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A REMARK ON THE ENERGY 
OF 

HARMONIC MAPS BETWEEN SPHERES 

JAYAKUMAR RAMANATHAN 

1. Introduction. A harmonic map between two Riemannian manifolds 
is a critical point of the energy integral. The conformai invariance of this 
integral in two dimensions makes this variational problem especially 
tractable. A fact that is special to two dimensions is that a harmonic map 
(j)\ S2 -> S2 is energy minimizing among all C2 maps nomotopic to <f>. 
Furthermore, it is well known that the energy of a harmonic map ^: 
S2 -> S2 is given by 

(1) E(<f>) = \ £ 2 |#|2</v = |deg 0VO1CS2). 

In contrast to the two dimensional situation, Eells and Sampson [2] 
showed that any differentiable map <j>\ Sn -» Sn (n ^ 3) of nonzero degree 
does not minimize energy within its homotopy class. It is then natural to 
ask if there exist stable, harmonic maps $: Sn -> Sn when n ^ 3. This 
question was answered in the negative by Y.L. Xin [5] who proved the fol
lowing more general theorem. 

THEOREM. (XIN). If n ^ 3, there exists no nonconstant, stable harmonic 
map from Sn to any Riemannian manifold. 

Xin proved this result by computing the second variation of the energy 
along the conformai vector fields of Sn. A conformai vector field on Sn 

is of the form v = grad(>l|s«), where 1 is a linear functional on Rw+1. Let 
^ : S " - > M b e a one parameter variation of a harmonic map <j> = 0O 

such that 

(2) d<f>t 
l*=o dt 

where v is a conformai vector field on Sn. Xin proves 

This work was supported in part by N.S.F. Grant DMS 8401930. 
Received by the editors on February 18, 1985. 

Copyright © 1986 Rocky Mountain Mathematics Consortium 

783 



784 J. RAMANATHAN 

dW@L\ = ( 2 _ n)C ||^(v)||2rfvoL 
at* \t=o js» 

Xin's result follows easily from this. 
In this note we study the energy of a harmonic map between higher 

dimensional spheres. We obtain information about the behavior of the 
energy functional along an orbit of a harmonic map under the action of 
the conformai group. A weak form of formula (1) is derived from this. 

MAIN THEOREM. Let <j>: Sn -• Sp (n ^ 3) be a non-nullhomotopic, har
monic map. Then 

(a) E(tf>) = max \ f \\d{<j> o gWd vol, 

where G is the group of orientation preserving, conformai dijfeomorphisms 
ofS\ 

(b) Moreover, we have the estimate 

E(<f>) ^yVol(S») . 

It would be interesting to improve this estimate in the case n = p so 
that it takes into account the degree of <j>. 

A basic reference to the subject of harmonic maps is the survey of Eells 
and Lemaire [1]. The terminology used in this paper is explained there. 

2. Preliminaries about the conformai group. It will be useful to recall 
the basic facts about the conformai group and hyperbolic geometry. 

Denote by Lw+2 ^ R x Rw+1 the Lorentz space with the nondegenerate 
bilinear form < , >: Ln+2 x Lw+2 -* R defined by 

M+l 

<v, w} = -v°w° + ^ K'V, 

for v, w G Ln+2. The positive light cone of LM+2 is given by 

C+ = {v G Lw+2: v° > 0 and <v, v> = 0}. 

Denote by 0(1, n + 1) the group of linear transformations of LM+2 that 
preserve the bilinear form < , >. We will be interested in the subgroup 
G 9 0(1, n + 1) that preserves C+ and the orientation of Lw+2. It is well 
known that G is the identity component of 0(1, n + 1). 

The subgroup G can be identified with the group of conformai diffeo-
morphisms of Sn. We review this identification. The vectors in Lw+2 will 
be written as column vectors. Define maps q: Sn -> C+ and p: C+ -* Sn 

by 
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and 

l / v 0 
Vl/V ( 

e ^ g Rw+1. 
vn+l »+l/vO v^+i/v1 

The conformai diffeomorphism g: Sn -* Sn corresponding to a g e G 
is given by 

We write the matrix of g in terms of the standard basis of Lw+2 = Rw+2 as 

b1 a\ . . . 4 + i 

_ô»+1 OÏ+1 ..« alXW 

The action v !-• g • v, v e Lw+2 can be written in matrix form as follows. 

A ci • • • cw+1 

*i «i ' * • 4+i 

v»+l 6 W + 1 tfï4 
"»+1. 

Then 

(4) £(*) = 

n+l \ / /w+1 \̂ 

/M+l * \ / / » + 1 \ 

where the column vector x e Sn ^ Rn+1. Using these formulas one easily 
computes that 

(5) 
1 

^ = g ^ + i * V=l 

and that the Jacobian is given by 

We regard SO(n + 1) as a subgroup of G, the inclusion being given by 

A"(o A) 
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Also set Hw+1 = {(A, c): I2 + c*c = - 1 and I > 0}. H«+1 is of course 
n 4- 1 dimensional hyperbolic space. The projection, %\ G -> Hw+1, that 
takes a matrix in G to its first row, has as its fibres the right cosets of 
SO(n + 1). It is well known that G may be identified with the oriented, 
orthonormal frame bundle of HM+1. 

3. The energy of harmonic maps between spheres. Let C2(Sn, Sm) be the 
class of C2 functions between two spheres not necessarily of the same di
mension. Define an action of G ç 0(1,« 4- l)on C2(Sn, Sm) by defining 

g'f = f°(g~1) geG,feC2(S»,S»>). 

The following lemma is well known. The proof is included for the sake 
of completeness. 

LEMMA 1. Fix f e C(Sn, Sty, where n ^ 3. Given e > 0, there exists 
a compact set K ç G such that E(g • / ) < e whenever g e G\K, 

PROOF. Using equation (6) and the definition of energy, we have 

e(g-f) = e(f°g-1)(x) 

= e(f)(tl(x))- 1 

(c • x + A)2 ' 

where xig-1) = (A, c). Let M ^ e(f) (p) V/> e S". Then 

E(g-f)= f e{g-f)dv 
J s» 

(7) f 
^ C (c • x + X)~2dv(x). 

Js» 
Since the fibres of 7zr are compact it is enough to show that the last integral 
in (7) tends to zero as \c\2 -* oo. Set p = \c\. Then }. = (p2 + 1)1/2. Also 
set u = —a/\a\ e Sn. Choose geodesic polar co-ordinates at w, say (r, 6). 
So r e [0, iz) and 0 e S*-1 ç R*. The metric on Sn then has the form 
dr2 + sin2(r)d#2, where dd2 denotes the standard metric on 5W-1. In terms 
of these co-ordinates we have 

( 8 ) 1 / , -n? = VOl(Sw !) I --. \±—drm 

Js» (ex + I)2 ' J o (A-pcosr)2 

It is enough to verify that the last integral tends to zero as p -> oo. We 
split the integral up and use some elementary estimates. 

tew f* sin»-1 rdr ^ 1 f* • «_•, . 
(9) I -^ ^ - ^ V̂ I sin»-1/- dr 

Jic/2 Q - p COS r ) 2 X2 J jr/2 
Set e = p~l/2. Then, for C, C independent of e, 
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Ce sin*"1/- , = fg s'mn-irjX + pcos r)rfr 
Jo (A - p cos r)2 Jo (1 + p2sin2 r)2 

^ Cp | sin«"1 rdr S C p-p~n/2 

= r"(2-»)/2 

_ _ (A — (Ocos r)2 " J e (1 + p2(sl27))2 

C"p f^72 

— " l sinM-1r dr. 

Also, for C" and C" independent of p, 

Çx/2 sin^-1 r , T̂T/2 s i n » - 1 ^ + g cos r)dr 
J . (A - pcosr)2 Är Je (1 + p2(sin2 r))2 

= (1 + C»2 J, 
It follows that the integrals in (10), (11) and (12) all tend to zero as p -> oo. 
The result is then clear. 

The next lemma shows that the energy functional cannot be uniformly 
small on a G orbit. 

LEMMA 2. Let fe C2(Sn, Sm) be a non-null homotopic map. Then 

(12) m a x £ ( g . / ) è 4 v o l ( S » ) . 
gŒG I 

PROOF. Let v be a constant vector on Rw+1. Then the vector field v — 
(v, x)x, x e Sn, generates a one parameter group of conformai diffeo-
morphisms <ßVtt: Sn -> Sn. It is easy to check that, on any compact subset 
K c Sn such that —aj\a\ $ K, (ßVit(p) -» a/\a\ uniformly as t -* oo. Define 
a map F: G -> Rm+1 6y 

F(g) = I f°gdv. 
J s» 

We claim that F~x{0} # { }. To see this, consider the composition 
0t: Sn -• Rw+1 given by $,(v) = ^(0*,*). Note that lim,-«, 0t(v) = lim^«, 
$s»f°<f>v,tdv = vol(5w)/(v), by the Lebesgue dominated convergence 
theorm. If F"1^} = <f>, 0 t gives a null homotopy of vol(»Sw) • / a s a map 
from Sw to Rw+1\{0}. This implies that / : Sn -• Sw is null-homotopic, 
contradicting our hypothesis. Hence F~x{0} ^ <j>. Suppose g0 e / ^{O}. 
Then 

i fogodv = 0eR» + 1 . 

Computing the energy of/0 = f°go gives 

£(/o) = i L 'V/o'2 Jv - T Is« l /o'2 ̂ v = ̂  VO1(ÀSW)' 
where 
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^-Js^dw^/d^2*) 
* S<p=Q 

is the first eigenvalue of Sn. The estimate follows, since Ài = n for the n 
sphere. 

REMARK. Similar arguments can be found in the literature. See the 
articles of Hersch [3], Yang and Yau [6], and Li and Yau [4], 

The next lemma we need computes the tension field of a conformai 
diffeomorphism. 

LEMMA 3. Let g e G be given by the matrix 

À c'j 

The tension field of the associated conformai diffeomorphism g:Sn -> Sn 

is given by 

(13) ^)=j^dê(V), 

where V is the conformai vector field on Sn given by 

(14) Vx = <c - (cx)x, xeS». 

PROOF. We will write the elements of Sn £ Rw+1 as column vectors. 
Moreover, the row vector c = (cl5 . . . , cw+1), the first row of the matrix 
g, and a1 denotes the /th row of the matrix (a)). Set '(<5*) = (0, . . . , 1, 
0, . . . , 0), where the 1 is in the kth position. Finally, let *x = (JC1, . . . , 
xn+1) be the standard co-ordinate functions of Rw+1 restricted to Sn. One 
easily computes 

VJC* = dk - xkx, 
(15) 

dxk(V) = ck - {cx)xk. 

Also recall that Ax* = nxk, & = 1 , . . . , « + 1, where A is the Laplace 
Beltrami operator of Sn. The well-known formula (see [1]) for the tension 
field of maps into Sm gives 

(16) v(g) = Ag + 2e(g)g. 

Here the Laplacian of g is computed by regarding g: Sn ->- Sn £ Rn+1 as 
an Rn+1 valued function. From equation (6), it follows that e(g) = 
(n/2) (ex + À)~2. Using (15) and the formula for AJC*, we have 
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\(fii\ = _ *(*'*) 4. n(aix + bi) (CX) 

( 1 7 )
 Kg) cx + 1^ (ex + A)2 

_ ~ fl'('e)--(a*x)(ex) . 9 a'x + b*' n |2 __ r x2x 
Z (ex + A)2 + (ex+A)3 UC| KCX) h 

Since g e £0(1, « + 1), we have the relation a' • *c = W. Using this 
fact and adding and subtracting (2A(tf*x))/(ex + A)2 gives 

(18) ^ - - <» - ̂ ~h + *%?r^ 

Adding and subtracting 2A(ex) (Ö'X + b')/(cx + A)3 and using the identity 
|c|2 = _ i 4. )2 yields the formula 

(19) A(gO = -(/i - 2 ) -2£- . + (* - 2 ) ^ ^ 2 ( e x ) - 2 f l ' x + ò'' 
ex + A v y(ex + A)2V ' (ex + A)3 

Substituting this into (16) and using the formula for e(g) yields 

n g ; "" ̂  ;V ex + A + (ex + A)2 + (ex + A)3 / 
(20) 

= (" - 2) / (cx)fr' - (a'x)A a'x + fr \ 
(ex + A) \ (ex + A) (ex + A)2 /' 

It just remains to show that the term in braces is dg* (V). 

= aKcJ + *y(c*)) _ (a'* + b*) (c - 'c - (ex)2) 
(ex + A) (ex + A)2 

(21) = W "" (*'*) (c*) _(^-y + ^) (A 2 - (ex) 2 - 1) 
(ex + A) (ex + A)2 

= Xbi-(at'x)(ex) _ (a'x + fr)(A - (ex)) a'x 4- fr 
(ex + A) (ex + A) (ex + A)2 

= te*)fr' ~ (fl''*) 4. g>'* + ft' 
ex + A (ex + A)2 * 

Our formula follows. 

We are now ready to prove our main theorem. 

PROOF OF MAIN THEOREM. Let / G C2(Sn, Sm) be a harmonic map from 
a sphere of dimension greater than two that is not null homotopic. Let 
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g e G\SO(n + 1). The composition formula for the tension field (see 
[1] gives 

</"» g) = df(T(g)) + 7> A df(dg, dg) 

(22) =^rTä^ + ^TW^^ 

- 0 , - 2 ) - ^ 
(ex + X) 

since/is harmonic. Let gt be a one parameter family of conformai dif
feomorphisms such that 

dt 

go = g, 

= V. 
*=o 

Then 

^CÇM| =#(F)and 
A !*=0 

Since A è 1, fc • x - X) è A - \c\ = À - (X2 - 1)1/2 > 0. Therefore 
the first variation computed in equation (23) is strictly positive, for every 
g G G\SO(n + 1). By Lemma 1, we know that there is an / 0 e {/o g; 
geG} such that £(/o) = max^c£(/V>£). If/0 = fogo withs0#SO(« + 1), 
we have just argued that there would exist a one parameter variation of 
/ 0 along conformai diffeomorphisms that would increase energy. This 
contradicts the choice of /0 . It follows that g0 G SO{n + 1) and that 
E(f0) = E(f). Part (a) of the main theorem then follows. Part (b) is then 
a consequence of Lemma 2. 
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