ON NEIGHBOURHOODS OF UNIVALENT CONVEX FUNCTIONS

RICHARD FOURNIER

Introduction. Let A denote the class of analytic functions f in the unit disk $E=\{z| | z \mid<1\}$ with $f(0)=f^{\prime}(0)-1=0$. For $f(z)=z+$ $\sum_{k=2}^{\infty} a_{k} z^{k}$ in A and $\delta \geqq 0$ Ruscheweyh has defined the δ-neighbourhood $N_{\delta}(f)$ as follows:

$$
N_{\delta}(f)=\left\{g \in A \mid g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k} \text { and } \sum_{k=2}^{\infty} k\left|a_{k}-b_{k}\right| \leqq \delta\right\}
$$

He has shown in [3], among other results, that if $f(z)=z+\sum_{k=n+1}^{\infty}$ $a_{k} z^{k} \in C$, then

$$
\begin{equation*}
N_{d_{n}}(f) \subset S^{*} \text { if } d_{n}=2^{-2 / n} \tag{1}
\end{equation*}
$$

where $C\left(S^{*}\right)$ denotes the class of normalized convex (starlike) univalent functions in A. Ruscheweyh also asked in [3] if results analogous to (1) would hold if the class C were replaced by some of its subclasses.

Let $t>1 / 2$. We consider the following subclasses of A :

$$
\left(S^{*}\right)_{t}=\left\{\left.f \in A| | \frac{z f^{\prime}(z)}{f(z)}-t \right\rvert\,<t, z \in E\right\}
$$

and

$$
(C)_{t}=\left\{\left.f \in A| | \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1-t \right\rvert\,<t, z \in E\right\}
$$

It is clear that $\left(S^{*}\right)_{t} \subset S^{*}$ and $(C)_{t} \subset C$. The classes $\left(S^{*}\right)_{t}$ and $(C)_{t}$ have been studied by several authors (see for example [4], [5], [6]). We prove

Theorem 1. Let $t \geqq 1$ and $f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k} \in(C)_{t}$. Then $N_{\delta_{n}}(f) \subset$ $\left(S^{*}\right)_{t}$ if $\delta_{n}=(2-1 / t)^{-(1 / n)(2-1 / t) /(1-1 / t)}$. The value given to δ_{n} is the best possible.

Theorem 2. Let $1 / 2<t \leqq 2$ and $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \in(C)_{t}$. Then $N_{\delta}(f) \subset\left(S^{*}\right)_{t}$ if $\delta=\inf _{z \in E}|t(f(z) / z)|-\left|f^{\prime}(z)-t(f(z) / z)\right|$.

Theorem 3. Let $1 / 2<t \leqq 1$ and $f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k} \in(C)_{t}$. Then

[^0]Copyright © 1986 Rocky Mountain Mathematics Consortium 579
$N_{\delta_{n}}(f) \subset\left(S^{*}\right)_{1}$ if $\delta_{n}=(2-1 / t)^{-(1 / n)(2-1 / t) /(1-1 / t)}$. The value given to δ_{n} is the best possible.

A special case of Theorem 1 has already been published in [2]. It is not clear that the value given to δ in Theorem 2 is best possible for each function $f \in(C)_{t}$ when $1 / 2<t \leqq 2$. However, we are going to verify that

$$
\inf _{z \in E, f \in(C)_{t}}\left|t \frac{f(z)}{z}\right|-\left|f^{\prime}(z)-t \frac{f(z)}{z}\right|=\delta_{1} \text { when } 1 \leqq t
$$

It follows from (1) that $N_{1 / 4}(C) \subset S^{*}$, and it follows from Theorem 1 that $N_{\delta}\left((C)_{t}\right) \subset\left(S^{*}\right)_{t}$ if $\delta=(2-1 / t)^{-(2-1 / t) /(1-1 / t)}$. Ruschewehy asked [3] for a geometric characterization of $N_{1 / 4}(C)$. We are unable to answer this question, but we can show

Theorem 4. Let $t \geqq 1, w_{t}=(1 / t)-1$ and $f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k} \in$ $(C)_{t}$. Let also $\delta_{n}=(2-1 / t)^{-(1 / n)(2-1 / t)(1-1 / t)}$ and $g \in N_{\delta_{n}}(f)$. Then $(1 / x) g(x z) \in(C)_{t}$ where x is the unique root in the interval $(0,1)$ of the equation

$$
\begin{equation*}
\left(1-x^{n}\right)\left(1-w_{t} x^{n}\right)^{-1+\frac{1}{n} \frac{1-w_{t}}{w_{t}}}-\sup _{k \geqq 2}\left(k x^{k-1}\right) \delta_{n}=0 . \tag{2}
\end{equation*}
$$

Theorem 5. Let $f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k} \in C$. also let $d_{n}=2^{-2 / n}$ and $g \in N_{d_{n}}(f)$. Then $(1 / x) g(x z) \in C$ where x is the unique root in the interval $(0,1)$ of the equation

$$
\begin{equation*}
\frac{1-x^{n}}{\left(1+x^{n}\right)^{1+2 / n}}-\sup _{k \geq 2}\left(k x^{k-1}\right) d_{n}=0 . \tag{3}
\end{equation*}
$$

It is not hard to see that the root in the interval $(0,1)$ of the equation (2) in the case where $n=1$ is, in fact, equal to the radius of convexity of the class $N_{\delta}\left((C)_{t}\right)$ when $\delta=(2-1 / t)^{-(2-1 / t) /(1-1 / t)}$. It is also not hard to check that the equation (3) when $n=1$ is equivalent to

$$
\frac{1-x}{(1+x)^{3}}-\frac{x}{2}=0
$$

This implies easily that the radius of convexity of the class $N_{1 / 4}(C)$ is equal to $\sqrt{2}-1$. We would also like to indicate that the case $n=\infty$ of both Theorems 4 and 5 is just the following well-known result (see [1; p. 74, problem 24]). Let $g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k} \in A$ with $\sum_{k=2}^{\infty} k\left|b_{k}\right| \leqq 1$. Then $2 g(2 / 2) \in C$.

Finally we point out that in establishing most of the above mentioned theorems our main tool is the Hadamard product (or convolution) of analytic functions. If the two functions $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ and $g(z)=$ $z+\sum_{n=2}^{\infty} b_{n} z^{n}$ belong to A their Hadamard product is the function $f * g$ in A defined as

$$
f * g(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n^{2}} .
$$

It is not difficult to verify that many classes mentioned above can be defined in terms of convolution. For example

$$
\begin{equation*}
f \in S^{*} \Leftrightarrow \forall T \in \mathbf{R} \forall z \in E, \frac{f * h_{T}(z)}{z} \neq 0 \tag{4}
\end{equation*}
$$

where

$$
h_{T}(z)=\frac{z /(1-z)^{2}+i T z /(1-z)}{1+i T},
$$

and

$$
\begin{equation*}
f \in\left(S^{*}\right)_{t} \Leftrightarrow \forall \theta \in[0,2 \pi] \forall z \in E, \frac{f * h_{\theta}(z)}{z} \neq 0 \tag{5}
\end{equation*}
$$

where

$$
h_{\theta}(z)=\frac{z /(1-z)^{2}-t\left(1+e^{i \theta}\right) z /(1-z)}{1-t\left(1+e^{i \theta}\right)} .
$$

Proof of Theorem 1. We first remark that in order to prove Theorem 1 it is enough to show that

$$
\begin{equation*}
\left|\frac{f * h_{\theta}(z)}{z}\right|>\delta_{n}, \theta \in[0,2 \pi], z \in E . \tag{6}
\end{equation*}
$$

As a matter of fact if $f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k}$ and $g(z)=z+\sum_{k=2}^{\infty} b_{k^{z}} z^{k} \in$ $N_{\delta_{n}}(f)$ we obtain

$$
\begin{equation*}
\left|\frac{g * h_{\theta}(z)}{z}\right| \geqq\left|\frac{f * h_{\theta}(z)}{z}\right|-\left|\frac{(g-f) * h_{\theta}(z)}{z}\right|>\delta_{n}-\left|\frac{(g-f) * h_{\theta}(z)}{z}\right|>0 \tag{7}
\end{equation*}
$$

because

$$
\left|\frac{(g-f) * h_{\theta}(z)}{z}\right|=\left|\sum_{k=2}^{\infty} \frac{k-t\left(1+e^{i \theta}\right)}{1-t\left(1+e^{i \theta}\right)}\left(b_{k}-a_{k}\right) z^{k-1}\right|
$$

$$
\begin{align*}
& \leqq \sum_{k=2}^{\infty}\left|\frac{k-t\left(1+e^{i \theta}\right)}{1-t\left(1+e^{i \theta}\right)}\right|\left|b_{k}-a_{k}\right| \tag{8}\\
& \leqq \sum_{k=2}^{\infty} k\left|b_{k}-a_{k}\right| \tag{9}\\
& \leqq \delta_{n} . \tag{10}
\end{align*}
$$

The passage from (8) to (9) is justified by the fact that

$$
\forall \theta,\left|\frac{k-t\left(1+e^{i \theta}\right)}{1-t\left(1+e^{i \theta}\right)}\right| \leqq k \text { if } t \geqq 1 .
$$

The passage from (9) to (10) is justified by the fact that $g \in N_{\delta_{n}}(f)$. According to (5) the condition (7) means that $g \in N_{\delta_{n}}(f)$.

In order to prove (6) we need two lemmas (stated here without proof) about bounded analytic functions in the disk.

Lemma 1.1. Let the function $w(z)$ be analytic in the unit disk E and let $|w(z)|<1$ if $z \in E$. Then if $w(z)=w(0)+\sum_{k=1}^{\infty} c_{k} z^{k}$,

$$
\forall z \in E \operatorname{Re}(w(z)-w(0)) \geqq-\left(1-|w(0)|^{2}\right)|z|^{n} \frac{1+|z|^{n} \operatorname{Re}(w(0))}{1-|z|^{2 n}|w(0)|^{2}}
$$

Lemma 1.2. Under the hypothesis of Lemma 1.1 we have

$$
\forall z \in E \forall \theta \in[0,2 \pi], \frac{w(z)-e^{i \theta}}{w(0)-e^{i \theta}} \left\lvert\, \geqq \frac{1-|z|^{n}}{1+|w(0)||z|^{n}} .\right.
$$

Lemma 1.1 will be used to obtain a sharp lower bound on $\left|f^{\prime}(z)\right|$. According to the definition of $(C)_{t}$ we have

$$
\begin{equation*}
\ln \left(f^{\prime}(z)\right)=\frac{1}{1+w_{t}} \int_{0}^{z} \frac{w(\xi)-w_{t}}{\xi} d \xi=\frac{1}{1+w_{t}} \int_{0}^{1} \frac{w(\rho z)-w_{t}}{\rho} d \rho \tag{11}
\end{equation*}
$$

where $w(z)=(1 / t)\left(z f^{\prime \prime}(z) / f^{\prime}(z)\right)+(1 / t)-1$ is a function of the type described in Lemma 1.1 with $w(0)=w_{t}=(1 / t)-1 \leqq 0$. By comparing the real parts in (11) it will follow from lemma 1.1 that

$$
\left|f^{\prime}(z)\right| \geqq\left(1-w_{t}|z|^{n}\right)^{\frac{1-w_{t}}{n w_{t}}}, \quad z \in E
$$

We are now in position to prove (6). Put

$$
F(z)=f * h_{\theta}(z)=\frac{z f^{\prime}(z)-t\left(1+e^{i \theta}\right) f(z)}{1-t\left(1+e^{i \theta}\right)} .
$$

A simple calculation will show that

$$
\left(1-w_{t} e^{-i \theta}\right) \frac{F^{\prime}(z)}{f^{\prime}(z)}=1-e^{-i \theta}\left(\frac{1}{t} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+w_{t}\right)
$$

and this last statement, together with the definition of the class $(C)_{t}$, means that the function $F(z)$ is a univalent close-to-convex function. Moreover

$$
F^{\prime}(z)=f^{\prime}(z) \frac{w(z)-e^{i \theta}}{w(0)-e^{i \theta}}
$$

where $w(z)$ is a function satisfying the hypothesis of Lemma 1.2 with $w(0)=w_{t}$. We therefore obtain, using (12) and Lemma 1.2,

$$
\begin{equation*}
\left|F^{\prime}(z)\right| \geqq\left(1-w_{t}|z|^{n}\right)^{\frac{1-w_{t}}{n w_{t}}} \frac{1-|z|^{n}}{\left(1-w_{t}|z|^{n}\right)}, \quad z \in E . \tag{13}
\end{equation*}
$$

Since the function F is univalent we can integrate this last inequality to obtain

$$
|F(z)| \geqq \int_{0}^{|z|} \frac{1-\rho^{n}}{\left(1-w_{t} \rho^{n}\right)^{1-\frac{1-w_{t}}{n w_{t}}}} d \rho=|z|\left(1-w_{t}|z|^{n}\right)^{\frac{1-w_{t}}{n w_{t}}}
$$

and an application of the maximum principle to the non-vanishing function $F(z) / z$ will then give

$$
\left|\frac{f * h_{\theta}(z)}{z}\right|=\left|\frac{F(z)}{z}\right|>\left(1-w_{t}\right)^{\frac{1-w_{t}}{n w_{t}}}=\delta_{n}, \quad z \in E .
$$

This completes the proof of Theorem 1. The value given to δ_{n} is the best possible, as is seen from the functions

$$
f(z)=\int_{0}^{z}\left(1+w_{t} e^{\left.i \alpha \xi^{n}\right)^{\frac{1-w_{t}}{n w_{t}}} d \xi, w_{t}=\frac{1}{t}-1, \quad \alpha \in \mathbf{R}}\right.
$$

Some simple calculations will show that $f \in(C)_{t}, f^{(k)}(0)=0$ if $1<k \leqq n$ and

$$
f^{\prime}(z)+\delta_{n} z^{n-1}=\frac{\left(f(z)+\frac{\delta_{n}}{n} z^{n}\right) * h_{\pi}(z)}{z}=0
$$

for a good choice of z with $|z|=1$ and $\alpha \in \mathbf{R}$. It means therefore that $N_{\delta}(f) 区\left(S^{*}\right)_{t}$ if $\delta>\delta_{n}$.

It is also interesting to note that the result given by (1) is in fact a simple consequence of Theorem 1. Let $f(z) \in C$ with $f^{(k)}(0)=0$ if $1<$ $k \leqq n$ and let $0<r<1$; there must exist a real number $t_{0}(r)>1$ such that

$$
t \geqq t_{0}(r) \Rightarrow \frac{1}{r} f(r z) \in(C)_{t},
$$

and, according to Theorem 1,

$$
t \geqq t_{0}(r) \Rightarrow N_{\delta_{n}}\left(\frac{1}{r} f(r z)\right) \subset\left(S^{*}\right)_{t} \subset S^{*} \text { if } \delta_{n}=(2-1 / t)^{-\frac{1}{n} \frac{2-1 / t}{1-1 / t}}
$$

Therefore, if we let $t \rightarrow \infty$ for fixed r, we have

$$
N_{d_{n}}\left(\frac{1}{r} f(r z)\right) \subset S^{*} \text { if } d_{n}=2^{-1 / n}
$$

and now letting $r \rightarrow 1$, we obtain Ruscheweyh's result.
Proof of Theorem 2. Let $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \in(C)_{t}$ where $1 / 2<t \leqq 2$ and $g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k} \in N_{\delta}(f)$ with $\delta=\inf _{z \in E}|t(f(z) / z)|-\mid f^{\prime}(z)-$ $t(f(z) / z) \mid$. In order to show that $g \in\left(S^{*}\right)_{t}$ it is enough to verify that

$$
\left|t \frac{g(z)}{z}\right|-\left|g^{\prime}(z)-t \frac{g(z)}{z}\right|>0, \quad z \in E
$$

But we have

$$
\begin{aligned}
& \left.\left|t \frac{g(z)}{z}\right|-g^{\prime}(z)-t \frac{g(z)}{z} \right\rvert\, \\
& \left.\quad \geqq\left|t \frac{f(z)}{z}\right|-f^{\prime}(z)-t \frac{f(z)}{z} \right\rvert\, \\
& \quad-\left(t\left|\frac{g(z)}{z}-\frac{f(z)}{z}+\left|\left(g^{\prime}(z)-f^{\prime}(z)\right)-t\left(\frac{g(z)}{z}-\frac{f(z)}{z}\right)\right|\right)\right. \\
& \quad \geqq \delta-\left(t\left|\frac{g(z)}{z}-\frac{f(z)}{z}\right|+\left|\left(g^{\prime}(z)-f^{\prime}(z)\right)-t\left(\frac{g(z)}{z}-\frac{f(z)}{z}\right)\right|\right)>0
\end{aligned}
$$

because for $z \in E$

$$
\begin{aligned}
& t\left|\frac{g(z)}{z}-\frac{f(z)}{z}\right|+\left|\left(g^{\prime}(z)-f^{\prime}(z)\right)-t\left(\frac{g(z)}{z}-\frac{f(z)}{z}\right)\right| \\
& \quad=t\left|\sum_{k=2}^{\infty}\left(b_{k}-a_{k}\right) z^{k-1}\right|+\left|\sum_{k=2}^{\infty}(k-t)\left(b_{k}-a_{k}\right) z^{k-1}\right| \\
& \quad \leqq \sum_{k=2}^{\infty}(t+|k-t|)\left|b_{k}-a_{k}\right||z|^{k-1} \\
& \quad<\sum_{k=2}^{\infty} k\left|b_{k}-a_{k}\right| \leqq \delta, \text { if } f \not \equiv g .
\end{aligned}
$$

This complete the proof of Theorem 2.
We are unable to decide in general if the value given to δ is the best possible. However we are going to show that in the case where $1 \leqq t$ we have

$$
\begin{equation*}
\inf _{\substack{z \in E \\ f \in(C)_{t}}}\left|t \frac{f(z)}{z}\right|-\left|f^{\prime}(z)-t \frac{f(z)}{z}\right|=\left(1-w_{t}\right)^{\frac{1-w_{t}}{w_{t}}}, w_{t}=\frac{1}{t}-1 \tag{14}
\end{equation*}
$$

The statement (14) together with the fact that the value given to δ_{1} in Theorem 1 is best possible will show, at least, that Theorem 2 is sharp with respect to the complete class $(C)_{t}$ if $1 \leqq t \leqq 2$.

Let $t \geqq 1, f \in(C)_{t}$ and $w_{t}=1 / t-1 \leqq 0$. Define

$$
F(z)=z f^{\prime}(z)-t\left(1+e^{i \theta}\right) f(z), \theta \in[0,2 \pi] .
$$

The identity

$$
\frac{F^{\prime}(z)}{t f^{\prime}(z)}=\frac{1}{t} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{1}{t}-1-e^{i \theta}
$$

shows clearly that F is a univalent (non-normalized) close-to-convex function; it shows also that

$$
\left|\frac{F^{\prime}(z)}{f^{\prime}(z)}\right| \geqq t\left(1-\frac{|z|-w_{t}}{1-w_{t}|z|}\right)=\frac{1-|z|}{1-w_{t}|z|}, z \in E .
$$

Using the estimate (12), we obtain

$$
\left|F^{\prime}(z)\right| \geqq\left(1-w_{t}|z|\right)^{\frac{1-w_{t}}{n w_{t}}} \frac{1-|z|}{1-w_{t}|z|}, z \in E
$$

and just as in The proof of Theorem 1

$$
\left|\frac{F(z)}{z}\right|=\left|f^{\prime}(z)-t\left(1+e^{i \theta}\right) \frac{f(z)}{z}\right|>\left(1-w_{t}\right)^{\frac{1-w_{t}}{w_{t}}}, z \in E, \theta \in[0,2 \pi] .
$$

Now since the value of θ in the last inequality is arbitrary we obtain

$$
\begin{equation*}
\left|t \frac{f(z)}{z}\right|-\left|f^{\prime}(z)-t \frac{f(z)}{z}\right|>\left(1-w_{t}\right)^{\frac{1-w_{t}}{w_{t}}}, z \in E . \tag{15}
\end{equation*}
$$

Simple calculations would show that the above inequality becomes an equality if we choose $f(z)=\left(1+w_{t} z\right)^{1 / w_{t}}-1 \in(C)_{t}$ and $z=-1$. This, together with (15), mean that the statement (14) is valid.

Finally we would like to insist on the fact that, contrary to what might be suggested by (14), Theorem 1 is not valid when $1 / 2<t<1$; otherwise we would obtain, letting $n \rightarrow \infty$,

$$
\begin{equation*}
g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k} \in(C)_{t} \text { if } \sum_{k=2}^{\infty}\left|k b_{k}\right| \leqq 1 \text { and } \frac{1}{2}<t<1 . \tag{16}
\end{equation*}
$$

But this last statement is seen to be false by a careful study of the polynomials $g(z)=z+\left(e^{i \theta} / n\right) z^{n}$ with n large enough. The correct "version" of (16) was first established in [6] where it is shown that the condition $\sum_{k=2}^{\infty} k\left|b_{k}\right| \leqq 1$ should be replaced by the more restrictive condition $\sum_{k=2}^{\infty} k\left|b_{k}\right| \leqq 2 t-1$. An extension of Theorem 1 to the case where $1 / 2<$ $t<1$ is given in Theorem 3.

Proof of Theorem 3. As in the case of Theorem 1 it is sufficient to show

$$
\left|\frac{f * h_{\theta}(z)}{z}\right|>\delta_{n}, z \in E, \theta \in[0,2 \pi],
$$

where

$$
h_{\theta}(z)=\frac{z /(1-z)^{2}-\left(1+e^{i \theta}\right) z /(1-z)}{-e^{i \theta}}
$$

We define $F(z)=f * h_{\theta}(z)$ and obtain the identity

$$
\begin{equation*}
\frac{F^{\prime}(z)}{f^{\prime}(z)}=1-e^{-i \theta} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \tag{17}
\end{equation*}
$$

By the definition of the class $(C)_{t}$ we have that the function $z f^{\prime \prime}(z) / f^{\prime}(z)$ is subordinate to the function $\left(1-w_{t}\right) z^{n} /\left(1+w_{t} z^{n}\right)$ and it follows from (17) that

$$
\begin{equation*}
\operatorname{Re}\left(\frac{F^{\prime}(z)}{f^{\prime}(z)}\right) \geqq 1-\frac{\left(1-w_{t}\right)|z|^{n}}{1-w_{t}|z|^{n}}=\frac{1-|z|^{n}}{1-w_{t}|z|^{n}}>0, z \in E \tag{18}
\end{equation*}
$$

and by (12)

$$
\begin{equation*}
\left|F^{\prime}(z)\right| \geqq\left(1-w_{t}|z|^{n}\right)^{\frac{1-w_{t}}{n w_{t}}} \frac{1-|z|^{n}}{1-w_{t}|z|^{n}}, z \in E \tag{19}
\end{equation*}
$$

The inequality (18) means that F is a univalent close-to-convex function and just as in the proof of Theorem 1,

$$
\left|\frac{f * h_{\theta}(z)}{z}\right|=\left|\frac{F(z)}{z}\right|>\left(1-w_{t}\right)^{\frac{1-w_{t}}{n w_{t}}}=\delta_{n}, z \in E .
$$

This completes the proof of Theorem 3. For the same reasons as in Theorem 1, the value given to δ_{n} is the best possible.

Proof of Theorem 4. Let $f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k} \in(C)_{t}$ and $g(z)=$ $z+\sum_{k=2}^{\infty} b_{k} z^{k} \in N_{\delta_{n}}(f)$. We have to show that $(1 / x) g(x z) \in(C)_{t}$ where x is the only root in the interval $(0,1)$ of the equation (2). It is easily checked that $(1 / x) g(x z) \in(C)_{t} \Leftrightarrow z g^{\prime}(x z) \in\left(S^{*}\right)_{t}$, and in order to prove Theorem 4 it will be sufficient, according to (5), to show that

$$
\frac{z g^{\prime}(x z) * h_{\theta}(z)}{z} \neq 0, \quad \theta \in[0,2 \pi], z \in E
$$

Since

$$
\left|\frac{z g^{\prime}(x z) * h_{\theta}(z)}{2}\right| \geqq\left|\frac{z f^{\prime}(x z) * h_{\theta}(z)}{z}\right|-\left|\frac{\left(z g^{\prime}(x z)-z f^{\prime}(x z)\right) * h_{\theta}(z)}{z}\right|
$$

it will be enough to verify, in view of equation (2), that

$$
\begin{equation*}
\left|\frac{\left(z g^{\prime}(x z)-z f^{\prime}(x z)\right) * h_{\theta}(z)}{z}\right| \leqq \sup _{k \geq 2}\left(k x^{k-1}\right) \delta_{n}, \quad \theta \in[0,2 \pi], z \in E, \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{z f^{\prime}(x z) * h_{\theta}(z)}{z}\right|>\left(1-x^{n}\right)\left(1-w_{t} x^{n}\right)^{-1+\frac{1-w_{t}}{n w_{t}}}, \quad \theta \in[0,2 \pi], z \in E . \tag{21}
\end{equation*}
$$

The truth of (20) follows from

$$
\begin{aligned}
\left|\frac{\left(z g^{\prime}(x z)-z f^{\prime}(x z)\right) * h_{\theta}(z)}{z}\right| & =\left|\sum_{k=2}^{\infty} \frac{k-t\left(1+e^{i \theta}\right)}{1-t\left(1+e^{i \theta}\right)} k x^{k-1}\left(b_{k}-a_{k}\right) z^{k-1}\right| \\
& \leqq \sum_{k=2}^{\infty} k^{2} x^{k-1}\left|b_{k}-a_{k}\right| \\
& \leqq \sup _{k \geqslant 2}\left(k x^{k-1}\right) \delta_{n}
\end{aligned}
$$

since $g \in N_{\hat{o}_{n}}(f)$.
To establish (21) we remark that $z f^{\prime}(z) * h_{\theta}(z) / z=\left(f * h_{\theta}(z)\right)^{\prime}$ and according to (13),

$$
\begin{aligned}
\left|\frac{z f^{\prime}(x z) * h_{\theta}(z)}{z}\right| & \geqq\left(1-x^{n}|z|^{n}\right)\left(1-w_{t} x^{n}|z|^{n}\right)^{-1+\frac{1-w_{t}}{n w_{t}}} \\
& >\left(1-x^{n}\right)\left(1-w_{t} x^{n}\right)^{-1+\frac{1-w_{t}}{n w_{t}}}
\end{aligned}
$$

This completes the proof of Theorem 4. The value given to x is the best possible, as can be seen from the function $f(z)=\int_{0}^{z}\left(1+w_{t} \xi^{n}\right)^{\left(1-w_{t}\right) / n w_{t}} d \xi$. In fact, if $\sup _{k \geqq 2}\left(k x^{k-1}\right)=m x^{m-1}$ where m is an integer $\geqq 2$ and if $g(z)=f(z)+e^{i \alpha}\left(\delta_{n} / m\right) z^{m} \in N_{\delta_{n}}(f)$, simple calculations show that

$$
\begin{aligned}
\frac{z g^{\prime}(x z) * h_{\pi}(z)}{z}= & \left(1+w_{t} x^{n} z^{n}\right)^{\frac{1-w_{t}}{n w_{t}}} \\
& +\left(1-w_{t}\right)\left(1+w_{t} x^{n} z^{n}\right)^{\frac{1-w_{t}}{n w_{t}}-1} x^{n} z^{n}+\left(m x^{m-1}\right) \delta_{n} e^{i \alpha z^{m-1}} \\
= & \left(1-x^{n}\right)\left(1-w_{t} x^{n}\right)^{-1+\frac{1-w_{t}}{n w_{t}}}-\sup _{k \geq 2}\left(k x^{k-1}\right) \delta_{n}=0
\end{aligned}
$$

if $z^{n}=-1$ and α is a real number correctly chosen. This means that $(1 / y) g(y z) \notin(C)_{t}$ if $y>x$. We also remark that since

$$
\frac{z g^{\prime}(x z) * h_{\pi}(z)}{z}=g^{\prime}(x z)\left(1+\frac{x z g^{\prime \prime}(x z)}{g^{\prime}(x z)}\right)
$$

the value given for x is, in fact, the radius of convexity of the class

$$
\bigcup_{\substack{f \in(C))_{t} \\ f^{(k)}(0)=0,1<k \leqq n}} N_{\delta_{n}}(f) \subset\left(S^{*}\right)_{t}, \text { for fixed } t \leqq 1
$$

Proof of Theorem 5. The proof of Theorem 5 is very similar to the proof of Theorem 4 and for that reason only the main steps will be supplied. We need the following lemma due to Ruscheweyh [3]. Here

$$
h_{T}(z)=\frac{z /(1-z)^{2}+i T z /(1-z)}{1+i T}=\sum_{n=1}^{\infty} \frac{n+i T}{1+i T} z^{n}
$$

where T is a real number.
Lemma 5.1. Let $F(z)=z+\sum_{k=n+1}^{\infty} c_{k} z^{k} \in S^{*}$. Then

$$
\left|\frac{F * h_{T}(z)}{z}\right| \geqq \frac{1-|z|^{n}}{\left(1+|z|^{n}\right)^{1+2 / n}}, \quad z \in E, T \in \mathbf{R}
$$

To prove Theorem 5 it will be enough to verify that, for $f(z)=z+$ $\sum_{k=n+1}^{\infty} a_{k} z^{k} \in C$ and $g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k} \in N_{d_{n}}(f)$, we have

$$
\begin{equation*}
\left|\frac{\left(z g^{\prime}(x z)-z f^{\prime}(x z)\right) * h_{T}(z)}{z}\right| \leqq \sup _{k \geqq 2}\left(k x^{k-1}\right) d_{n}, \quad z \in E, T \in \mathbf{R}, \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{z f^{\prime}(x z) * h_{T}(z)}{z}\right|>\frac{1-x^{n}}{\left(1+x^{n}\right)^{1+2 / n}}, \quad z \in E, T \in \mathbf{R} . \tag{23}
\end{equation*}
$$

Here x is the unique root in $(0,1)$ of the equation (4).
The truth of (22) follows mainly from the fact that $\max _{T \in \mathbf{R}} \mid(k+i T) /$ $(1+i T) \mid=k$. The truth of (23) follows from an application of Lemma 5.1 to the starlike function $z f^{\prime}(x z)$. This completes the proof of Theorem 5. The value given to x is best possible as seen from the functions $f(z)=$ $\int_{0}^{2}\left(1-\xi^{n}\right)^{-2 / n} d \xi \in C$ and $g(z)=f(z)+d_{n} e^{i \alpha} / m z^{m} \in N_{d_{n}}(f)$ where $\sup _{k \geq 2}$ $\left(k x^{k-1}\right)=m x^{m-1}, m$ is an integer $\geqq 2$ and α is an appropriately chosen real number.

Conclusion. As a conclusion we would like to mention that some of the main results of this paper can be extended to some classes of non-convex univalent functions. For example if

$$
\begin{aligned}
& H=\left\{f \in A \mid \operatorname{Re}\left(f^{\prime}(z)\right)>0, z \in E\right\} \\
& \tilde{H}=\left\{f \in A \mid \operatorname{Re}\left(f^{\prime}(z)+z f^{\prime \prime}(z)\right)>0, z \in E\right\}
\end{aligned}
$$

we can prove that

$$
f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k} \in \tilde{H} \Rightarrow N_{\delta_{n}}(f) \subset H \text { if } \delta_{n}=\int_{0}^{1} \frac{1-\rho^{n}}{1+\rho^{n}} d \rho
$$

and

$$
f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k} \in \tilde{H} \text { and } g \in N_{\delta_{n}}(f) \Rightarrow \frac{1}{x} g(x z) \in \tilde{H}
$$

where x is the unique root in $(0,1)$ of the equation

$$
\frac{1-x^{n}}{1+x^{n}}-\sup _{k \geqq 2}\left(k x^{k-1}\right) \delta_{n}=0
$$

References

1. P. Duren, Univalent Functions, Springer Verlag, New York, 1983.
2. R. Fournier, A note on neighbourhoods of univalent functions, Proc. Amer. Math. Soc. 87 (1983), 117-120.
3. St. Ruscheweyh, Neighbourhoods of univalent functions. Proc. Amer. Math. Soc. 81 (1981), 521-527.
4. -, V. Singh, Convolution theorems for a class of bounded convex functions, Unpublished.
5. R. Singh, On a class of starlike functions II, Ganita 19 (1968), 103-110.
6. -, V. Singh, On a class of bounded starlike functions, Indian J. Pure Appl. Math. 5 (1974), 733-754.

Department of Mathematics and Statistics, University of Montreal, Montreal H3C 3J7, Quebec, Canada

[^0]: Received by the edictor on November 13, 1984.

