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APPROXIMATION OF LINEAR 
OPERATORS ON A WIENER SPACE 

D. LEE 

ABSTRACT. We study optimal algorithms and optimal informa
tion in an average case model for linear problems in a Wiener 
space. We show that a linear algorithm is optimal among all al
gorithms. We illustrate the theory by interpolation, integration 
and approximation. We prove that adaption does not help. 

1. Introduction, In a series of pioneering papers commencing with [4], 
Larkin studied average case error, mostly for linear problems in a Hilbert 
space equipped with a Gaussian measure. The average case model was 
further developed in [8], [13], and [14]. 

Following the average case model of [13], in this paper we study linear 
problems in a Wiener space. A Wiener space is a Banach space of con
tinuous functions equipped with a Wiener measure. Linear problems in 
a Wiener space were first studied in [7], where optimality was considered 
in the class of linear algorithms. This paper investigates optimality in the 
class of all algorithms. It also studies optimal information and adaptive 
information. 

We summarize the main contents of this paper. 
In §3 we formulate the problem and recall the concepts of information, 

algorithm, radius of information, optimal information and optimal al
gorithm. 

We address the problem of interpretation in §4, and we derive the 
optimal algorithm, which turns out to be linear, and the radius of informa
tion. 

Based on the results in §4, we study the problem of approximation of 
continuous linear functionals in §5. We derive the optimal algorithm and 
the radius of information. As a specific case, we investigate the problem 
of integration. 

In §6 we study the problem of approximation of bounded linear opera
tors. As a specific case we study the approximation problem. 

In §7 we discuss adaptive information versus nonadaptive information, 
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and we show that adaption does not help for linear problems in a Wiener 
space. 

2. Wiener space. Since the original work by N. Wiener in the 1920's, 
Wiener measures have received a great deal of attention, because of their 
usefulness in the applied fields of statistical and quantum mechanics as 
much as for their intrinsic mathematical interest, see [15, 16, 1, 2]. 

In this section we recall the definition of the classical Wiener space and 
measure; for more detailed discussion, see [3]. 

Let Fi denote the set of real-valued continuous functions / in the unit 
interval [0, 1] with /(0) = 0. Fi is a Banach space with the supremum 
norm ||/|| = sup 0 ^^ \f(t)\. Let B be the Borei cr-field of Fx, and let w 
be a Wiener measure defined on B. Recall that w is uniquely defined by 

w{{feF1:{f(tl),...,f{t„))eE}) 

= (2*)-»/*jjj (/,_,,_!)-!'*. (2.1) 

where n ^ 1, 0 = /0 < h • • • < tn ^ 1, w0 = 0, and E is a Borei set in 
Rn. Here dux . . . dun denotes the Lebesgue measure in Rn. The space Fi 
with a Wiener measure is called a Wiener space. For a measurable function 
G: Fi -* R9 JFl G(f)w(df) is understood as the Lebesgue integral with 
respect to w. If G(f) = v(f(fi)9 . . . , f{tn)\ where V: Rn -> R and 0 < tx < 
• -. < tn ^ 1, then 

f G(f)w(df) = f V(f{ti\ . . . , f(tn))w(df) 
J Fi J F] ' F i J Fi 

(2.2) = ( 2 7 r ) - / 2 n ( r ï - / t _ 1 ) - i / 2 . 

L-Ìl-<» -M-ig^^tfW dun 

where t0 = 0 and u0 = 0. 
In particular, see [3, p. 38], for G(f) = Ah)f(t2\ where 0 £ tl9 t2 £ 1, 

(2.3) f f(h)f(t2)w{df) = minfa, *2}. 
v Fi 

We need the following 

PROPOSITION 2.1. If s(t) is of bounded variation, continuous from the 
right, and s(0) = 0, then 

(0 JF ,M0&(0 -/('M40 = Ji^(0 + W/tds(ti 
where 0 ^ f <; 1 ; 
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(ü) MSlf(t)ds(t))Mdf) = m*«Hu))ds(t) + \M\ds{u))ds(t). 
If s(t) is continuous, then 

OU) yjU(t)s(t)dt -f(t)w(df) = ihts(t)dt + mits{t)dt, 

where 0 ^ t ti 1 ; 
(iv) iFl(fbAtXt)dt)*w(df) = Ms(OS>us(u)du)dt + ti(ts(t)$}s(u)du)dt. 

For the proof, see [5]. 

3. Formulation of the problem. Let F\ be a Wiener space, and let F2 be 
a separable Hilbert space. Let 

(3.1) S:F1-+F2 

be a continuous linear operator, called a solution operator. 
We seek an approximation to S(f) for a l l / e jp1? given function values 

of / at « points. 0 < ti < . . . < tn ^ 1. That is, the information N is 
defined as TV: F\ -> 7?w, and 

(3.2) 7V(/) = (/fa), . . . J(tn)\ for a l l / e ^ . 

An approximation to S(f) is provided by (p(N(f)) where 

(3.3) <p: N(FX) - F2. 

We call (p an algorithm using information N. The (global average) error 
of <p is defined as 

(3.4) e(<p, N) = { j ^ | |5(/) - p W ) ) | | 2 H < # ) } 1 / 2 . 

Let 0(N) be the class of all algorithms ç using N for which the error of 
cp is well defined, i.e., ||S(-) — <p(N('))\\2 is a measurable function. We 
stress that the assumption about the measurability of \\S(-) — <p(N(-))\\2 

is not restrictive as is shown in [11]. We wish to find an algorithm ^* from 
0(N) with the smallest error. Such an algorithm is called an optimal 
algorithm, and its error is called the radius of information, denoted by 

(3.5) r(N) = e(<p*, N) = inf e(<p, N). 
<pŒ0(N) 

An n-th optimal information N* minimizes the radius of information 
among all information W = {N: N(f) = (/fa), . . . , , ,/(*„)), 0 < tx < . . . 
< tn è 1}, i.e., 

(3.6) r(N*) = inf r(N). 

To verify whether an algorithm is optimal, we need 

LEMMA 3.1. Given information N9 an algorithm <p* e 0(N) is optimal iff 
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(3.7) f (S(f) - <p*(N(f)), <p(N(f))w(df) = 0 

for all <p e 0(N). 

The proof is similar to that of theorem 4.4 in [13] and is omitted. 
From Lemma 3.1, we can easily derive 

COROLLARY 3.1. Given information N, let <pf and cp* be optimal algo
rithms for the continuous linear solution operators S\ and S2, respectively. 
Then the algorithm cp* = aci<p* + a2<p* is an optimal algorithm for the 
solution operators S = aßi + a2S2, where ai and a2 are arbitrary real 
numbers. 

4. Interpolation. In this section we study the interpolation problem, 
that is, we approximate 

S(f) = / ( 0 , where 0 ^ t ^ 1, 

given information 

(4.1) N{f) = (f(h), . . . J(tn)\ where 0 < h < . . . < tn ^ 1. 

The solution of the more general problems will follow from the solution 
of this simple problem. We shall show that there exists an optimal linear 
algorithm, which is piecewise linear interpolation. The radius of informa
tion will also be derived. 

We first prove the optimality of piecewise linear interpolation. Let 
fk = f(tk\ h = 1, . . . , n, and let/0 = 0 and t0 = 0. We have 

THEOREM 4.1. For the interpolation problem, piecewise linear interpola
tion is optimal. More specifically, let 

(4.2) 

<P*(fu ...Jn) 

( / ^ - / * + r ^ V /m> if h è té th+l, 
for some k from {0,. . . , n — 1}, 

lk+i~lk h+i~ h 

Then cp* is an optimal linear algorithm among all algorithms from 0(N). 

PROOF: It is obvious that p* is optimal if / = tk, for some k from 
{0, . . . , n}, since e(N, >̂*) = 0 for this case. Thus it is sufficient to con
sider the following two cases, (i) tk < t < tk+1, k = 0, 1,. . . ,n - 1; 
(n)tn < t ^ 1, iftn < 1. 

Case (i). By Lemma 3.1, we need only to show that 
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W ^ - Ö - E T V « ) * « a"m 
(4.3) J M tM-tk" tM 

= 0 

for all <p e 0(N). Let 

(4.4) / = h - h - h 

where 

h = f /(%(/l, • • • ,/nMdf), 
J Fi 

= f Yx ~ / f#M> • • • >f*M#), 
J Fi tk+i — tk 

and 

h = f -r—'-^fk+M,. • • ,fnMdf). 

J Fi tk+1 — tk 

Let./} =f(t). Then, from (2.2), we have 

n /*co /»oo f f 

h=(2jr)-»/2 n Hi- U_XY^ \ Ì*±L-Ì. M^(W l , • - •, un) 
t=i j-oo J-oof^+i —r̂  

n /•oo /»oo 7 f 

h=Vit)-»'* n (t, - r,_i)-1/z • • • f / — î * - «j+i^iii, . . . , « „ ) 
^ s\ *=1 t7 - o o J - o o / ^ + 1 — lk 

x e x p ( " T S ( " ' ~ " ' - l ) 2 ) ^ 1 . . . du„, 

where w0
 = 0, and 

/i=(2ff)-»+ 1 '2((jJ(/ , - r,_i)-1/2)(ï - /*)-1 / 2(/*+ i-0-1 / 2 

<ft2
(<--^1/2)) 

+ (^+i - uj)2
 + v (^ - a*--i)2 \ \ 

^+1 ~" * i=k+2 ti — ti_i J J 

' 4 * ' ' x dui • • • dukdu-tduk+i • • • dww 
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/•oo /»oo 

x I . . . I (piu^ . . . , un) 
J —OO J —OO 

Since 

= (2jr)i'2((f 4+1 - r*)-^2(? - /*)1/2(/*+1 - ? ) i / 2 ) P - ^ i + _ ( ^ i - 0 " * 

x e x p ( - l ( » r i - y 

we have 

h = (2jr)-»+i'*(|j(f,- - r,_i)-1/2)((r4+1 - 0*1/2(* - 0- 1 / 2 (^+ i - 0"1/2) 

« j i - n > »M-iii77^f) 
x exp(- l^±l^ | ) - 2 ) (27r)^(( / i + 1 - tj-v2Q -4)1/2 

x U t)1/2) (* ~ tf^Uk+l + ^*+1 ~ *)Uk 

= (2^)-»/2(ni(^-'.-i)-i/2)£co---

I ( f*+1 ~ I Uk+ / ~ '* t/*+lW"l> ...,U„) 
J -oo \ lk+l — lk lk+l — lk I 

\ £ i=i ii — ii-\ i 

Comparing (4.8) with (4.5) and (4.6), we have I = Ix - I2 — I3 = 0. 

Case (ii). By Lemma 3.1, we need only to show that 

(4.9) / = f (f(t) - p*(/i , . . . ,fn))<p(fv . . . , /> (< / / ) = 0, 

for all <p e @(N). 

From (4.2) we have 
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J= f (fl - f«)<p(fl, • • • , / > ( # ) 
(4.10) jFl 

We now compute 

f / Î?>( / I . • • • . / . X 4 Q = (2jr)-»+ i^(J(/ , - r,_!)-i'2)(ï - O-

x r r «jp(«i,..., "„)exp(- 4- 2 ( ~̂"'-i)2 
J — oo J — oo \ .6 i—Y l{ — l i - \ 

1 / 2 

x Qxp( - -1- ^ _ ^ )rft/i • - • dundut 

= ( 2 , r ) - » ^ 2 ( j p , _ ^ .o - i / a ja - '«)-1/2 J _ • • • )_œ<p("i> ••• '»») 

/ i A (M,- - w,^)2 \ 
x e x p(-T,§ -tT^ûr) 
x ( J " M ut exp ( - 4 - ( l l " ; ) 2 ) ^ ) ^ i • • • dun-

Since 

J ^ e x p ( - j-^2"f)du-t = (t- tny'H2ny<*un, 

we have 

f M/i,... ,/>(#) 

/»oo /*oo / 

X I • I [<p(Ul, . . . , W „ ) ' 
J —OO ^7 —OO \ 

(4.11) e x p ( - T § ( M / , - " r ì ) 2 ) a ~ ^)i/2(27r)i/2"«)^i • • • ^» 
w /»oo /»oo 

= (2TT)-^2 fi (f,• - f,_!)-!'* • • • a , ,^«! , . . . ,«„) 
j = l J —oo J —oo 

x e x p ( - l±(^f^.)dUl...dun 
\ A t=l li — l{-l I 

= f fMA, • • • JnMdf). 

From (4.11) and (4.10), we have (4.9). This completes the proof. 
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Recall that the radius of information is the error of the optimal algo
rithm. From Theorem 4.1, we have 

THEOREM 4.2. For the interpolation problem, the radius of information is 

0, if~t = tk9 for some kfrom {0 , . . . ,«} ; 

(4.4) r(N) = I Kh+1—'ÛAL—*k)9 iftk < t < tk,forsomek 
h+l h from{09..,n- 1}; 

^ Vt - tn, ifU < / g 1. 

PROOF. It is obvious that r(N) = 0 if t = tk for some k from {0, . . . , n). 
Suppose therefore that tk < ì < tk+i for some k = 0, 1, . . . , « — 1. 
Then 

W = e(N,<p*¥ = f (7(0 - -^=7- /* - ,*" '* fM)2Hdf) 
J Fi\ tk+i — lk tk+i — tk I 

= f (fQWwidf) + ( f*+1 - I )2 f (f(t,Ww(df) 

+ ( , ' " '* , Tf (M+i))M#) 
_ 2 *»+i - * f f(t)f(tk)w(df) -2 *-'* f MAtk+iMtf) 

<*+l — h J Fi tk+i — tk J Fi 

+ 2 tk+i - * * - V f Atk)f{tM)w{df) 
— 'k J Fi 

= ì + ( h+l-] ]tt + 
\ h+l — h 

h+i ~~ h h+i — h J FÌ 

(i^\)2tk+l-2^^1 
\ lk + l — lk / 

h+i — h h+i — t 

h+i — h 

-'h 

- 2 
h+i — h 

+ 2 tk+l - t t - tk , , = (tk+1 - t) (t - tk) 
h+i — h 

So 

r(N) = J(h+i-t)(t-tk) 
v h+i ~ h 

Finally, suppose that t„ < t ^ 1. Then 

r{NY = e(N, <p*Y = J (#) -f# w(df) = j" (/(0)M#) 

-2f /(*)/(*>(#)+[ «O)M40 

So 

' F ! 

* - c 
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which completes the proof. 

5. Approximation of continuous linear Junctionals. In this section, we 
consider the optimal algorithm and the radius of information for a solu
tion operator S, which is a continuous linear functional. The problem of 
integration is considered as a specific case. 

Since Fi is a subspace of the space C[0, 1], S has a continuous linear 
extension to C. Therefore, by the Riesz representation Theorem, 

(5.1) S(f) = Çof(t)ds(t), 

where s is of bounded variation, continuous from the right, and s(0) = 0. 
Given information as in (4.1), we have 

THEOREM 5.1. For the solution operator S of the form (5.1), 

(5.2) <P*(fl,..-,fn) = ±M 

is an optimal linear algorithm among all algorithms from 0(N), where 

ft = / ( ' i ) , i = 1, . . . ,H. 

ß. = — l — r ( t i + i r,+i<fc(o - {tt+itds(t)) 
(5.3) ' < + i - ' A J * t >« t > 

- — L (tiAtl ds{t)-[tl tds(t)\ 

i' = 1,. . . , n — 1, and 

ßn = f1 ds(t) 4- - — \ — ( P tds(t) - tn^ i" ds{t)\ 
J t„ tn— tn_i \j t„-i J t„-\ J 

PROOF. For 0 = t0 < tx < • • • < tn <: tn+1 = 1, let zf(° = 

\\m(ti - tt_i), and let tj{) = f,_i + jA{i\ j = 0, 1, . . . , m; i = 1, . . . , 
n + 1. By the definition of Riemann-Stieltjes integral we have 

fVow) = um SS/W0)w&) - *of»-
We use the solution of the interpolation problem for each r/° to solve 

our problem. By Theorem 4.1, we have 

^( / (^^- (^^ /^• -O+Ç^ 1 /^ ) ) )^ /^ • • • ,/X4Q = o 

and 
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f (J{t}n+1)) - f(t„)Mfi, . . . , / > = W) = o, 
J Fi 

for all (p e 0(N) and / = 1, . . . , nj = 0, 1,. . . , m. 
Thus 

J Fi \ i = i j=o 

n m—\ / / . f (0 / .(0 _ f 

- s E (T—^-/fo-i) + - i — M M ) 
,•=1 y=o \ «» — ' » - l ** - ti-l 

x (*(,#,) - s{tP)) - m£f(t„)(s(t}l+») - s(t}«+»)) 

x <p(fv . . . , / > ( # ) = 0, 
and so 

(5.4) 

lim f ( s ï /KWip! ) -^» 
m->oo J F i V = i j=Q 

n m—1 / f _ f{i) fit) _ / . ., 

- S S (f' /' /fo-i) + ^ — / ^ / 0 , ) 
;=i >=o \ ti — ti_i t{ — r,-_i 

x (*(*/&) - s(tP)) - "ZKQisitj^) - s(tj*+»)) 
j=0 

From the definition of Riemann-Stieltjes integral we have 

J m - l 

2 /•(* w) (*(/$) - S(tp)MA,.. .,f„)w(df) 
(5.5) t

 Fl '=° 
= £ i ( j F / ( ' W i , • • • ,/„M#))fc(0, j = l , . . . ,»+ l. 

We shall show that 

(5.6) 3"-lKJ
t
F' ' 

= JFi(J" /(0K/l, • • .Jn)ds(t)y{df\ 

and the proof will be completed, since, from (5.4), (5.5) and (5.6), we have 

JFi(JV(0*(0 - <P*(Â, • •.,/.))<*/!, • • • , />(#) 
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+ (£*(o - u 2 tn 1 (ff / * « - '.-iff ^(t)))f(tS)) 
x <pifi, ...,f„)w{df) 

J Fi V = l J «,--i .'-1 J ti-i \ ti — f ,_ i 

+ -jf^\f{t>))ds{t) - £/(O*(0)v(/i, • • . , /X4D 

= g ff ^ff/oWi, • • .j„>{df))ds{t) 

m Jti-i\jFi\tt - f,-_i tj - t(_i i 

x <p(fi, • • .,f>{df)ys{t) - £ (ff/(OpC/i, • • .,f„Mdf))ds(t) 

= lim f CfZAtP) (s(tftù - *(',w)) 
m->oo J Fi V = l 7=0 

« m—1 / / / (0 / (0 / \ 

- L S ( T — ? " C'-i) + -7 T^mKrtfo) - s(tp)) 
i=i j=0 \ ti — ti_i ti — ti_i I 

- mtf(tn)(s(tfä») - äW*"))W, • • ;f«Mdf) = 0, 
7=0 / 

i.e., 

L ( J / ( 0 * ( 0 ~ g ^ ) ^ ' • • - / X 4 D = 0, for allpe^JV), 

where /3,-'s are given in (5.3). We now derive (5.6). 
Let G(t, f) = / (*Wi, . . . , /„) and let tt = f(t) for t(_x < t < tt. Then 

f" G(t,f)ds(t) = <P(/I , • • .,/J-f" 7(0^(0. 
J «,-1 J <,-_! 

Since pt/i, . . ., /„)eL2(Fi, w) and $l;._J(t)ds(t) e L2(F1; w), 

(5.7) f" GfrfWOeLiiFLw). 
On the other hand, since f,_! < ? < /,, 

f G(t,f)Hdf) = f />(/i, • • • , /> (# ) = (27r)-»+i/2 

J Fi J Fi x (n(t/-tj-ù-mVti-t)-^(t-ti.ù-mr r ut9{U1,...,u„) 
\j^i / J —oo J —oo 
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x dui • • • dUj-idutdUi • • • dun 

J -oo J -oo \ ^ /*» *y — fy_l / 

Since 

r M e x i / - i (w» - u')2 - -i ( »* -^ - i ) 2 w 
= (2ff)i'*((r,-?,_i)-1/2(/-r ,-_i)1/2fo-01/2) ( ' - f - - i K + ^ - ^ - i 

' « • - ' . - 1 

f G(,,/)H>(#) 
J Fi 

=(&)-/« ft co - o-i)-i/2 f". • • f" c - ^ + ^ - ^ - i 
/ = 1 J - o o J - o o #,- — tt_l 

(5.8) x P(«i> - • -,Un) exp( - \ g ( 7 . - ? r f ) A i • • • ^ 

= (2*)-"" ft (ry - /y-i)"1/2( / ~'/-1 f W i , • • -,/>(#) 

+ / '""/ f fi-l<p(fl,--.,fnMdf)\ 
li — ti-\ J Fi J 

So jFl G(t, f)w(df) is integrable with respect to s(t), and (5.6) follows 
from this fact, (5.7) and Fubini's theorem. 

From Theorem 5.1 and Proposition 2.1, we can easily derive 

THEOREM 5.2. The radius of information N(f) = (f(h), . . . , /(*„))> 0 < 
*i < . . . < tn ^ 1, for the solution operator S as in (5.1) is 

(5.9) 
r(/V) = ( f Y r uds(u)\ds{t) + V(tCds(u))ds(t) 

+ 2 m - 2 £ ßJ f * tó(0 + r, f ' ds(t)) + 2 £ AM)1'2* 

where ß/s are given in (5.3). 
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For the more specific solution operator 

(5.10) S(f) = ^of(t)s(t)dt9 

where s(t) is continuous, we have 

THEOREM 5.3. 

(5.11) ?>*(/i, . . . , /» ) = £ A >ï 
1=1 

is an optimal linear algorithm among all algorithms from &(N), where 

ßi = , 1 , (*M itl+is(t)dt - [t+l ts(t)dt) 

(5,i2) --T—v-^-if *(o*-r ts(t)dt\ 
i = 1, 2, . . ., n — 1, 

ft,=f1 *«*+,—v~(r /j(o* - tn-i p *(*>»)• 
J *„ tn — ln_l \J t„-l J t„-l J 

The radius of information is 

r(N) =(\ (s(t) y us(u)dujdt + J (ts(t) \ s(u)dujdt 

(5.13) + £ j8?f, - 2 J] ft( f tt(0* + f, f * 5(0*) 

+ 2 S AM) • 

We finish this section by considering the integration problem i.e., we 
consider the solution operator 

(5.14) S(f) = \]f{t)dt, 

which is a specific case of (5.10) when s(t) = 1. From Theorem 5.3, we 
easily get 

THEOREM 5.4. Given information N(f) = (f(h), . . .,f(tn))9 0 < tx < . . . 
< n̂ = 1- For the integration problem, 

(5.15) p*(/i, .. .,/„) = g ',+1 ~ f'-1 /, + (l - '" Y""1 )/« 

w fAe optimal linear algorithm among all algorithms from 0(N)9 and the 
radius of information is 
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r(N) = (-J- + ±tn+1t% - t„+1t„ + \tl+ltn 

(5.16) 
V ' • - \ l / 2 + -J-g (/,/,?-, - /M-l) 

We now find the «-th optimal information N* for the integration 
problem. From (5.16) we have 

Mp- = | ( 2 W , - tf+1 + tU - 2/,^x) = 0, / = 1, . . . , « - 1, 

so 

/* ** /* /* 

Let /^ ! - /* = /. Then / * = //, / = 1, . . ., n, t*+1 = 2 - nt9 and 

r(AT*)2 = 1 _ i ^ / i 2 - l)f3 + n2t2 - nt. 

Since 

M^ÏL = _ lfi(4n2 - \)t2 + 2n2t -n = 0, 
Ot 4 

t = 
In + 1 ' 

We summarize the above in 

THEOREM 5.5. For the integration problem, the n-th optimal information 
is N*(f) = (f(t*)9 . . . , ft*)), where 

(5.17) ^ = 2 ^ T > ' - ! , • . . . » • 

Tfte radius of information is 

(5.18) r ( A r * ) = _ ^ 1 

A/ 3 (2n + 1) • 

7%e optimal linear algorithm using this optimal information is 

(5.19) fW,...,>?)-_2_J /(1_^T) 

6. Approximation of bounded linear operators. In this section we 
study the approximation of bounded linear solution operators from a 
Wiener space F± to a separable Hilbert space F2. 

Let {ei, . . ., en, . . .} be an orthonormal basis in F2. Then S(f) = 

X7=i(S(fl «/)*/ = 2~=i S/(/>/> w h e r e W ) = («(f), */), j = 1, 2, . . ., 
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is a continuous linear functional on Fh We denote a continuous linear 
extension of Sj to C by the same SJ9 and we have 

(6.1) Sj(f) = ^f(t)dsj(t), 

where Sj is of bounded variation, continuous from the right, and Sj(0) = 
0, j = 1, 2, . . . . It is straightforward to verify 

THEOREM 6.1. Given information N(f) = (f(t{), . . . , /(/„)), 0 < tx < 
• • • < / „ :g 1, /Aere emta a //«ear algorithm <p*, optimal among all al
gorithms 0(N), which is 

oo 

(6.2) <p*(N(f)) = 2 <PKN<J))ej, 

where cpf are the optimal algorithms for the solution operator SJ9 i.e., 

/=1 

i / f f i+i /%+i \ 

- -—-—(tt-_t r dsj(t) - r /&/o\ *=i, . . . . a - 1 , 
A./ = f * &X0 + 7—V—( r tdsW -1»-1 P ds^l)\ Jt„ tn— tn_l \J tn-l J tn-l J 

Sj is given in (6.1), j = 1, 2, . . . . 
77*e radius of information is 

r(N) - (gŒŒ^W0+JH***)*^ 
(6-3) + | j f l , f , - 2 g j 8 , y ( £ / A X O + ' ' £ * > < ' > ) 

+ 2 S faß»*)) • 

We now consider approximation off in L2-norm, that is, we have the 
solution operator S: Fx -+ F2, where S(f) = / , and F2 = {/: H/II2 = 
(Jo(/(0)2 dt}1/2}. Applying Theorem 6.1 we conclude 

THEOREM 6.2. Given information N(f) = (f(ti),... ,/(/„)), 0 < tx < • • • 
< tn g 1, /or *Ae problem of approximation, the optimal algorithm is 
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\MZu
tf- + ,u~h, /m, if h é ué tk+1, 

(6.4) <p*(N(f)) («) = l f*+1 r* ?*+i - '* k = 0, . . . , n - 1, 

U» if '» < " â 1, 
a«d ?/je radius of information is 

(6.5) r(N) = (±j:(tk+1 - tky 4- i - ( l - /M)2V/2 

The optimal information # * can be derived from dr(N*)2/dtk = 0, 
/c = 1, . . ., n. This yields 

THEOREM 6.3. For the problem of approximation, the optimal information 
is N*(f) = (f(t?),...,ftt*))9 where 

** , k = 1, . . ., n. k 3n + 1 

772e radius of information is 

1 
(6.6) r(W*) = 

V2(3n + I)* 

7. Adaption does not help. In previous sections, we only studied non-
adaptive information i.e., information which is in the following class. 

(7.0 *'™ = f*»-: *»"</>-</<„> /«.».where the 
points 0 < ti < • • • < / „ ^ 1 are given simultaneously}. 

If the /-th point ^ depends on the previously computed function values, 
then we have adaptive information, the class of which we denote by 

r = {Ara: N,{f) = (f(hl m m J{tn% where 

(7.2) t{ = ti (f(t{), . . .,/(*,-_!)) is measurable in R^1, 

i = 1, . . ., n. 

The structure of adaptive information is much richer than that of 
nonadaptive information. Therefore one might hope that adaptive in
formation can be much more powerful than nonadaptive information. 
As a matter of fact, since ¥non c Wa, 

(7.3) inf r(N*) ^ inf r(NnOÏÏ). 

Is it true that the inequality in (7.3) is strict? It turns out that the answer 
is negative for many cases. For approximation of linear operators in a 
separable Hilbert space equipped with an orthogonally invariant measure, 
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it is proved in [8] and [14] that adaption does not help. A similar result 
holds for the worst case, see [9] and [10]. We have 

THEOREM 7.1. Let S be a continuous linear solution operator from a 
Wiener space to a separable Hilbert space. Then adaption does not help, 
i.e., 

(7.4) inf r(Na) = inf r(7Vnon). 
N*ŒW* Nnon^rnon 

We provide a sketch of the proof, and for a complete one, see [5]. 
We consider the following class of adaptive information 

Vi = {N° : N°(f) = [ylt ..., jPJ, 

(l Si [KD - f(h-i) j , j 
(7-5) _ I j.j _ -—p, U ¥= ?,-_i 

lo ,h=h-i-

where t{ = t^pi, .. ., j>2_i) is measurable in J?1'-1, / = 1, . . ., n, and the 
class of nonadaptive information 

0„o„ = {#„on : #"»"(/) = [ft, . . ., yn], 

(7.6) y,-iy-'Bl ^ 
0 = h < h < . • • < tn ^ 1). 

We prove the inequality 

inf r(7Vnon) ^ inf r(JVnon) 

(7.7) 
^ inf r(iVa) ^ inf r(7Va), 

and (7.4) follows directly from (7.3) and (7.7). 
We decompose the Wiener measure as follows. For each Nnon e W\on, 

let Wi(A\Nmn) = w((N™nyl(A)) for all Borei sets A in Rn. Then wx(non. \N) 
is a probability measure in Rn, and for almost all y = (yl9 . . . , yn) e i?w, 
there exists a unique probability measure w2(- \y) concentrated on V(Nnon, 
y) = {/: JV~non(/) = j?}, such that 

(7.8) w(B) = f w2(B H F(#non, j?)|.p)wi(^), for all B e B. 
J Rn 

See [6 Th. 8.1, and 11] for details. 
For y e Rn

9 we define the local radius of information Nnon as 

I \\S(f) - gP w2(df\y)n/2 

[g<=F2 

(7.9) K # ~ , W = { inf f IISC/) - g||2 w2(#|j) 
V(N»°»,y) 
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It is proved in [11] that r(Nnon, y) is wrintegrable, and 

(7.10) r(JV~non)2 = f r(JV~non, y)2 w^dy). 

We have 

LEMMA 7.1. Given information Nnon e $"fon, the local radius of information 
r(Nnon, y) equals the global radius of information r(Nnon). 

One can show 

LEMMA 7.2. For any Nfn
9 NfneUffon

9 

Wi(-\NY>n) = WxC-ITVf11). 

We need the following theorem, which is established in [12]. 

THEOREM 7.2. For any JVfn, NfnzW\on, if 
(i) wx(-\Nlon) = ^i(-|^2on), and 

(ii) r(Nfn) ^ r(Nfn) implies r(Nfn, y) ^ r(Nnon, y) 
for almost all y e Rn, then, for every Na e W{, there exists Nnon e $*f n, with 

(7.11) r(N™n) ^ r(Na). 

From Lemma 7.2, Lemma 7.1 and Theorem 7.2, we have 

(1 {2) inf r(Nnon) ^ inf r(Na). 

To complete the proof of (7.7), we need 

LEMMA 7.3. For Na e W\ there exists Na e W\ such that 

(7.13) r(Na) ̂  r(Na). 

From Lemma 7.3, we have 

m 4 i inf r(Na)^ inf r(Na). 

Similarly, we can prove 

(1 15x inf r(Nmn) S inf r(Nmn). 

The inequality (7.7) follows from (7.15), (7.12) and (7.14). 
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