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LOCAL FACTORS OF FINITELY GENERATED WITT RINGS

ROBERT FITZGERALD AND JOSEPH YUCAS

ABSTRACT. The Witt rings considered here are the abstract Witt
rings in the sense of Marshall [3]. A local Witt ring is one with a
unique non-trivial 2-fold Pfister form. Our main result gives neces-
sary and sufficient conditions for a finitely generated Witt ring to
be a product (in the category of Witt rings) of two Witt rings, one of
which is local. The basic motivation is to develop a tool for the
study of whether every finitely generated Witt ring is of elementary
type (that is, can be built from local Witt rings Z/4Z and Z/2Z
by a succession of products and group ring extensions), cf. [3;
problem 4, p. 123].

1. Introduction. R will always denote a non-degenerate finitely generated
Witt ring and G will be the multiplicative subgroup of one-dimensional
forms in R. The category of Witt rings is equivalent to the category of
quaternionic structures and also to that of the quaternionic schemes
defined in [1]. We let g denote the quaternionic mapping associated with
R. For ae G, D{l, a) = {be G|q(b, —a) = 0} is the value set of the
form {1, a); i(a) will denote the index of DI, a) in G. For a subset K
of G, we let Q(K) = {q(k, x) | ke K, xe G}. If K = {k}, we write Q(k)
for Q(K). We will be mainly concerned with the existence of elements
a € G such that i(a) = 2, equivalently, such that |Q(—a)| = 2.

For Witt rings R; and R, we let R; x , R, denote the product of R;
and R, in the category of Witt rings. We say R; is a local factor of R if
R = Ry x, R, with Ry a local Witt ring. C, denotes the group of order 2
and R[C,] denotes the group ring of C, with coefficients in R. Details on
products and group rings of Witt rings may be found in [3].

For ae G, we let M(a) = {m € Gli(m) = 2, i(—am) = 2 and D{1, m)
# D{1,ad} U {a}, and we let H(a) = (em@ D<1, m). We say a is a
local element if i(a) = 2 and p ¢ Q(H(a)), where p is the unique non-
trivial element in Q(—a). The main goal of this paper is to prove the
following

THEOREM 1.1. Let R be a finitely generated non-degenerate Witt ring.
R has a local factor if and only if R has a local element.

We take a moment here to motivate our definition of local element.
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The Witt rings of elementary type which contain an element a with i(a) =
2 are of two types.

1. R x, L, where R is of elementary type and L is local. Here we can
choose a to be any element of the form (—1, x), x # —1.

2. R x S[C,], where R is of elementary type and S is degenerate with
|Gs| > 2. Here we can choose a to be any element of the form (—1, —x)
with x # 1 and in the radical of S.

Thus to classify Witt rings with local factors a further condition on a
is needed to distinguish between these two types. The element p ¢ Q(H(a))
does just that. In the first case H(a) = Gr and —a € G, so clearly p ¢
Q(H(a)). In the second case, H(a) = Gp x Gs thus —ae H(a) and pe
Q(H(a)).

§2 is devoted to the proof of (1.1). We close this section with a pre-
liminary result which characterizes the subgroups of G which yield Witt
ring factors of R. For a subgroup H of G, we let C(H) = () ,cxD<{1, —h)
= {ke G|H = D{1, —k)}.

LeEMMA 1.2. Let H be a subgroup of G.

i) H < C(C(H)).

iy If G=H - C(H), then H(\ C(H) = {1} and H = C(C(H)).

i) If he H, ke C(H), then D{1, hk)  H = D{l, h) 1 H and
D{1, hky 1 C(H) = D1, k) N C(H).

ProoF. i). If ke C(H), then H = D{l, —k); hence H S N ecun
D<1, —k) = C(C(H)).

i). Let xe H () C(H). Then xe C(H) and x e C(C(H)) and so H,
C(H) € D1, —x). But then G = H - C(H) < D{1, —x) and R non-
degenerate implies x = 1. To show H = C(C(H)), let x € C(C(H)) and
write x = hk, he H, ke C(H). Then C(H) € D{1, —hk) and C(H) <
D{1, —h), hence, C(H) = D{1, —k). But H = D{l, —k), thus, G =
H - C(H) € D{l, —k). Since R is non-degenerate, k = 1 and x € H.

). Let A’ € H. Since ke C(H), h' € D{1, —k). Consequently A’ €
D{1, hk) if and only if 4’ € D1, h). Similarly if k' € C(H), then k' €
D{1, —h); thus, k' € D{1, hk) if and only if k' € D{1, k).

We introduce more notation. If D{l, —x> € D{l, —y)> we write
x < y, and for a subgroup H of G we set H, = {he H|x < h}. Asin [4],
the radical of an x € G is defined by rad(x) = {y € G|x = ¥} = N.epq,-»
D{1, —z). Notice that H, = rad(x) (| H, and if H = D{1, —x) ,then
C(H) = rad(x).

THEOREM 1.3. For a subgroup H of G the following statements are equi-
valent:

(1) For all xe G, xH, N C(H) # @&;

(2) For all xeG, xH (N rad(x) N C(H) # @;
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(3) For all ye G, xe D1, y) implies xH (\ D{1, y> N C(H) # @;
and

(4) The collections {D{1, h) (| Hlhe H} and {D{1, k) N C(H)|
k € C(H)} are quaternionic schemes on H and C(H), respectively, yielding
Witt rings Ry and R, such that R = Ry x , R,.

Proor. (1) = (2). Since H, = rad(x) [\ H we have xH, = x(rad(x) N
H) = rad(x) N xH. (2) now follows from (1).

(2) = (3). Let y e G and x € D{1, y). Notice that rad(x) = \_,cpq,-»
D{1, z) = ,epa,» D1, z). By (2), there is an # e H such that xhe
rad(x) (| C(H). Since x € D1, y> and xh € () ,cpq,» D<1, z), we see
that xh € D{1, y>. This proves (3).

(3) = (4). First note that G = H - C(H). Namely, for any ye G, ye
D<1, y) and (3) imply that yH [\ D{1, y> N C(H) # . Thus there
exists an A € H such that yh € C(H), thatis, y € H - C(H). By (1.2) we thus
also have H \ C(H) = {1}.

Let Dy<1, a) = D1, a) ) H. To show that {Dy{l, a)|lac H}is a
quaternionic scheme on H we must show, for all @, b, ¢, de H:

1) ae€ Dg{l, ay;

ii) There is an o € H such that x € Dy(l, a) = aa € Dy{l, ax); and

1) bDy{l, aad (| Dyll, aac) N dDy{l, ac) # @ = aDy{l, ab)
N Dyl, abd) N cDy{l, ad) # @.

(i) is obvious. For (ii), since —1e€ G = H - C(H) we may write — 1 =
af, with a e H and 8 = — a € C(H). Suppose x € Dy(l, a); then x,
a€ H and —a € D1, —x). Since —a € C(H), we have — a € D1, —x)
and thus aae D1, —x), xe D{1l, — aa). But aae€ H, so —a € D{1,
—aa) and —ax e D{l, —aa). Consequently, aa € Dy{l, ax).

To prove (iii) we first make the following

Claim. For x, y € H, x € Dy{1, ay) if and only if x € D{1, — y).

Namely, D{l, —y)> N H = D{1, afy) N H = D{l, ay) | H by
(1.2) (iii).

Thus bD{1, —a) (} D{1, —ac) () dD{1, —c¢> # @. Since (iii)
holds for G, there exists y € aD{1, —b) N D1, —bd) () ¢D{1, —d>.
Since y € D{1, —bd) we have, by (3), that there exists an 4 € H with
yhe D1, —bd) (| C(H). Consequently, h € D{1, —bd) and yh e D{l,
—z), for all ze H. Now, ya, yhe D{l, —b), hence ahe D{l, —b).
Also, yc, yhe D{1, —d), hence ch € D{1, —d). This shows aD{1, —b)
N D1, —bdy N ¢DL1, —d) (| H # @. The Claim then implies (iii).

To show {D(l, k) ) C(H)lk € C(H)} is a quaternionic scheme on
C(H), it suffices to show C(H) satisfies (3). Multiplying, (3) applied to
H, by x yields H ) D1, y> N x C(H) # @. Since H = C(C(H)) by
(1.2), (3) holds for C(H).
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Now we have G = H x C(H) as groups and the distinguished element
of C(H)is f = —a, where « is the distinguished element of H. So it re-
mains to show only that D{1, y> = Dy{l, y> - Dcip{1, y), forall y e G.
Let ze D1, y>. By 3), zH (1 D{1, y> () C(H) # @ so there exists
an he H with he D{1, y», zhe D{l, y) and zh € C(H). Consequently
z = h(zh), he Dy(l, y>, and zh € D¢y {1, y>. And, finally, if h € Dy{1,
y> and k € D¢y, <1, y>, then clearly hk € D{1, y).

(4) = (1). For an x € G, (4) implies x = hk, for some he H, k € C(H).
Notice that k = xhe xH (1 C(H), so it suffices to show that D{1, —x)
< D1, —h). Now D(l, —x) = D{l, —hk)> = Dy(l, —hk)>D¢y,
{1, —hk), by (4). Let z € D1, —x)>. Write z = z;z, where z; €
D{1, —hk) (\ H and z,€ D1, —hk) [} C(H). Now z, € D(H) implies
zy € D{1, —h), and z; € H = C(C(H)), by (1.2), implies z; € D1, —k).
Thus zye€ D1, —k> (| D1, —hk> < D{l, —h), and so z = z;z €
D1, —h).

2. Local elements and local factors. Throughout, we fix a local element
ae€ G. We will write M for M(a) and H for H(a). We begin with the case
M| = 1.

ProposITION 2.1. [f M = {a}, then —1¢ D{1, a) and D{1, a) =
UxeD(l,a) D<l’ x>'

ProOOF. If —1 € DI, a), then a cannot be a local element, since —a e
D{l, ay) = H=pe Q(H). Hence —1¢ D{l, a). Assume there exist
xe€ D{l, a)and y € D{l, x> with y¢ D{l, a). We have {l, a) ~
{x, xa), {1, x> =~ <y, xy>. Since i(a) = 2 and —1¢ D{1, a), {1, 1,
a,ay =~ {1, a, —y, —ay). On the other hand {1, 1, q, a) ~ {1, a, x, xa)
~ {a, xa, y, xyy. Thus {l, a, —y, —ay) =~ {a, xa, y, xy); hence, {1,
a, —xy, —xay ~ <y, y, ay, ay. Upon multiplying by ya, we obtain
{ya, y, —xa, —xy) =~ <a, a, 1, y). After cancelling (y) we see that ya
is represented by the pure part of « 1, a>. Consequently, p = g(—1,
—a) = q(—ya, z), for some ze G. Now —yae D{l,a) = H; thus pe
Q(H), contradicting the fact that a is a local element.

COROLLARY 2.2. If M = {a}, then R = Z x , S for some nondegenerate
Witt ring S.

ProoF. Let K = {l, —a}. We show first that (1.3) (3) is satisfied.
Notice that C(K) = D{1, a)>. Let y € G, xe D1, y)>. If xe D{1, a),
then clearly x e xK (1 D{1, y> (1 D1, a). Suppose x ¢ D{1, a). By
(2.1), —1¢ D{1, a), and, since i(a) = 2, we have —x € D{1, a). Now
—ye D{l, —x), so —ye D{l, a) by (2.1). Consequently, —xa e xK ()
D{1, y> N D{1, a). Now since g(—a, —a) # 0, it follows from [3,
p. 42, Case 4] that the Witt ring associated with K is Z.
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The statement and proof of (2.2) are implicit in [5, 3.3].
From this point on we assume M # {a}, that is we assume |M| > 1.
We. begin a study of the structure of M.

LemMMA 2.3. Let G be an arbitrary group with subgroups Hy, H,, Hs of
index 2. ]_le n Hz = Hl ﬂ H3 ande #* H3, then G =H1 U HZ U H3.

PrOOF. Suppose ge G with g¢ H, | H, |J H;. We show Hy = H;,
contradicting our hypothesis. Let he H,. If he Hi, he H; () Hy, < Hs.
If h¢ H,, then ghe H,. Notice that gh ¢ H,, for, otherwise, gh € H; )
H; = H,, implying that g € H,. Consequently, # = g(gh) € H; and H, =
Hj;. Since H,; and Hj are subgroups of the same index, H, = Hs.

LEMMA 2.4. Let m, m" e M, m # m’'. Then:

(1) 9(—=m) = O(—a) = Q(—m');

(2) D1, m) # D1, m");

3) i(—mm') = 2; and

4) G =D, m) U DI, m"> J D1, —mm’>.

PrOOF. To prove (1), it suffices to show that Q(—m) = Q(—a). Clearly
we may assume m # a. Since m€ M, i(a) = i(m) = i(—am) = 2, D{I,
—am) (| D{1, a) = D{1, —am) () D{1, m) and D1, a) # D{l,
m). By (2.3), G = D{1, a) |J D{1, m)> |J D{1, —am). Since G is not
the union of two proper subgroups, there exists x ¢ D<1, a) |J D1, m),
x € D{1, —am). This implies that g(x, —a) # 0, g(x, —m) # 0 and q(x,
am) = 0. But g(x, am) = 0 forces q(x, —a) = q(x, —m). Since i(a) =
i(m) = 2, |Q(—a)| = |Q(—m)| = 2; hence, O(—a) = Q(—m). To prove
(2) and (3), notice that |Q(—m) N Q(—m')| = 2, so by [3, 5.2], D1,
m) (1 D{1, m') has index 2 in D{l, —mm'). Since D1, m> () D{l,
m’) has index 2 or 4 in G, this forces D{1, m)> (1 D{1, m’) to have index
4 in G and thus D1, —mm'’> must have index 2 in G. Statement (4) now
follows from (2), (3) and (2.3).

LEMMA 2.5. Let x;, Xo, X3 € G and suppose:
(@) i(x1) = i(xz) = i(x3) = 2;
(b) i(—x1x3) = i(—X1X3) = i(—xpx3) = 2; and
(©) D1, x;> # D1, x;5, fori # j.
Then i(x;x,x3) = 2.

ProoF. Since D1, x1> [ D1, —xyx3) & D{l, x1x5x3) we have
i(x1x9x3) < 4. Assume i(x;xyx3) = 4. In this case D{1, xpxox3) =
D{1, x> N D{1, —x3x3), so, in particular, D{1, x;x2x3> & D{1, x1).
Similarly, D{1, x1xsx3) & D{1, x> and D{1, xyxox3) S D1, x3).
By (c), we get D1, x1xpx3) = D1, x;> | D{1, x;», for i # j. But then
D(l, x1> n D(l, XZ> = D<1, x1> n D(l, X3>, SO, by (23), G = D<l,
x1) U DL, x3) J D{1, x3). Since G is not the union of two proper
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subgroups, there exists ge D{1, x3>, g¢ D1, x;> J D{1, x;). Recall
that D1, x> () D1, —xox3) = D{1, x1x9x3> = D1, x> (| D{1,
x2p. Also, D{1, —xx3) # D{l, x5, else D{1, x3) = D{1, x5); by
(2.3), G = D{1, x> U D1, x9» U D{l, —xyx3). Consequently, g €
D{l, —x,x3). Then ge D{1, x3> | D{1, —x3x3> < D1, x,>, a con-
tradiction.

LEMMA 2.6. Let x, y, z€ G,z # —Xxy, with i(x) = i(y) = i(z) = i(—yz)
= 2. If D1, —xy) = D{l, z), then D{1, x) = D{1, y> = D{1, z).

Proor. If D{1, y) = D1, z), then D{l, y> = D1, —xy) =
D{1, x>; so assume D{l, y> # D{l, z). Also, D1, z) = D{1, —xy) N
D{1, z) € D41, xyz); thus D{1, z) = D1, xyz), since i(z) = 2 and
z# —xy. Now, D1, —yz> () D{1, y> = D1, —yz) N D1, z);
thus, by (2.3), G = D{1, y> U D{1, z) U D1, —yz). Consequently,
D<1, x> = D1, xp N D<1, y> U D1, x> N D<1, z) U D41, x> N
D1, —yz). Now D{I1, x) N D1, y> € D1, —xy) = D{l,z) and
D{1, x> N D1, —yz) < D{1, xyz) = D{1, z), so D{1, x) = D1, z).
Since i(x) = i(z), D{1, x) = D1, z) and D41, x) = D1, —xy) =
D{1, y>, a contradiction.

LEMMA 2.7. Let my, my € M. Then
() —mmye M | {—1}; and
(2) ammyae M |J {—1}.

Proor. (1). First note that if m; = m,, then —mmy, = —1e M |J
{—=1}. If mj = a and my # a, then i(—mymy) = i(—amy) = 2, since
my € M and i(amymy) = i(my) = 2. If D{1, —mym,) = D{1, a), then
D{1, —amy) = D{l, a) = D{l, my», a contradiction. So in this case,
(1) is true. Similarly, if m; # a and m, = q, the result is true. If —mm, =
a, then clearly —m;m, € M so we may assume that my; # my, m; # a,
my # a and —mymy # a. By (2.4) (3), i(—mymy) = 2. Notice that i(a) =
i(my) = i(my) = 2, i(—amy) = i(—amy) = i(—mmy) = 2 and D1, a) #
D{1, my», D{1, ay # D{l1, my», and by (2.4) (2), D1, m;> # D1, my).
So by (2.5), i(amymy) < 2. But if i(amymy) = 1, then —mymy = a, con-
tradicting our assumption; thus, i(ammy) = 2. If D1, —mmy)=
D{1, a), then D1, m;) = D1, my), by (2.6), a contradiction. Hence
i(—mymy) = 2, i(ammy) = 2,and D{1, —mymy) # D{l,a),so —mumy €
M.

(2. By (1), —mimpe M |J {—1}. If —mymy, = —1, then amm,=
ae M. If —mymye M, then amm, = —(a) (—-mmx)e M |J {—1}, by
.

PROPOSITION 2.8. (1) If my, my, . . ., ma, € M |J {—1}, then my - m, -
Mg €M U {—1}
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) If my, mg, ..., mpye M | {—1}, then —my-my----- my, € M |
{-1}.

Proor. (1). It sufficies to do the case n = 1, for then m; - my-- - -
“Mo,1 = (Mymemz)my- -« - - My, is a product of (2n — 1) elements of
M |J {—1}. Thus we must show mymymz € M |J {—1}. First notice that
we may assume that the m; are distinct, for otherwise it is trivial. We may
also assume that m; # a, i = 1, 2, 3, since then mymymze M |J {—1}
by (2.7) (2). Further, we may assume m; # —mymg, since then —1 =
mymomz € M |J {—1}. Finally, we may assume that m; # —1, for then
the result is either trivial or follows from (2.7) (1). Now, by (2.4) (2)
and (3), i(—mm;) = 2 and D<1, m;» # D{1, m;), for i # j. By (2.5),
with x; = my;, i(mymyms) < 2. Strict inequality holds only if my = —mymg
which we are assuming is not so, thus i(mmyms) = 2. We now want to
apply (2.5) with x; = —am,;. Now m; # a, so x;€ M by (2.7) (1). Also
x; # a, since m; # — 1. Applying (2.5), we get i(—amymyms) < 2. Again,
i(—amymyms) = 2, else mymyms = a € M. It remains only to show that
D{1, mymyms> # D1, a). If this is not so, then, by (2.6), D1, m;) =
{1, —mgm3z> = D{l, a), a contradiction.

(2). Again it suffices to do only the case n = 1, for then —my; -my- - - -
My, = (—mumg)mz -« -+ - my, which is a product of (2n — 1) elements
of M |J {—1} and by (1) must be in M |J {—1}. If my, my e M, then
—mmye M | {—1} by (2.7) (1). If m; = —1 and/or my; = —1, the
result is trivial.

PROPOSITION 2.9. (1) M2 is a subgroup of G.

@ M2=-M| {1}.

PRrOOF. (1). Let mym,, mamy € M2, Then (mymy) (msmy) = my(memsmy) €
M. (MU {-1}) = M2 —M, by (2.8) (1). Thus it suffices to show
—M < M2 Let —m e — M. There exists m; € M with m; # m (otherwise
M = {a}, contrary to the assumption made after (2.2)), and so —m =
my(—mmy) € M2 by (2.7) (1).

(). Asin(l), —M < M2%andso —M |J {1} & M2 On the other hand,
-M2c M| {-1} by 27), so M2< =M | {1}.

We turn now to the relationships among M, H and C(H).

CorOLLARY 2.10. M2\ H = {1}.

PrOOF. Let x € M2 (| H. By (2.9) (2) we may assume —x = me M.
Then by (2.4) (1), Q(x) = Q(—a), that is, p € Q(x) and x € H, contradict-
ing our basic assumption.

For ge G, let S(g) = {—me —M|ge D1, m)} U {1}.
ProposITION 2.11. (1) For each g € G, S(g) is a subgroup of M2.
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(2) S(g) has index < 2 in M2 with equality holding if and only if g ¢ H.
(3) For x,ye — M2 x # y, we have S(x) # S(»).

PROOF. (1). Notice that S(g) = (— M U {1}) N D1, —g), so (1) follows
from (2.9).

(2). Suppose x, ye M2 — S(g). We show xy e S(g). Clearly we may
assume x # y. Now x, ye — M by (2.9) (2), so g ¢ D{1, —x) |J D{l,
—y), and thus ge D{1, —xy). Also, —xye M by (2.7) (1); hence,
xy € S(g). This shows that |M?/S(g)| < 2. Notice that M2 = S(g) if and
only if ge H.

(3). Suppose S(x) = S(»). Then, for all me M, either x and y are in
D{1, m) or x and y are not in D{1, m). Since i(m) = 2, we see that in
either case xy € D{1, m); hence, xy € H. Recall that - M2 = M |J {-1}.
IfxeMandy = —1,thenx e —H 1 M. By 2.4)(1), O(—a) = Q(—x),
and then p € Q(—x) and —x € H, contradicting our basic assumption. If
x€M and ye M, then xye M2 () H = {1}, by (2.10), again a con-
tradiction.

We thank M. Kula for simplifying an earlier version of (2.11 (1)).

ProoosiTioN 2.12. (1) G = M2H.
(2) G =H - C(H).

(3 HN C(H) = {1}.

4) C(H) = M=

(5) Q(C(H)) = {0, p}.

Proor. (1). Let |M?| = 2% By (2.11) (1) (2), {S(x)|x € —M?} is a col-
lection of 2* distinct subgroups of M2, all of index < 2. Since there are
only 2¢ — 1 subgroups of index 2 in M2, the collection {S(x)|x € — M2}
consists of all subgroups of M2 of index < 2. Now let g€ G. Then S(g)
is a subgroup of M2 of index = 2. Hence there exists x € — M2 such that
S(g) = S(x). But then, as in the proof of (2.11) (3), gx € H. Consequently,
gexH < —M?2H. That is, G = —M?H and so G = M2H.

(2. M2= —-M (J {1} by (2.9) (2). Thus if xe M2, H < D{l, —x)
and so x € C(H). That is, M2 = C(H). Hence (2) follows from (1).

(3). This follows from (2) by (1.2).

(4). We have shown M2 = C(H). Parts (2) and (3) imply |G| = |H| -
|C(H)|. If M2 # C(H), then |G| > |H| - |M?|, which contradicts (1).

(5). O(C(H)) = {q(c, x) | ce C(H), x€ G} = {g(—m, x) |me M, x € G}
by (4) and (2.9) (2). But g(—m, x) = 0 or p by (2.4) (1). Hence Q(C(H))
= {0, o}.

PrOOF OF THEOREM 1.1. Recall that if |M| = 1, we have already proved

the result in Corollary 2.2. For |M| > 1, we first show that D{1, mh) <
D{1, m), for every h € H. Let x € D{1, mh). Then g(x, —mh) = 0,
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hence, g(x, —m) = q(x, h). If g(x, —m) = 0, then x € D{1, m) as desired.
If g(x, —m) # 0, then g(x, —m) = p by (2.4) (1). Consequently, g(x, k) =
o and thus p € Q(H), contradicting our basic assumption. Now, to prove
that G = H x, C(H), we need only show that statement (1) of (1.3)
is satisfied. Let x € G. We must show xH, (| C(H) # @. By (2.12) (2),
x = hc for some he H, ce C(H). By (2.12) (4) and (2.9) 2), ce — M |J
{1}. If ¢ = 1, then x = h; clearly 1 € xH, (1 C(H). Suppose then that
c€ — M. Write c = —m, for some me M. Then x = hc = —hm. Since
xh € C(H), it suffices to show that xk € xH,. That is, we will show ke H,.
Let ye D{1, —x) = D{l, hm). By the first part of our proof we see
that y € D1, m) (\ D1, hm) < D{l, —h). Consequently, D{1, —x)
< D{l, —h) and he H,. Finally, by (2.12) (5) we see that C(H) is a
local factor.

To illustrate the use of (1.1) we close with a proof of a result due to
Kaplansky [2].

CoOROLLARY 2.13. If |G| > 1 and i(a) = 2, for every ac G — {—1},
then |Q(G)| = 2.

PROOF. Let a € G. We have M(a) = {m e G|D{1, m) # D{l, ad} U
{a}. Notice that if —1 # g € G — M(a), then D{1, g> = D1, m), for
some m € M(a). Hence H(a) = (| pem@pD<l, m) = N,ec D1, g) =
{1}, since R is non-degenerate. Thus C(H) = () ,cpw D1, —h) = G.
Clearly a is a local element, so (1.1) implies |Q(G)| = |Q(C(H))| = 2.
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