G of <G, «̂ ~> has 
a dual G which is topologically isomorphic to <G, ST}. In particular, 
\G\ = \G\. Since |Hom(^l, T)| = 2[Al for every infinite Abelian group A 
[14] we have |G| = 2IGI. Thus if every homomorphism from <G, ^~) to 
T were continuous—that is, if Hom(G, T) = G—then we have the con­
tradiction 

|G| = |<§| = 2101 = 2IHom(G!'T)i = 22'GI. 

REMARK 2.2. The portions of 2.1 which concern infinite Abelian groups 
combine to yield the statement that such a group admits a largest totally 
bounded group topology 5^ and <(7, j^> is not compact. More is known: 
<G, £?y is not pseudocompact [7]. In related work [5] we have shown that 
on an Abelian group no compact group topology of uncountable weight 
is maximal among pseudocompact group topologies. We do not know 
whether every pseudocompact group topology of uncountable weight on 
an Abelian group extends properly to a larger such topology. 

The present elementary treatment of SO(3, R) does not require even 
the rudiments of the theory of Lie groups—indeed we omit even the de­
finition, referring the interested reader to such authoritative texts as [19], 
[11] and [13]. In any event we recall this characterization: A topological 
group is a Lie group if and only if its topology is locally Euclidean [19] 
(p. 70). A Lie group is semisimple if and only if {e} is its only connected 
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normal, Abelian subgroup [11] (p. 121); a compact, connected, Lie group 
is semisimple if and only if its center is finite (cf. [13] (XIII. 1.3) and [11] 
(pp. 254 and 268)). 

The expression "G is a simple Lie group" is usually defined or described 
in terms of the Lie algebra of G. For our purposes the following charac­
terization may be taken as a definition. A semisimple Lie group G is a 
simple Lie group if G is locally indecomposable in this sense: there are 
no infinite connected Lie groups E and F such that G is locally isomorphic 
to £ x F. Our point here is to alert the reader to the fact that our use of 
the term "simple Lie group" is in consonance with the convention favored 
by experts in the field : A simple Lie group need not be algebraically sim­
ple; indeed a simple Lie group may contain a non-trivial discrete normal 
subgroup, and there are no obvious reasons for eliminating a priori the 
possibility that a simple Lie group might contain a proper dense normal 
subgroup. 

The theorem of van der Waerden [28] referred to in our title may be 
regarded as a technical lemma which has two major results as conse­
quences. In their full generality, these read as follows. 

Let G be a connected, semisimple Lie group with center Z(G). Then 
(a) Every local homomorphism from G to a compact group is conti­

nuous; and 
(b) G is a simple Lie group if and only if Z{G) contains every proper 

normal subgroup of G. 
For our purposes it is convenient to emphasize the following speciali­

zations. 
Let G be a compact, connected, semisimple Lie group with center Z(G). 

Then 
(a') Every homomorphism from G to a compact group is continuous; 

and 
(b') G is a simple Lie group if and only if the group G/Z(G) is algebrai­

cally simple. 
For H a group and a e H we denote by MH(a), or by M(a) if confusion 

is impossible, the set 

MH(a) = {cbab^a^c-1: b,ce H). 

(For the general treatment given in [28], where Lie groups are coordina­
t e d by canonical coordinates of the second kind, van der Waerden finds 
it convenient for ^-dimensional Lie groups H and as H to define and 
analyze the set 

H{a) = {\[U h{: each h{ e MH(à)}. 

For our purposes the sets M(a) are adequate and the sets H{d) may be 
ignored.) 
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The foregoing remarks concerning Lie groups and the results of [28] 
are included in the interest of scientific and historical perspective. We 
emphasize that our treatment of SO(3, R), though based almost entirely 
on ideas in [28], is completely self-contained. 

3. The Theorem of van der Waerden. We proceed as follows. First, an 
elementary lemma (3.1) from [28]; second, notation, terminology and 
definitions (3.2); third, verification that two naturally defined topologies 
for SO(3, R) coincide (3.4) and make 56>(3, R) into a compact group 
(3.3);and finally, an extended list of properties enjoyed by SO(3, R) (3.5, 
3.6), from which follow the principal results (3.7) and some corollaries 
(3.8,3.9). 

LEMMA 3.1. Let K be a compact group and let ax be a net in K such that 
ax -* eK- Then for every V e Jf(e) there is A such that M(ßx) c V. 

PROOF. If the theorem fails then for each X there are bh cx, xx e K such 
that xx = Cjjbxajbj^a^cj1 e K\V. Passing to subnets if necessary we as­
sume without loss of generality that there are b, ce K such that bx -> b 
and ex -* c. From continuity we have xx -> cbeb^e^c1 = e, and since 
K\Vis compact we have e = l i m ^ e K\V, a contradiction. 

3.2. For an integer n > 0 we denote by M(n, R) the set of n x n real 
matrices. This (and its subsets) are topologized as subsets of Rw2; thus for 
A(m) = (a{f) e M(n, R) and A = (af7) G M(n, R) we have AM -> A if 
and only iîaffi -• a{j whenever i,j e {1, 2, . . . , n}. 

For A e M(n, R) we denote by Ä the transpose of A defined as usual: 
Ä is that n x n matrix B = {b{J) such that b{j = aH. Using the usual 
inner product <,> on Rn given by <w, v> = S?=i w,-v,., we note that 
<y4'(v), w} = <v, A(w)} for all A e M(n, R) and v, we Rw; in particular 
(A'A(v), v> == <y4v, Av} for such A and v. 

We denote by E(n), or simply by E when confusion is impossible, that 
n x n matrix E(n) = (et>j) such that 

ea = 1 if i = j , 
= 0 if i ^ j . 

Those matrices A e M(n, R) for which the determinant det A satisfies 
det A 7* 0 have an inverse; this we denote by A'1. 

A matrix A e M(n, R) is a special orthogonal matrix if det A = 1 and 
A"1 = Ä. Since det (AB) = (det ,4).(det B) and (AB)' = B'Ä for all A, 
B e M(n, R), the set SO(n, R) of (real) special orthogonal matrices is a 
group. 

LEMMA 3.3. SO(n, R) is a compact topological group. 

PROOF. Continuity of the functions A -> A"1 and <y4, B} -• AB follows 
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from the fact that R is a topological field; thus SO(n, R) is a topological 
group. The functions A -+ det A,A-+ A"1 and A -• Ä being continuous, 
SO(n, R) is (homeomorphic to a set which is) closed in Rw2. With (b0) = 
B = A~x we have 

for 1 ^ / ^ n, so each |ÛI7| ^ 1 and S0(«, R) is bounded in R*2. 

It is convenient now to specialize to three dimensions. We write e\ = 
(1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1). 

For v = <vb v2, v3> G R3 we set 

I|V|| = |<V, V>|l/2 = (V2 + V 2 + „2)1/2. 

We set S2 = {v G R3 : || v|| = 1}, and for A G M(3, R) we define 

Mil =sup{M(v) | | : veS2} . 

We note that if A G SO(3, R) then 

M(V)|| = |<^(V), A V ) > | 1 / 2 = |<V, V>|l/2 = ||V|| 

for all V G R 3 . It follows that M|| = 1 and \\AX\\ = \\XA\\ = ||X|| when­
ever A G SO(3, R) and Xe M(3, R). 

It is clear that the function {A, B} -• \\A - B\\ from M(«, R) x 
M(n, R) to R satisfies the formal requirements of a metric on the set 
M(n, R). From this, or directly, follows \\A + B\\ ^ M|| + ||£|| for A, 
Be M(n,R). 

LEMMA 3.4. (a) For A G M(3, R) the function v -> ^(v) from R3 to R3 

w continuous', 
(b) the function A -+ Mil / ^ m Af(3, R) to R Z'S continuous; 
(c) //?e topology of the topological group SO(3, R) w e#w#/ to f/*e topology 

induced by the function || ||. 

PROOF, (a) With A = (a^) we have v4(v), = £/*,-/Vy, s o (a) is obvious. 
(b) Since \\A + £|| ^ Mil + 11*11 for A,BeM(3, R), it is enough to 

show that if A{m) = a\f G M(3, R) and A = (aa) e M(3, R) and A{m) -• 
>4, then M ( w ) - 4|| -• 0. For e > 0 there is JV such that if m > N then 
|a#° - aa\ < e/(3 V T ) whenever z,y G {1, 2, 3}. For v = <vb v2, v3> G S2 

we have |vy| ^ 1 for 1 ^ 7 ^ 3, so that 

and hence 

||(̂ <«> - ^) (v)|| = (ZUlZUWf - <*ii) • v,]2)1/2 < e. 

It follows that \\A (m> - ^|| ^ efor/n > M 
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(c) According to (b), the topology given on G by || || is contained in 
the topological group topology (inherited from R9). Thus the identity 
function A -> A is a one-to-one continuous function from the compact 
group G to G with the (Hausdorff) topology given by || ||. Statement (c) 
is then immediate. 

In the following theorem we assemble several facts—most of them 
well-known and each of them susceptible to an elementary proof— 
concerning the group SO(3, R). 

For e e [ - %, x] we define Ee e 50(3, R) by 

/cos 0 - sin e 0\ 

Ee = sin 6 cos d 0 J, 

\ 0 0 1/ 

For notational simplicity in what follows we write G = SO(3, R). 

THEOREM 3.5. The topological group G = SO(3, R) has the following 
properties. 

(a) G acts transitively on S2, that is, for all u, v e S2 there is AeG such 
that A(u) = v. 

(b) If C e G and C(e3) = e% then there is 0 e [ — TI, TU] such that C = Ee. 
(c) If D = {dij) is a real 3 x 3 diagonal matrix, then \\D\\ = max {\du\ : 

1 ^ / é 3}. 
(d) For every AeG there is a unique 6 e [0, iz] such that \\A — E\\ = 

( 2 - 2 cos(0))1/2. 
(e) For every AeG there is an eigenvector w with eigenvalue 1 such that 

\\w\\ = 1 ; i.e., there is we S2such that A(w) = w. 
(f) If AeG and\\A-E\\ = (2 - 2 cos(p))1/2 with cp e [0, %} then there 

is Be G such that BAß-1 = Er 

(g) The group G is arc-wise connected. 
(h) If A, XeG and\\A - E\\ = \\X - E\\ then there is C e G such that 

X = CAC-K 
(i) The conjugacy classes in G are precisely the sets S(r) = {XeG: 

\\X — E|| = r) for 0 ^ r ^ 2, and each S(r) is non-empty. 
(j) G has trivial center. 

PROOF, (a) It is enough to note that for every v = <vb v2, v3> e S2 there 
are d and <p such that 

v = <(sin (p) (cos d), (sin <p) (sin 6), cos cp), 

and that 
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/ sino coso 0\ /l 0 0 \ / 0 \ / vx\ 

- cos 6 sin d 0 10 cos <p sin <p\ 0 ] = v2 ). 

\ 0 0 1/ \0 - s in 9 cos (pj \ l / \ v 3 / 

(b) From C(e3) = e3 follows c13 = c23 = 0 and c33 = 1, and then from 
Hj=i ah = 1 for 1 _ / _ 3 it follows that c31 = c32 = 0 and that the 
"upper left corner" of C is an element of S0(2, R). 

(c) There is k e {1, 2, 3} such that the indicated maximal value is equal 
to \dkk\. Then for v = <vl5 v2, v3> e S2 we have 

\\D(VW = E?=l(4,-V,)2 ^ ^ 2 3 = l V ? = <&|| v||2 = ^ 

and hence ||£>(v)|| <; |rfÄÄ|. For the reverse inequality we note from ek e S2 

that 

\\D\\ è ||Z>(**)|| = |</>(^), Z>fe)>|1/2 = | r f j . 

(d) This is immediate from the inequalities 

0 = \\A - E\\ = MU 4- \\E\\ = 1 + 1 = 2 . 

(e) [This is obvious geometrically since A in effect is a rotation of R3 

about a line through the origin; one may take for w either of the points 
on this line which satisfy || w|| = 1. We will argue algebraically.] Let 

det(A - XI) = f(X) = M 3 + M 2 + M + h 

be the characteristic polynomial of A, and note from 

A-* - II = Ä - II =(A- Xiy 

that f(X) is also the characteristic polynomial of A"1. Clearly fc3 = — 1 
and k0 = detA = 1. From the celebrated Cayley-Hamilton theorem we 
have, denoting by 0 the 3 x 3 matrix whose entries are all 0, 

(*) -A* + k2A
2 + kxA + / = 0, and 

(**) -A'3 + k2A~2 + M " 1 + / = 0. 

Multiplying (*) by A'1 and (**) by A2 and adding we have (ki + k2) 
(A + I) = 0. Since deL4 = 1 the relation A = -lis false; hence k\ + k2 

= Oand 

det(>l - / ) = / ( l ) = 0. 

It is well-known (see for example [18] (IX, § 5)) that there is u e R3 such 
that u # 0 and A(u) = u. Then w = u/\\u\\ is as required. 

(f) Use (e) to choose we S2 such that A(w) = H>, and use (a) to choose 
Be G such that B~l(e3) = w. Writing C = BAB'1 we have C(e3) = eZi 

so by (b) there is 6 e [ — %, it] such that C = Ed. Denoting by F the diago­
nal matrix with entries (1, — 1, - 1 ) , we note that FBA (FB)-\e3) = e3 
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and FCF~l = E-e. Thus we may assume without loss of generality, re­
placing if necessary B by F2?(and hence 0 by - 0), that 0 e [0, TZ\. It remains 
to show e = p, i.e., that \\A - E\\ = (2 - 2 cos(0))1/2. 

A routine computation shows, writing Td = Ee — E and denoting by 
D the diagonal matrix with diagonal entries ((2 — 2 cos(0))1/2, (2 — 
2 cos(0))1/2, 0), that r ; r ö = Z)2 = D'D. Now for v G R3 we have 

li^(v)H2 = <r,(v), r,(v)> = <r;r,(v), v> 
= (D'D(v), v> = <Z)(v), D(v)} = ||Z)(v)||2, 

and hence || Te\\ = ||D||. It then follows that 

M - E\\ = ||2M*-i - Ä£Ä-i|| = \\Ee - E\\ = ||r,|| = »DU 
= (2 - 2cos(ö))1/2 

as required. 
(g) To connect E to an (arbitrary) y4 G G, use (d) and (f ) to find <p e [0, 

iz] and £ G G such that ,4 = B^E^B; then define/: [0, 1] -> G by the rule 
/ ( 0 = B-^B. Then/is continuous, and/(0) = E,f(\) = ^ . 

(h) From (d) and (f) there are 0 G [0, %\ and B, De G such that Ee = 
JB^J?-1 = ZWfZ>-i; take C = Z)-1^. 

(i) Use (d) to show that G = U {S(0 • 0 ^ r ^ 2} and use the computa­
tion \\Ed - E||2 = 2 - 2cos0 in the proof of (f) to show that S(r) is non­
empty when 0 S r è 2. For ^ , A"G S(r), use (h) to show that A and X 
are conjugate. Conversely if A e S(r) and X = CAC1 then we have 

II* - E\\ = IIC04 - E)C'H = \\A - £|| = r 

and hence Xe S(r), as required. 
(j) If A is central in G then from (f ) there is tp e [0, %\ such that A = £ r 

Then A(e3) = e3 and for every £ G G we have ^(£(e3)) = B(A(e3)) = B(e3). 
It then follows from (a) that A(v) = v for all v G R3, SO that A — E. 

In the following technical lemma we retain the notation 

MG(A) = M(A) = {CBAB-iA-iC-1: B, C e G} 

for A e G. 

LEMMA 3.6. If E J= AeG = S0(3, R) fAe/i /Aere /.s C/e >"G(£) such 
that U <= M(^(). 

PROOF. From 3.5(j) there is 5 e G such that AB # £,4. Define e = 
II^^J?-1^-1 - E\\ and choose a continuous/: [0, 1] -* G such that/(0) = 
£ a n d / ( l ) = B. Now for * G [ 0 , 1] write Bt =f(t) and At = BtAB^A^ 
and note that the function t -+ \\At — E\\ satisfies 0 -• 0 and 1 -• e. By 
3.4(b) this function is continuous, so for 0 g r <; e there is t(r) e [0, 1] 
such that \\Aar) - E\\ = r. Writing S(r) = { l e G: ||Z - £"11 = r) for 
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0 ^ r ^ e and setting U = [) {S(r): 0 ^ r < e], we have from 3.5(h) that 

S(r) cz {C^^^C"1 : C e G } c M(A) 

and from 3.4(c) that U, since it is open in the topology given by || ||, is 
in fact open in G that is, U e J/~G(è). 

The properties of SO(3, R) established by van der Waerden [28] are 
now readily accessible. 

THEOREM 3.7. (a) Every homomorphism from SO(3, R) to a compact 
group is continuous. 

(b) The group SO(3, R) is algebraically simple, that is, every normal 
subgroup N of SO(3, R) satisfies either N = {e} or N = SO(3, R). 

(c) Every element of S0(3, R) is a commutator, that is, S0(3, R) = 
{XYX-iY-1: X, Ye SO(3, R)}. 

PROOF. Again we write G = 50(3, R). 
(a) Let h e Hom(G, K) with # compact and let VejrK(e). We will find 

U e JfG(e) such that h[U] cz V. We assume without loss of generality, 
replacing if necessary Kby G x K, and h by h' e Hom(G, G x K) defined 
by h'(x) = <#, h(x)}, that /z is a one-to-one function. (We note concerning 
these replacements that h is continuous if and only if h' is continuous.) 
It then follows that h(eG) = eK is not an isolated point of h[G], for if eK 

were isolated then h[G] is a discrete subgroup of the compact group K and 
hence finite. 

It follows that there is a net Ax in G such that h(Ax) -> e# and AC^) T̂  
e#; hence by 3.1 (applied to the net h(Ax)) there is À such that MK(h(Ax)) c 
F. Let 4̂ be such an element Ax of G and (using A ^ E = eG and 3.6) 
choose t /e J^G(£) such that £/cz MG(A). Since A is a homomorphism we 
have 

h[U] cz A[MG(,4)] cz A/*(A04)) <= ^ 

as required. 
(b) If there is A ^ E such that AeN then by 3.6 there is Üe Jf(E) 

such that U cz Af(y4) cz N. It follows that TV is an open, hence closed, 
subgroup of G. Since G is connected (3.4(g)) we have TV = G, as required. 

(c) It follows from 3.5(d) and 3.5(f) that every A e G has the form A = 
B^EyB with Be G and <pe [0, 7r]. Since the conjugate of a commutator 
is a commutator, it is therefore enough to show that Eç is a commutator. 
For this we take 6 = —<p/2 and we note, denoting as in 3.5(f) by F the 
diagonal matrix with diagonal entries (1, — 1, — 1), that E9 = FEoF^Ef1. 

For a proof (in geometric language) that the groups SO(n, R) for n odd 
are simple, the interested reader might consult Artin [2] (5.3). 

We conclude with two consequences of the theorem just proved. The 
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second asserts in effect that the (continuous) homomorphisms we have 
been considering are in fact homeomorphisms. 

COROLLARY 3.8. The only totally bounded topological group topology for 
the group 50(3, R) is the usual (compact) topology. 

PROOF. Let <CJ, ^~> be 50(3, R) with a totally bounded topological 
group topology, and let K be the Weil completion of G (described above 
in the seventh paragraph of § 2). The function /: 50(3, R) -> K given by 
i(x) = x is a continuous, one-to-one function from the compact space 
SO(3, R) onto the Hausdorff space <G, ^~>. The function i is then a ho-
meomorphism. 

COROLLARY 3.9. Let h be a homomorphism from 50(3, R) into a compact 
group. Then either h(A) = e for all A e 50(3, R) or h is a topological iso­
morphism (i.e., an isomorphism and a homeomorphism) onto its range. 

PROOF. If ker h ^ 50(3, R) then h is a one-to-one continuous fucntion 
with compact domain and Hausdorff range, hence is a homeomorphism. 

REMARKS 3.10. Here we note briefly the existence of some other papers 
related to van der Waerden's theorem. 

(a) We have specialized the 1933 results of van der Waerden to the 
compact case. This specialization had already been established by Cartan 
[4] in 1930, with a much more difficult proof. Cartan's primary concern 
was isomorphisms (rather than homomorphisms); he apparently deduces 
continuity by establishing the continuity of various restrictions to three-
dimensional subgroups. This paper has an excellent elementary treatment 
of 50(3, R). 

(b) Freudenthal [10] proved interesting generalizations to a class of 
non-compact semisimple Lie groups. Using a theorem now available in 
[19] (4.6, page 175), his results can be viewed as asserting the uniqueness 
of a topology within a specified class of topologies. Specifically, the Lie 
groups which Freudenthal characterizes have a unique connected locally 
compact topology. Tits [27] established generalizations, including an 
analysis of Lie groups with proper connected normal Abelian subgroups. 

(c) Related results were obtained by Stewart [25] for compact connected 
groups, by van Est [9] for Lie groups, and by Borei and Tits [3] and Tits 
[26]. The latter two papers analyze groups related to matrix groups over 
an arbitrary field ; the theorems have significant topological content when 
the field is locally compact and non-discrete. 
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