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ON NEIGHBOURHOODS OF UNIVALENT CONVEX FUNCTIONS
RICHARD FOURNIER

Introduction. Let 4 denote the class of analytic functions f in the
unit disk £ = {z]]z| < 1} with f(0) = f'(0) — 1 = 0. For f(z) = z +
2 a;zF in A and § = 0 Ruscheweyh has defined the ¢-neighbourhood
N;(f) as follows:

Ni(f) = {g€ A1 () =z + 3 bzt and 3 Klay ~ byl < 0).

He has shown in [3], among other results, that if f(z) =z + X2,
a,z* € C, then

(1) N, (f) < S*ifd, = 2-2/n

where C(S*) denotes the class of normalized convex (starlike) univalent
functions in 4. Ruscheweyh also asked in [3] if results analogous to (1)
would hold if the class C were replaced by some of its subclasses.

Let ¢ > 1/2. We consider the following subclasses of A4:

(8% = {feAl‘Zf(lz()‘z) - t‘< t,z€ E}

and

(€)= {fe4]

zf"(2) _
) + 1 t‘< t,ze E}.

It is clear that (S*), = S* and (C), = C. The classes (S*), and (C), have
been studied by several authors (see for example [4], [5], [6]). We prove

THEOREM 1. Let t = 1 and f(2) = z + 132,41 ayz* €(C)y. Then N; (f) <
($*); if 0, = (2 — 1/t) ~Wm@-Un/QA-VD_ The value given to ¢, is the best
possible.

THEOREM 2. Let 1/2 <t £ 2. and f(z) = z + X2 ayz¥ € (C),. Then
Ny(f) = (8%),if 0 = infcg [t(f(2)/2)] — |f'(2) — t(f(2)/2)l.

THEOREM 3. Let 1/2 <t £ 1 and f(2) = z + L2 az*€(C),. Then
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N;(f) € (S*) if 0, = (2 — 1/t)"VUw@Un/A=1/D_ The value given to
0, is the best possible.

A special case of Theorem | has already been published in [2]. It is
not clear that the value given to ¢ in Theorem 2 is best possible for each
function f€ (C), when 1/2 < ¢t < 2. However, we are going to verify that

inf f (Z)
2€E, fe(C);

f(Z) lez—)— =g, whenl < 1.

It follows from (1) that Ny,(C) = S*, and it follows from Theorem 1
that N;((C),) = (§*), if 6 = (2 — 1/t)~2"1/v/aA-Vn_ Ruschewehy asked
[3] for a geometric characterization of Ny,4(C). We are unable to answer
this question, but we can show

THEOREM 4. Let t Z 1, w, = (1/t) — 1 and f(2) = z + X2, a2¥ €
(C). Let also 9, = (2 — 1/t)" V@ VA=V gnd g e N,;(f). Then
(1/x) g(xz) € (C), where x is the unique root in the interval (0, 1) of the

equation
1—w;
) (1 = x)(1 — wpxm) 7 - = sup (kxk1)3, = 0.
=22

THEOREM 5. Let f(z2) = z + 1,1 a2zt € C. also let d, = 272/» gnd
8€ N, (f). Then (1/x) g(xz) € C where x is the unique root in the interval
(0, 1) of the equation

_l=x =1 =
3 (1T + x»)72/n Skglz’ (kx*"1)d, = 0.

It is not hard to see that the root in the interval (0, 1) of the equation
(2) in the case where n = 1 is, in fact, equal to the radius of convexity
of the class N3((C),) when ¢ = (2 — 1/t)~@-1/0/1-1/0 Tt is also not hard
to check that the equation (3) when n = 1 is equivalent to

1 —x

x—
T+xF 20

This implies easily that the radius of convexity of the class Ny ,(C)
is equal to 4/2 — 1. We would also like to indicate that the case n = oo of
both Theorems 4 and 5 is just the following well-known result (see [1;
p. 74, problem 24]). Let g(z) = z + YR, bzFe A with Y32, klb,| < 1.
Then 2g(2/2) € C.

Finally we point out that in establishing most of the above mentioned
theorems our main tool is the Hadamard product (or convolution) of an-
alytic functions. If the two functions f(z) = z + X2, a,z” and g(z) =
z + X 2,b,z" belong to A their Hadamard product is the function f*g
in A defined as
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fxg(2) =z + i a,b,z".
n=2

It is not difficult to verify that many classes mentioned above can be
defined in terms of convolution. For example

@ fes* =V TeRVzeE 20 49
where
_zZ[(l =22 +iTz/(1 - 2)
rle) = [+ iT ;
and
® fG(S*),©V0e[0,27;]vzeE,f*ilo(Z)¢0
where

1 —2)2 — K1 0)z/(]1 —
e ey

Proof of Theorem 1. We first remark that in order to prove Theorem 1
it is enough to show that

6) }-ff—*@ > 5,,0€0,21), ze E.

As a matter of fact if f(z) = z + L2, az*and g(z) = z + LR, bzt e
N; (f) we obtain

%) | 8*he(2) | > | [ * ho(2) | _ ‘(g =N *h@) 5 _[8=H*h(2)
oz 1Tz z " z
because
(8 =S)*hy(2) | _|s> k=11 +€F) o _ a1
z - ,;_2 1—t(1 + ) by — a2t 1
&k — (1 + e) _
(® = kz=:2 i—lw‘ by — ail
® < ) klby — ayl
k=2
(10) <0,
The passage from (8) to (9) is justified by the fact that
v, |-t +eD | piryn .

T= 1 + 9)
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The passage from (9) to(10) is justified by the fact that g € N; (f). Accord-
ing to (5) the condition (7) means that g € N; (f).

In order to prove (6) we need two lemmas (stated here without proof)
about bounded analytic functions in the disk.

LEMMA 1.1. Let the function w(z) be analytic in the unit disk E and
let \w(z)| < lif z€ E. Then if w(z) = w(0) + 2332, 2%,

1 + |z|*Re(w(0))
I — |z[27lw(0)[2 -

Vze ERe(w(z) — w(0)) 2 — (1=[w(0)?) |z|"
LEMMA 1.2. Under the hypothesis of Lemma 1.1 we have

w(z) — e 1 — |z|#
VieEVOe[0. 20, MO 12 RO

Lemma 1.1 will be used to obtain a sharp lower bound on |f'(2)|. Ac-
cording to the definition of (C), we have

s 1 wl) —wp g | r w(pz) — w,
a) nE) = g [, MO s = g | M=
where w(z) = (1/t) (zf"(2)/f'(z)) + (1/t) — 1 is a function of the type
described in Lemma 1.1 with w(0) = w, = (1/t) — 1 < 0. By comparing
the real parts in (11) it will follow from lemma 1.1 that

1—w,;
Iz — wlz|)m: , zeE.
We are now in position to prove (6). Put

- _ ') = (1 +e)f(2)
F(z) = f*hz) = T2 T 2

A simple calculation will show that

—ipy F'(2) i < 1 zf"(2) >
1 — we i) —; =1 — e = +w
(=™ ) rre T
and this last statement, together with the definition of the class (C),, means
that the function F(z) is a univalent close-to-convex function. Moreover

F@) = 1) 2=

where w(z) is a function satisfying the hypothesis of Lemma 1.2 with
w(0) = w,. We therefore obtain, using (12) and Lemma 1.2,

(13) IF@I 2 (1= w o) =12 ek
B R (RO
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Since the function F is univalent we can integrate this last inequality to
obtain

Izl 1 — on 1—w,
2 do = |z|(1 = wlz|") e

1—w
0 (l _ wtpn)l—- nw’l

IFG) 2 |

and an application of the maximum principle to the non-vanishing func-
tion F(z)/z will then give

|f*/z10(z) =1ng) > (1 — w) ' =0, zeE

This completes the proof of Theorem 1. The value given to g, is the
best possible, as is seen from the functions

z 1—w;
flz) = jo(l + weteln) e dE, w, = % —1, aeR.

Some simple calculations will show that fe (C),, f®(0) =0ifl<k Zn
and

(f@) + 222w (o)
z =0

f@) + 6,277 =

for a good choice of z with |[z] = | and « € R. It means therefore that
Ni(f) = (8*),if d > 0,

It is also interesting to note that the result given by (1) is in fact a
simple consequence of Theorem 1. Let f(z) € C with f®(0) = 0 if 1 <
k < nand let 0 < r < |; there must exist a real number #y(r) > 1 such
that

t 2 1) = L frz) € (O,
and, according to Theorem I,
1 . -1 2ot
L2 100) = NoL102) = (5%, < s%it5, = @ — Y
Therefore, if we let t — oo for fixed r, we have
Nd,,(% f(rz)) c S*ifd, = 2-1/,

and now letting r — 1, we obtain Ruscheweyh’s result.

Proof of Theorem 2. Let f(z) = z + Y2, a,zke (C), where 1/2 < t £ 2
and g(z) = z + L bzt € No(f) withd = infcg [1(f(2)/2)] — |f'(2) —
t(f(2)/z)|. In order to show that g € ($*), it is enough to verify that
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‘t@i - 182 — tL"Z)i >0, zeE.

But we have

gt g@! - g'(2) - tg(_z)i

z

> s

S,
1D pey - o SC

— (182 _ 1@ \(g(z) 1@ - (£2 - 12))

z z
2 o-(89 - LD (¢ 0) - 0 - (8D - 1D) )5 0
because for z€ E

188 T 4 @) - e - (89 - SO

z

356 = @)zt + |5k = 1) (b = azt
k=2 k=2 |

IIA

’;2(1 + |k — 1)) by — ayl 2|71
<Y kb, —al S 5,iff # g
k=2

This complete the proof of Theorem 2.

We are unable to decide in general if the value given to g is the best
possible. However we are going to show that in the case where 1 < ¢
we have

aay inf [SD

fE(C)l

() - f(z)‘—(l—w) wow =1

The statement (14) together with the fact that the value given to §; in
Theorem 1 is best possible will show, at least, that Theorem 2 is sharp
with respect to the complete class (C), if 1 < ¢ =< 2.

Let t 2 1, fe(C), and w, = 1/t — 1 = 0. Define
F(z) = zf'(z) — t(1 + e?)f(z), 0 €0, 2x].
The identity

F@) _ 126 e
ro T et T
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shows clearly that F is a univalent (non-normalized) close-to-convex
function; it shows also that

AT N E A Y
7@ 2N\ T ) T T P
Using the estimate (12), we obtain
F'@ = (- wiz)) e L =12 e E
= t l . W;|Z| s

and just as in The proof of Theorem 1

‘M
z

() — 11 + e f(zz—)| > = w)wmt, zeE 0¢[0, 27].

Now since the value of # in the last inequality is arbitrary we obtain

£2)
(1s) L2

) — tﬂzfli > = w)w", zeE

Simple calculations would show that the above inequality becomes an
equality if we choose f(z) = (1 + w;z)* — 1 €(C), and z = — 1. This,
together with (15), mean that the statement (14) is valid.

Finally we would like to insist on the fact that, contrary to what might
be suggested by (14), Theorem 1 is not valid when 1/2 < ¢ < 1; otherwise
we would obtain, letting n — oo,

(16)  g(z) =z + 3 bzte (C),if 3 kb, < 1 and L <1 <1,
k=2 k=2

But this last statement is seen to be false by a careful study of the poly-
nomials g(z) = z + (e'®/n) z” with n large enough. The correct “version”
of (16) was first established in [6] where it is shown that the condi-
tion X 2, k|b,] < 1 should be replaced by the more restrictive condition
2 i2ok|bl = 2t — 1. An extension of Theorem 1 to the case where 1/2 <
t < 1is given in Theorem 3.

Proof of Theorem 3. As in the case of Theorem 1 it is sufficient to show

1@ >3, zeE 0el0, 2z,

where

hy(z) = z/(1 — 2)2 — (1 + e?)z/(1 — 2) .

— efl

We define F(z) = f* hy(z) and obtain the identity
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F'(2) _i0 2f"(2)
17 A | =it H 2
an 7@ T
By the definition of the class (C), we have that the function zf”(z)/f"(z) is

subordinate to the function (I — w,)z#*/(1 + w,z?) and it follows from
(17) that

F'(z) A —w)lz|” _ 1 — |z
(18) Re<f,(z)>; - ol = Ll s 0zek,

and by (12)

, LIow ] — |z|»
> — ") nwy —— =1 .
(19) IF (Z)I = (l WtIZI ) 1 _ W;[Z|” » Z € E

The inequality (18) means that F is a univalent close-to-convex function
and just as in the proof of Theorem I,

fif*ila(z)i=‘F§Z)! > - wt)l,,_—,‘f’ =35, z€E

This completes the proof of Theorem 3. For the same reasons as in
Theorem 1, the value given to g, is the best possible.

Proof of Theorem 4. Let f(z) = z + X2, a2 €(C), and g(z) =
z + 252, b2k € N; (f). We have to show that (1/x) g(xz) € (C), where
x is the only root in the interval (0, 1) of the equation (2). It is easily
checked that (1/x) g(xz) € (C), < zg'(xz) € (§*);, and in order to prove
Theorem 4 it will be sufficient, according to (5), to show that

28 (x2)*hy(z) #0, 0€[0,27],z€E.
z

Since

‘gzg’(x2)*ho(2)} > ~2f (xz)*hy(z)
2 = z

_ ’(Zg'(XZ) —2f"(x2))*hy(2)
z

it will be enough to verify, in view of equation (2), that

(20) i(zg'(xz)—zjz”'(xz))*ho(z)i < Sg (kx*1)3,, €0, 27), z€ E,
! | k.
and
@1 |wj > (1 = x)(1 — wex) hm’, 00, 2a), z€ E.

The truth of (20) follows from
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’ _ ’ h oo — 7
(28'(x2) ZZ (xz))* 0(2)‘ = kzzlzkl —tt((ll i;‘:;) kxk—l(bk__ak)zk-lj‘

0

2: kixt1|b, — a)
=

IIA

IIA

sup (kx*1),,
k=22

since g € N; (f).
To establish (21) we remark that zf'(z) * hy(z)/z = (f * hy(z))’ and
according to (13),

Zf’(xZ)Z* hg(Z) ; (l _ x”lz‘”)(l _ wtxnlzln)_1+l;::'

1—w;
> = x) (1 — wxr) -

This completes the proof of Theorem 4. The value given to x is the best
possible, as can be seen from the function f(z) = [§(1 + w,&n)A—wd/mede,
In fact, if sup,.,(kx*1) = mx™~1 where m is an integer = 2 and if
8(2) = f(2) + e'*(0,/m)z™ € N;(f), simple calculations show that

ﬂ_{%(_zl =(1 + wx"z")lr:_u:l:t
z t

1—w;
+ (1 =w)(1 +w;xnz7) oy Lxnzn 4 (mxm—1)g efazm—1

—w,

1
=(1 = x")(1 = wxn) T — sup (kx*1)3, = 0.
k=2

if z2 = —1 and « is a real number correctly chosen. This means that
(1/»)g(yz) ¢ (C), if y > x. We also remark that since

28'(x2) 4 ho(2) _ o ( l%&@.)

> gxz)(1 + 22 )
the value given for x is, in fact, the radius of convexity of the class
N; (f) = (§%),, for fixed t < 1.
fE©),
F®0)=0, 1<k=n

Proof of Theorem 5. The proof of Theorem 5 is very similar to the proof
of Theorem 4 and for that reason only the main steps will be supplied.
We need the following lemma due to Ruscheweyh [3]. Here

_zil =22 +iTz/(1l —2) _ & n+ il _,
hr(z) = I +iT =X T13ir?

where T is a real number.

LEMMA 5.1. Let F(z) = z + X2, cz¥ € S*. Then
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Fxh(2)| S 1 — |z|»

z |= (1 + IZI”)1+2/” 5 ZGE, TE. R.

To prove Theorem 5 it will be enough to verify that, for f(z) = z +
Titannqzf e C and g(z) = z + X2, b,z € N, (f), we have

22) ;(zg'(XZ) - Zfz '(x2)) * hr(2)

< sup (kx*1)d,, zeE, TeR,
k=2

and

[ — x»

> (1 + xn)1+2/n ’

zeE, TeR.

(23) zf"(x2) * hy(z)
z

Here x is the unique root in (0, 1) of the equation (4).

The truth of (22) follows mainly from the fact that maxycg|(k + iT)/
(1 + iT)| = k. The truth of (23) follows from an application of Lemma
5.1to the starlike function zf’(xz). This completes the proof of Theorem
5. The value given to x is best possible as seen from the functions f(z) =
f8(1 = §m)~%/7d € C and g(z) = f(2) + d,e**/mzm € N, (f) where sup,,
(kx*~1) = mx™1 m is an integer = 2 and « is an appropriately chosen
real number.

Conclusion. As a conclusion we would like to mention that some of the
main results of this paper can be extended to some classes of non-convex
univalent functions. For example if

H={feAd|Re(f'(2)) >0,z€E},
H={feA|Re(f'(2) + 2"(2)) > 0, z € E}
we can prove that
fQ)=z+ 3 azte H= Ny(f) < Hifd, = j'l_}__f’:dp
k=n+1 0 + p

and

fo) =z + i‘ a,z* € Hand g € N; (f) =>-)1?g(xz)e H
k

=n+1

where x is the unique root in (0, 1) of the equation

1 —x _ =15 —
T Sklglg) (kx¥1g, = 0.
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