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AFFINE GEOMETRY AND THE FORM OF THE 
EQUATION OF A HYPERSURFACE 

ROBERT C. REILLY 

Introduction. In classical geometry, a subset M of R"+1 is said to be a 
hypersurface if it is the zero-set of some (appropriately restricted) function. 
This function is not uniquely determined by M; for example, if M is the 
zero-set of F: RM+1 -• R, then it is also the zero-set of G = h-Ffor any 
nowhere-vanishing function h: Rn+l -* R. In other words, the "equation 
of M" can assume many different forms. 

QUESTION. IS there a "canonical form" for the equation of A/? 

We do not answer this question here, but we do single out a class of 
"preferred forms" for the equation of any nondegenerate hypersurface 
R" *. (See §1.) 

The preferred forms for the equation of M give rise to certain geometric 
objects. Prescribing a volume element on R"^1 normalizes these objects, 
which then turn out to be well-known quantities from affine geometry: 
the Berwald-Blaschke (affine) metric, the Fubini-Pick form, and the affine 
normal. Our approach to these quantities is coordinate-free and seems 
simpler than the standard treatments which focus on the special linear 
group (see, for example, Blaschke [2], Guggenheimer [5], or Spivak [6]). 
(In particular, our approach does not require verifying the invariance of 
these quantities under change of parameters, since no parametric re­
presentation is used in the definitions.) Indeed, this paper could be used 
as a quick introduction to the basic notions of affine hypersurface-geo-
metry. 

Much of our formalism makes sense in spaces of infinite dimension, 
and our main result (Theorem C, in §2) characterizes the nondegenerate 
quadratic hypersurfaces in a Banach space. (The finite-dimensional ver­
sion is Berwald's theorem [1] in affine geometry.) 

Only minor changes are needed to make our discussion applicable to 
arbitrary level sets (and not just to zero-sets). In §3 we briefly consider 
those functions F such that on each level set of F, the equation F = c 
describing that set is one of the "preferred forms" for the equation of that 
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hypersurface. These functions must satisfy an affine version of the eikonal 
equation in Euclidean geometry. 

This paper was completed while I was visiting the Mathematical Sci­
ences Research Institute. I wish to thank Professors Chern and Moore 
for inviting me and for the hospitality they and the MSRI staff showed 
me during my stay. I also wish to thank Professor A. Treibergs for several 
useful comments. 

0. Conventions and notation. Throughout this paper, V denotes a Banach 
space over R and M is a connected hypersurface embedded in V, with 
inclusion map /: M -> V. (The "Banach" hypothesis allows us to use the 
infinite-dimensional differential calculus as described in, say, Dieudonne 
[3]. We never use the norm directly.) 

We often identify Fwith its tangent spaces, and we identify "algebraic" 
tensors on the vector space V with "constant" tensor fields on the manifold 
V. The symbol J denotes the contraction operator; that is, if 0 is a co-
variant tensor of rank r and if v is a vector, then v J 6 is the tensor of rank 
r - 1 defined by (v J 6) (v t , . . . , vr_x) = 0(v, vh . . . , vr_i). The direc­
tional derivatives of a function F on Fare written DF, D2F, etc., so DkFp 

is a symmetric /^-linear map (A\, . . . Ak) *-> DkFp(A\, . . . , Ak) on TpV = 
V. Sometimes we write DAFp instead of DFp(A). The operator D acts as 
the standard connection in Fwhen applied to V-valued maps. 

All manifolds, maps, etc., are assumed to be smooth (i.e., of class C°°). 

1. Basic constructions. 

DEFINITION. An Af-function is a smooth map F: U -> R, on some neigh­
borhood U of M in V, such that F(p) = 0 and DFp # 0 at each point p 
of M. The restrictions of D2F and D3F to vectors tangent along M are 
the fundamental forms, IIF and I IF, associated with F. More formally, 
if F is an A/-function, then 

I F = i*D2F and I IF = /*£>3F. 

REMARK. If F and G are both M-functions then there is a nowhere-
vanishing function h such that G = h-F on a neighborhood U' c U. 
(See Lemma 3 in the Appendix.) 

LEMMA 1. Suppose F, G, and h are functions with G = h-F as above. 
Then for p in U' and A, B, C in TpV, we have 

(1) DGp(A) = h(p)DFp(A) + Dhp{A)F{p\ 

D*GP(A, B) = h(p)D*Fp(A, B) 

+ Dhp{A)DFp{B) + Dhp(B)DFp(A) + D%(A, B)F{p\ 
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D*GP{A, B, C) = h(p)D*Fp(A, B, C) + Dhp(A)D2Fp(B, C) 

(3) + Dhp(B)D2Fp{Ai C) + Dhp(C)D*Fp(A, B) + D2hp(B, C)DFp(A) 

+ D2hp(A, C)DFp(B) + Z)2^M, *)DF,(C) + B*hp(A, B, C)F(p). 

PROOF. Use Leibnitz' Rule. 

COROLLARY. If F and G are M-functions, with G = h-F as above, then 
IIG — hllF. In particular, if UF: TpM x TpM->R is a nondegenerate 
bilinear form on TpM, then so is UG

p. 

(Recall that a continuous bilinear form Q: V x V -> R is said to be 
nondegenerate if the induced map Q: V -+ K*, defined by Q(v) (w) -
Q(v, w), is a linear homeomorphism.) 

DEFINITION. A hypersurface M is nondegenerate if there is an M-func-
tion Fsuch that IIF is nondegenerate at each point of M. 

REMARK. A nondegenerate hypersurface M has a well-defined conformal 
class of pseudo-Riemannian structures, namely, {IF: Fis an M-function}. 

From now on we assume that M is nondegenerate. Then we can asso­
ciate a "normal-vector field" vF with any A/-function F, as follows: for 
p in M, vF is the unique vector in TpV such that 

(4) (a) D2Fp(v
Fp, X) = 0 for all X in TpM, and (b) DFp{vF

p) = 1. 

The existence and uniqueness of vF follows easily from the nondegen-
eracy of IF . Using the identification TpV ~ V (p in A/), we think of vF 

as a vector-valued map vF: M -* V, the F-normal map; it is smooth. 
(See Lemma 4 of the Appendix.) The lines {/? + tvF: t e R}, for p in M, 
are the F-normal lines. If we set p.F = D2F(vF, vFl then D2Fp(v

F, A) = 
fiF(p)DFp(A) for all p in M and all A in TpV. 

REMARK. If G = h-F is another M-function, and if h\M = 1, then it 
is clear from Lemma 1 that IIG = IF , IIIG = I IF, and vG = vF. 

The F-normal vF determines in the usual way a symmetric connection 
VF on M. That is, let nF: TpV -> TpM be the projection along vF; then 

PROPOSITION 1. If F is an M-function and X, Y are vector fields on M, 

then 

VF
XY = DXY + vFUF(X, Y). 

PROOF. If p e M and A e F,K, then /I = ^£(,4) + DF^)j^(because 
DF, = 0 on F,M and DF^v*) = 1); thus, DXY = VXY + DF(DxY)i/p. 
But 

DF(DXY) = D ^ Z M W ) - z)2F(̂ , y) = o - IF(A; y), 
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since X and Y are tangent to M. 

The connection VF extends, in the standard way, to tensor fields of 
arbitrary type. We need only the following special case, whose trivial 
proof we omit. 

PROPOSITION 2. Suppose that TJ is a covariant tensor field on M, of type 
r, such that TJ is the restriction to M of a tensor field TJ on V (i.e., TJ = i*jj). 
IfX, Yl9... YreTpM, then 

(Vjfo) (Yl9 . . . , Yr) 

= (Dxfj)(Yh . . . , Yr) - 2 W{X, Ya)fj(Yl9 . . . , Ya_u vf, . . . , Yr). 
a=l 

EXAMPLE. Suppose TJ = I F and TJ = D2F\ then Proposition 2 implies 
that (V£IF) (F, Z) = \\\F(X, 7, Z) for all X, Y, Z in T^M. (Recall that 
D2Fp(tf, •) = 0 on TpM and that I IF = i*D3F.) This implies, since WF 

is symmetric, that I IF = 0 if and only if VF is the Levi-Civita connection 
for the pseudo-Riemannian structure IF . 

The F-normal determines a "Weingarten map" in the following sense. 

PROPOSITION 3. Ifp is any point of M and X e TpM, then (Dxv
F)pe TpM. 

PROOF. Differentiate both sides of the equation DF()/) = 1 along the 
vector X, obtaining D2Fp(v^ X) + DFp(Dxv

F
p) = 0. Hence, DFp{Dxv

F) 
= 0, so Dxv

F
pzTpM. 

The corresponding notions of F-mean curvatures, F-minimality, etc., 
are easy to define if dim M< oo, but we shall not discuss them here. 

For the remainder of this section assume that V is of finite dimension 
n + 1 and that it has a prescribed volume form 0; also, assume that M 
is oriented. We use this extra structure to single out one of the IF's as a 
"preferred" pseudo-Riemannian structure on M. 

NOTATION. For p in M, WF denotes the volume form in TpM associated 
with IIF, and QF

p denotes the «-form vF
p J $(an element of An

p(V)), while 
\F\ M -> R is the function defined by / W ) = W . 

DEFINITION. An M-function F is normalized on M (with respect to 0) 
if XF = 1; it is almost-normalized if XF is constant. 

REMARKS, (a) It is clear that XF is never zero (because vF is not tangent 
toM). 

(b) F is almost-normalized if and only if CF is normalized for some 
constant C. In particular, the property of being almost-normalized is 
independent of the choice of 0. 

(c) In the Introduction we promised to single out a class of "preferred 
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forms" for the equation of M. These preferred equations are, in fact, just 
those of the form F = 0 with Fan almost-normalized Af-function. 

THEOREM A. There exist normalized M-functions. More precisely, let 
H be any M-function such that XH > 0. (Such H exists because X{~H) = 
-XH.) Then F = pH is normalized on M if and only if p > 0 and p(w+2)/2 
= XH. 

PROOF. Since vH J (vH J 0) = 0, it is clear that vH J (dH A QH) = QH 

= vH J 0. But, dH A QH and 0 are (n + 1) - forms on the (« + 1) - space 
V; thus, dH A 0 " = 0. Likewise, if F = />#, then 

0 = dF A QF = (p</// + / / ^ ) A 0 F = <o</// A 0 F 

on M, since / / |M = 0. Thus, 

QH = v// j 0 = y// j (p</// A 0 0 = (00^ - pdH A (v" J 0F). 

But i*dH = 0, so XH¥H = p W \ Now suppose XF > 0; then p > 0. 
Moreover, I F = p\\H, so¥F = p " / 2 ^ . Thus, XH = p(«+2)/2 AF, which 
yields the desired result. 

COROLLARY. If F is a normalized M-function and G = h- F, then G is 
normalized on M if and only ifh\M = 1. In particular, if F and G are both 
normalized on M, then I F = I F , IIIG = IIIF, and vG = i / . 

REMARK. From now on we shall write II, III, and v in place of I F , 
I IF , and vF, where Fis any normalized M-function. It is clear that these 
quantities are invariants of the special linear group SL(V). In fact, we 
shall see (in §3) that II is the Berwald-Blaschke metric on M, v is the 
affine normal, and (1/2) III is the Fubini-Pick form (up to sign conven­
tions). 

There is a simple geometric criterion for an Af-function to be almost-
normalized. 

THEOREM B. The M-f unction F is almost-normalized if and only if 
VFWF = 0; i.e., the connection VF is volume-preserving with respect to IF . 

PROOF. Apply Proposition 2 when rj = XFWF and fj — QF to obtain 

= (DxOn(Yl9..., Y„) - f ] IF(x, Ya)QT(Yl9..., Ya_u vF,..., Yn) 

for all Yl9. . . , Yn tangent to M. But i / j ^ = 0, and i\DxQ
F) = 

i*((Dx\f) j 0) = 0 because Dx0 = 0 and Dx^ is tangent to M; there­
fore V f t W ) = 0. Thus, VFWF = 0 if and only if XF is constant, i.e., if 
and only if F is almost-normalized on M. 
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COROLLARY. IflllF = 0, then F is almost-normalized on M. When dim 
V = 2, the converse is also true. 

PROOF. We know that I IF = 0 implies vF is the Levi-Civita connection 
for I F ; but the Levi-Civita connection preserves the volume form WF of 
IF . When V is a plane and M is a convex curve in V, the volume form 
fy'F determines the metric IF . 

REMARKS, (a) The equation V T F = 0 is (essentially) the "apolarity 
condition" in affine geometry. 

(b) Keep in mind that the space V is of finite dimension in Theorems A 
and B and their Corollaries. In particular, we have defined "normalized" 
and "almost-normalized" only in the finite-dimensional case. 

2. Nondegenerate quadratic hypersurfaces in a Banach space. A function 
F: V -+ R on the Banach space Kis said to be quadratic if it is of the form 
F(p) = (\/2)A(p< p) + B(p) + C (p in V), where A is a continuous (non­
zero) symmetric bilinear function, B is a continuous linear function, and 
C is a real number. A nondegenerate hypersurface M in V is said to be a 
hyperquadric if it lies in the zero-set of some quadratic M-function. 

REMARK. If F is a quadratic function, then D3F = 0; in particular, if 
the zero-set of F is the hyperquadric Af, then I IF = 0. Our main result 
states that the converse is "usually" true. 

THEOREM C. Suppose that M is a (connected) nondegenerate hypersurface 
in the Banach space V such that there exists an M-function F satisfying 
I IF = 0. If in addition, dim V g 3, then M is a quadratic hypersurface. 

REMARKS, (a) The hypothesis I IF = 0 does not imply D3F = 0 at 
points of M\ indeed, the quadratic Taylor polynomials for F9 centered 
at points of M, can vary from point to point. The solution is to replace 
Fby a "better" Af-function G such that D2Gp: V x V -> T is independent 
of p in M. 

(b) The corollary to Theorem B explains the hypothesis "dim K g 3"; 
then cylinders over plane curves explain the hypothesis "Af is nondegen­
erate." 

(c) If V is finite-dimensional, then Theorem C is just a reformulation 
of Berwald's Theorem in affine geometry [4, p. 379]. Indeed, Fis almost-
normalized (since I IF = 0), so III = C • I IF for some constant C. In 
particular, M has vanishing Fubini-Pick form, hence Berwald's theorem 
implies that M is a hyperquadric. It is just as easy to show that Theorem 
C implies Berwald's Theorem. 

The proof of Theorem C involves the following notion. 
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DEFINITION. An Af-function F has the proper sphere-property on M if 
all the F-normal lines pass through a single point of V; it has the improper 
sphere-property on M if, instead, these lines are parallel (i.e., "meet at 
infinity"). 

It is easy to verify that nondegenerate quadratics have a sphere pro­
perty however, so do many nonquadratics. In fact, if dim V < oo and 
if F is an almost-normalized M-function, then F has a sphere-property 
if and only if M is an "affine hypersphere" (see Blaschke [2, p. 290]). 

LEMMA 2. Let F be an M-function on a nondegenerate hypersurface M 
of V. If dim V ^ 3, then the following statements are equivalent. 

(a) F has a sphere property on M. 
(b) The tensor field VF I I F is symmetric in all four places. 
(c) The symmetric tensor HF = i*(vF J D3F) is of the form aF • IF 

for some smooth function aF: M -» R. 
(d) If R: M -+ V is the position vector, then DvF = aFDR for some 

constant aF. 
In addition, if these statements are true, then oF = fiF — aF. 

PROOF OF LEMMA 2. It is trivial to prove that (d) implies (c) and is equi­
valent to (a), so we shall verify only that (b) is equivalent to (c) and that 
(c) implies (d). 

((b) o ( c ) ) . For X, Y, Z, W tangent to M, set TF(X, Y, Z, W) = 
(V£III) (X, Y, Z). Then Proposition 2 implies 

TF(X, Y, Z, W) = (DW(D*F))(X, K, Z) - (IF( W, X)D*F(vF, Y, Z) 

+ \\F(W, Y)D2F(X, vF. Z) + I F ( ^ , Z)D*F(X, 7, >/)). 

We rewrite (5) in terms of HF = /*(yF J D3F) as follows. 

\\F(W, X)HF(Y, Z) + llF(W, Y)HF(Z, X) + IF(W, Z)HF(X, Y) 
(6) 

= D*F(X, Y, Z, W) - TF(X, y, Z, W). 

It is obvious from (6) that (c) implies (b). Conversely, suppose (b) is true, 
i.e., TF is symmetric; then the left side of (6) is also symmetric in X, F, Z, 
W. Cyclically permuting X, Y, Z, W and comparing the resulting expres­
sions leads to 

IF(Z, W)HF(X, Y) - UF(X, Y)HF(Z, W) = 0, 

which implies (since I F is nondegenerate) that HF is proportional to 
IF . Thus, (b) implies (c). 

((c) =>(d)). The equation (D2F) (vF, A) = JLLFDF(A), valid on M for 
each A in V, implies for each Y tangent to M, 

(7) D*F(vF, A,Y) + D2F(DY\>F, A) = (DY(J,
F)DF(A) + /iFD2F(A, Y). 
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Since DYvF is tangent to M, replacing A in (7) by X tangent to M yields 

(8) HF(X, Y) + \V{DYvF, X) = pF\lF(X, Y). 

Assume (c); then (8) becomes 

\\F(DYvF, X) = (pF - aF)llF(X, Y). 

But I F is nondegenerate, so DYvF = aFY, where aF = pF - aF. The 

position vector R: M -+ V satisfies DYR = X, hence 

The constancy of aF follows, in the usual fashion, from the equality of 
"mixed partials" for F-valued functions on M; that is, from the symmetry 
of VF. (This is where we use the hypothesis dim V ^ 3, i.e., dim M ^ 2.) 

PROOF OF THEOREM C. It is clear that VF \\\F is symmetric; indeed, 
VF I IF = 0 because I IF = 0. Thus there is a constant oF such that 
DvF — GFDR. The key step is to replace F by a "better" M-function 
G = h - F for which h\M = 1 and 2Dh(vF) = oF — (JLF. (For example, 
define h at q = p + f^(p) by % ) = 1 + t\l(oF - pF(p)\) Then vG = 
vF so (2) implies juG = JJLF + 2Z)/*(yF) = <7F. In addition, IIIG = \\\F = 
0 so Lemma 2 also applies to G, and we have DvG = G^Z)^, with <7G = 
fjp — aG. Now, vG = vF implies <jG = <jF\ hence, aG = 0, i.e., HG = 0. 
From this and II\G = 0 we get 

(9) D*Gp(A, X, Y) = 0 

for all X, Y in 7^Af and all A in TpV (p in M). Next, replace /" by G in 
(7); since pp equals the constant j ^ , we obtain 

(10) D*Gp{A, v% Y) = 0. 

Equations (9) and (10) imply (for A, B in 7^Kand Kin TpM) 

(11) D*Gp(A, B, Y) = 0 . 

If we identify TpV with V, we. can give (11) a simple interpretation: for 
any fixed A, B in V, the number D2Gp(A, B) is independent of p in M. 
Indeed, if p0, p e M and 7*: [0, 1] -+ M is a smooth path in M from p0, 
to p, then y'(t) e TrU).M and 

Z W ^ , 5) - Z ) 2 G ^ , *) 

02) = ^0i
D2Gr^(A,B)dt = J V G , ^ , ftr'(rp = 0. 

Now let Q: V -> R be the quadratic Taylor polynomial for G at p0, so 
G(Po) = G(Po) = 0, DQ^A) = D G ^ ) , and D^Q^A, B) = Z W ^ , B). 
Since 2 is quadratic, D2Qq(A, B) is independent of q in K, so we have 
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DQ„(A) - DQh(A) = \\jtDQjW (A)dt = j V e r ( / ) ( / f , r\t))dt 

= VD^Q^A, r'(t))dt = VD2G^A,rV))dt 
JO JO 

= [ D*GrU){A,r'(t))dt = D C ^ ) - Z)G,„(/(), 
J 0 

where we use (12) to justify the fifth equality. Thus, DQp = DGp for all 
p in M. A similar argument shows that Q(p) = G(/?), for all p in Af. Since 
G vanishes on M, so does Q\ thus, M is a hyperquadric. 

3. Computations in Rw+1. In this section we write down explicit formulas 
when V is finite-dimensional. Without loss of generality we assume V = 
Rw * and 0 = dxl A . . . A dxn+l, where x = (x1, . . . , xn+1) is the stan­
dard coordinate system on Rn+1. We adopt the following index conven­
tions: 

1 ^ /, f k, / S n + 1, 1 ^ a, /3, 7" ^ «. 

Our previous discussions involved only zero-sets of functions, but it 
is trivial to extend these ideas to arbitrary level sets; we leave the details 
to the reader. 

Recall that the classical adjoint of a matrix (A{J) is a matrix (a'V) such 
that 2 fficik Akj = det (Ak/)-d). Its entries are polynomials in the At/s. 

PROPOSITION 4. Suppose that F: U -> Ris a smooth function on a domain 
U in R"+1. Let (off) denote the classical adjoint of the Hessian matrix 
(d2Fldxidxi). Suppose M = {x e U: F(x) = c} is a (nonempty) level set 
of F. Then 

(a) A necessary and sufficient condition for F to be an M-function and 
M to be nondegenerate is that the following hold at each point ofM: 

(b) If (\2>) holds on M then the components (vF){ of the F-normal are 
given by 

(.4. <">" (?•?&)/(£'*&&> 
(c) If( 13) holds on M and XF is positive, then 

thus,\ZJJa
i£(dFldxi)(dFldxi)\-V{n+2K(F - c) is normalized on M. In 

particular, a necessary and sufficient condition for F itself to be normalized 
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(resp., almost-normalized) is that the right side 0/(15) equal 1 on M (resp., 
be constant on M). 

PROOF. Observe that the conditions are not affected by linear changes 
of coordinates in R"+1 preserving 0; then check what happens where 
dF/dx* = 0, 1 g a g n. 

EXAMPLE 1. Suppose that M is the graph in Rn+1 of a smooth function 
/ : ^ -• R defined on some domain Q} in Rn. Denote the partial derivatives 
o f /by fai fap, etc. Define F : ^ x R - > R b y F = x»+1 - f(x\ . . , JC»); 
then M is the zero-set of F. Since (dF/dx1 . . . , dFjdx", dF/dxn+1) = 
( - / , . . . , - / „ , 1), it is clear that Fis an A/-function. Set A = det(-/a /3). 
It is trivial to check that 

\ 0 - . . 0 / \0 ••• J / 

so 2 I ( / a^ (dF/dx*) (dF/dx*) = J . Assume A ^ 0(so M is nondegenerate), 
and set /i = |J |_ 1 / ("+ 2 ) ; then Proposition 4 says that G = h-F is nor­
malized. Let z» = JC'|M, so zn+1 = / (z 1 , . . , zn). And think of II = IIG 

and III = IIIG as quadratic and cubic forms (resp.) in the differentials dzl, 
. . . , dzn\ then Lemma 1 yields 

H = -hYtLsdzodz? 

and 

III = - 3 L (J^dzr)(fapdz«dzt) -h ZUrdz«dz*dzr. 

Computing v = (v1,. . . , vn, vn+1) takes more work, but it is not hard to 
verify that y1,. . . , vn are determined by the nonsingular system 

while the condition DG(v) = 1 yields 

REMARK. These formulas show that up to sign, II is the Berwald-Blasch-
ke metric on M, v is the afline normal, and (1/2) III is the Fubini-Pick 
form. (Compare with the formulas for these quantities in, say, Flanders 
M.) 

EXAMPLE 2. Suppose Fis the quadratic polynomial 1/2 2,,y Aijx
ixj + 

2 k Bkx
k + C(Aij = ^/V, Bk, and C all constants), and that M is the zero-



AFFINE GEOMETRY 563 

set of F. Let(a'>)be the classical adjoint of (Atj). Then at each point of M 
we have 

(16) 
= (£«"*,*,)-2C-det( / i J k /) . 

Equation (16) says that F is an M-function and M is nondegenerate 
provided S.-./a1'-f BtBj # 2Cdet(,4/t/); in that case, F is almost-normalized. 
Equation (14) then becomes 

(>^y = det^,)*'" + ^ ' ^ / ( S ^ A - 2Cdet (/<*,)). 

Owe 1. Suppose det(^A/) # 0. Then l/det(^^) • (a*>)is the inverse (A* J) 
of (A 0)9 so 

(vO'' = (^'-^) / ( -Z]^o-2c) , 

where pf
0 = — J^JA^'BJ. Thus, the F-normal lines all pass through the 

"center" p0. That is, F has the proper sphere-property on M. 

Case 2. Suppose dQt(Ak/) = 0. Then 

ivFY = (S aiJB)/(ji a*'**8'} 

so all the F-normal lines are parallel; thus F has the improper sphere-
property. 

REMARK. Proposition 4 implies that the necessary and sufficient condi­
tion for a function F to be normalized on each of its level hypersurfaces 
is that F satisfy the following nonlinear partial differential equation on U: 

The condition for F to be almost-normalized on each level hypersurface is 

for some nonzero function g. Example 2 shows that every quadratic poly­
nomial F = (1/2) EijAijx'x'' + TikBx* + C is almost-normalized on 
each of its nondegenerate level hypersurfaces; hence the usual equation 
of a (nondegenerate) hyperquadric M, which describes M as the zero-set 
of a quadratic polynomial, is a "preferred" equation for M (in the sense 
of the Introduction). Note, however, that the only quadratics which are 
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normalized on more than one level hypersurface are those satisfying 
det(i4l7) = 0 and £ , , « " £ , £ , = l. 

Equation (17) is reminiscent of the eikonal equation in geometric optics. 

It is well-known that if F is a solution of (18) on all of R"+1, then F is 
linear. 

CONJECTURE. If F is a solution of the "affine eikonal equation' (17) on 
all of Rn+1, and the level hypersurfaces of F are convex (i.e., I F is definite), 
then F is a quadratic polynomial (necessarily of the type in case 2 above). 

Appendix. We prove two technical lemmas which we used in §1. 

LEMMA 3. Suppose that F and G are smooth M-functions. Then there is a 
smooth nonvanishing function h, on some neighborhood of M in V, such that 
G = h-F. That is, h = GjF, which is defined and smooth off M, has a 
smooth nonzero extension to M. 

PROOF. It suffices to prove this locally. Using the Implicit-function 
Theorem [3, Chapter 10] we reduce to the case in which V = HQ 0 R, 
for some hyperplane H0, and F(u, z) = z for (u, z) near the origin of 
H0 0 R. Then 

G(u, z) = £ ^-GO*, tz)dt = h(u, z)-F(u, z), 

where h(u, z) = jj D2G(u< tz)dt. 

LEMMA 4. Let M be a hypersurface in the Banach space V. Suppose that 
P\M -* V* and Q:M -> V* 0 V* are smooth maps such that for all p in 
M, Pp.V -> R is not the zero map and QP'.V x V -• R is nondegenerate. 
Let v:M -> V be the map characterized at each p in M by 

(a) Qp(vp, X) = Ofor all X in TpM, 
(b)Pp(i>p)= 1. 

Then v is a smooth map. 

PROOF. Fix p in M and set v — \>-p. The vector v determines a splitting 
V ^ H 0 R, where H = TpM. Near p identify TM and T*M with the 
product bundles M x H and M x H* (resp.). Define Q:M x V -+ H* 
by Q(p, v) (X) = Qp(v, X) (p near p, v in V, X in TpM ~ / / ) , and define 
P: M x V-+ R by P(p, v) = Pp(v). Finally, define L: M x V -> T*M x 
R = M x H* x R by L(p, v) = (/?, g(p, v), P(p, v)). Then L is smooth 
and vp is characterized by the equation L(p, vp) — (p, 0, 1). Thus it suffices 
to prove that L_1 is smooth; by the Implicit-function Theorem [3, 
Chapter 10], it is enough to prove that the Jacobian map DL^: T^ 
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(M x V) -> TL{-p^){J*M x R) is a linear homeomorphism. Identify 
T{h-V)(M x V) with H 0 H 0 R and 7'u-Pt-v)(T*M x R) with H 0 / /* 
0 R. Then, for (Jif, Y, c) in / / 0 H 0 R, we have (using the fact that 
g ^ , 0 = 0 o n 7 ) A / ) 

Z)L ( M (A; r, c) = (*, /)i2(^,)W + 6(p, y), DxP{h-v){X) + c), 

where Dx denotes the "partial derivative" along M. The nondegeneracy 
hypothesis says that the linear map Y •-• Q(p, Y) is a homeomorphism 
of TpM onto r*Af, so it is now obvious that (Z)L)(^P) is also a linear 
homeomorphism. 

COROLLARY. If F is an M-function for a nondegenerate hyper surface M 
in V, then the F-normal vF\M -• V is smooth. 

REMARK. If V is of finite dimension, then the results in §3 give an ex­
plicit formula for vF which shows directly that vF is smooth. 
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