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HYPERBOLIC OPERATORS IN SPACES OF 
GENERALIZED DISTRIBUTIONS 

SALEH ABDULLAH 

Hyperbolic operators were investigated by L. Ehrenpreis [4] in the 
space of Schwartz distributions and by C. C. Chou [3] in the spaces of 
Roumieu ultradistributions. In this paper we study hyperbolic operators 
in spaces of Beurling generalized distributions. (See [1] and [2]). 

Let D', E\ D'w, E a be the spaces of distribution, distributions with 
compact support, generalized distributions and generalized distributions 
with compact support in RM, respectively. 

DEFINITION. The convolution operator S, S e E'œ, is said to be co-
hyperbolic with respect to / > 0 (resp. / < 0) if there exists a fundamental 
solution ir+(resp. E~), E+; E~ e D'^ so that supp E+ a {(*, t) e Rn x 
R: t ^ - b0 + bi\x\} for some b0,bi > 0(resp. supp E~ a {(x, t) eRn x 
R: t <* b0 — bi \x\} for some £0, b\ > 0). 

An operator is said to be co-hyperbolic if it is co-hyperbolic with res
pect to / > 0 and t < 0. This definition coincides with the definition of 
hyperbolicity introduced by Ehrenpreis [4, Theorem 2] for Schwartz dis
tributions. 

For the notation and the properties of generalized distributions we 
refer to [2]. Let co e Jtc (see [2, Definition 1.3.23]). Using Proposition 
1.2.1 of [2] we could extend œ to Cn without losing any of its original 
properties; we will assume that o is the extended function. We use the 
estimate 

( 0 o>(0 = o(|?/log If I), as |f | -> oo, 

from which it follows that 

(2) o)(£) è M(ì + |£|), 

for some constant M. 
Following Ehrenpreis we prove the following theorem which char

acterizes co-hyperbolic operators. The theorem and its proof will be given 
in the case of co-hyperbolicity with respect to t > 0, the other case could 
be proved similarly. 
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THEOREM. Let S e E„ and let S denote its Fourier transform. The following 
conditions are equivalent: 

(i) S is co-hyperbolic with respect to t > 0. 
(ii) S is invertibie and there exist constants C, A and A1 so that 

Imre A (|ImZ| + 2(3 +\MAX)
 œ(RQ Z ' R e r ) ) 

for all (Z, z)eCn x C; S(Z, z) = 0, M is the constant of (2). 
(iii) There exist positive constants C, a and A so that 

\S(Z, z)\ è C exp ( - 4 | I m Z\ + |Im z\ 4- û>(Re z, Re r)], 

whenever Im r è A[\\m Z\ + co(Z, r ) ; (Z, r ) eC» x C. 

We prove the theorem by proving the implications (i) => (ii) => (iii) => 
(0. 

The implication (i) => (ii). For Ö > 0 we denote by EWta the space 
^ ( R * x ( - a , ö)) and by E+a the space ^ ( R * x (-a, oo)) both en
dowed with the obvious topologies [2]. Let s > 0 so that Supp S c 
Rw x ( — s, s) and let a > 2s + &0 + 1. Denote by Eœta(S) the vector space 
of all <ßeEata so that (S * 0) (x, /) = 0 for |/| < a - s. We provide 
E<o,a(S) with t n e topology induced by E^^. The co-hyperbolicity of S 
with respect to / > 0 implies that, for all <fi e E^J^S), there exists a unique 
0 e £ + s so that (S * 0) (JC, /) = 0 for all / ^ Ò and (0 - 0) (x, /) = 0 
for all (x, 0 with \t\ ^ s. Moreover, the mapping 0 -• 0 from E^^iS) 
into £ + s is continuous. The proof, which makes use of the fact that 
supp E+ a {(x, t) e Rn x R, t ^ — &0 + ^i W}, Z>0, #i > 0, is similar to 
that of proposition V.l-2 of [3] and will be omitted. Since the embedding 
Eì>,s > Em,si where Ô>I(£) = log(l + |£|), is continuous, it follows that 
the map (p -> <p from Eœfa(S) into Ewl>s is continuous. Hence, for any 
compact subset K of Rn x ( — s, oo) and any me N, there exist a positive 
constant a and <j> e Z)Û,(RW x ( — a, a)) so that 

(3) Sup |(D«0)(x, 0 | ^ sup exp(a *>(&, 62) - HKl(rj) - | ç | ) | (#) (0 | , 
l<rl£m 

where £ = (£ls £2); Cy = £y + * 9y> A denotes the Fourier transform, and 
HKi is the support function of Kl9 Kx = supp <j>. Let (Z, r) e O x C, 
Z = Zx + iZ2, z = ri 4- / r2, so that S (Z, r) = 0. By taking the function 
(p to be0(x, /) = ^-«<^rt»(*»«> one gets, from (1), 

(4) |0(O, 2a)\ = e^*S sup cxp(aai(fi, ^ - ^ ( ^ " I ç D A i + Z, C2 + r|. 

One also has 
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- Hh(7]) S - s u p <f, 7] + Im(Z, r)> + sup <f, Im(Z, r)> 
£ e # i £etf i 

^ - sup <Ç, 77 + Im(Z, T)> + sup <&, Z2> + sup <£2, T2> 

S - s u p <£, 97 + Im(Z, r)> + fcx |Z2| + a \z2\, 

for some constant k\ > 0. By using (5) and the subadditivity of co to 
estimate the right hand side of (4), one gets 

e2ar2 g exp(ûfû>(Zi , r i ) + ( * ! + 1) | Z 2 | + (a + 1) | r 2 | ) 

x sup exp(aû>(£i + Zh £2 + vi)-HKl(j) 4- Im(Z, T)) 
(6) cec«+i 

- I, + Im(Z, T)1 - |#C + (Z, T))|) 

= expCa^Zi, n ) + (*i + 1)|Z2| + (a + l)|r2| IÎ IIS, 

which implies that 

(7) ( û - l ) I m r l a co(Z1? n ) 4- *2 |ImZ| 

for some potitive constant k2. Since S has a fundamental solution E+ 

it follows that S is invertible in D^ and 

Sup \S(y)\ ^ Q e - ^ ^ , xeR«+\ 
\x-y\£ 
Aico(x) 
yGR»+l 

for some positive constants Ax and C\. Take 

la — 1 a — 1 J 

Then inequality (7) gives 

Im T * X | I m Z | + 2(3 +2MA, W(Re Z' Re 4 
The implication (ii) => (iii). Suppose that (Z, T) e O x C; Z = Zx + 

/Z2, T = Ti 4- /T2, so that T2 ^ ^(|Z2 | 4- Û)(ZX, n)). The invertibihty of 
5 implies that there exist positive constants Q , ^1 so that 

sup \S(Z1 + Z/, n + rOI à Q g-Aiccz!^)^ 
I(Z', T')\£Al<ü(Zl,Tii 

(Zi, ri) EE R» x R 

Hence there exists a point (jq, *i) e Rw x R, |x! — Zx\ H- |*i — n | â ^IÛ>-
( Z I , TI) SO that 

(8) |S(jci, /i)| ä de-*»*™* . 

Next, consider the entire function of one complex variable 
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g(X) = S(Z + -A- (Xi - Z), T + -A- (ri - T)), k = Ai + i72. 

We claim that g(X) # 0 whenever |A| < 1/4. For, put r = z + (A/^i) 
(fi - r), 3T = Z + (A/i4i)(jCi - Z). From (ii) it suffices to show that 

From the assumption on Im T and the fact that to is increasing it follows 
that 

(9) n 

^ ( i - A |Im Z| + ffl(Z, T) l'i - ni-

Also, one has 

(10) (l - A - ) | I m Z | £ | I m Z | - j y - t o - Z x I . 

By using (10) to estimate the right hand side of (9) it follows that 

Im r ^ / ^ m i T | - / f ^ | x x - Z j | + ^ ( l -^ )c«(Z , r) - ^ 1 - r i l 

(11) >A\lmar\-^-\X2\(\x1-Z1\ + \tl-T1\)+A{l-^\a(Z,T) 

è A\lmar\+A(l - ^ - |A 2 | ) û ) (Z , r ) ^ /*(|ImiT| + ^-û>(Z, T ) \ 

where we assumed without loss of generality that A > Ax > 1. Since|(,2\ F)| 
^ |(Z, z)\ + |xx — Zj| + |/i - ni + |(Z2, T2), the monotonicity and the 
subadditvity of cu together with the fact that \x-y\ — Zx| + /|i — Til ^ 
^iCü(Zi, n ) imply that co(Z, T) 1 1/(3 + 2M^!)û>(Z, T), where Af is the 
constant of (2). Hence, (11) becomes 

( 1 2 ) I m r > ^ ( | I m ^ | + 2 ( 3 T ^ a , ( ^ r ) ) ^ ( | I m ^ | + ^ ^ ) , 

which completes the proof of the claim. 
By applying the minimum modulus theorem of Chou [3, Theorem 

II.2.1] with R = Xo = Ai, r = 1/6, rj < 1/(96^), to the function g, one 
obtains 

(I) lg(0)| = |S(Z,r)| è |g(^i)l3("+17 sup \g(k)\™ sup \g(W. 
\X\£3eAi Ul^l/4 

Next, we estimate the denominator of the right hand side of (I). By 
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applying the Paley-Wienner theorem to S it follows that there exist 
constants C2, /l2

 s o that 

sup \g(X)\3H sup \g(XW 
\X\£3eA\ I * I £ 1 / 4 

S sup \g(X)\™+2 

= sup (\S(Z + * ( X I - Z ) , T + ^ - (tl - T)) | W 
(13) UIS3Mi\ Ax A1 I 

<, Qexp^XZx + A ^ _ A Z l + A Z z , 

Ti + 4 - h - ^ n + ̂ z2)+ //suppS(Im Z, Im r>), Ax
 x ^ i /4 

where Hsupp s is the support function of supp S. Since supp S is compact, 
one can assume that it is contained in the closed ball B(0, k) for some 
positive integer k. Hence, one has 

//suppS(Im Z, Im T) 

(14) = sup <x ,-kX l_Az2+z2> + <f ,A / l _A T 2 + r 2 > 
(*,*)esuppS ^ 1 Ai Ai Ai 

<: 2k IIm Z| + 2* |Im z\ + rf, 

for some constant J. Also, one has 

^XZx + A ( X l _ Zl) + Az 2 , Tl + A ( / l _ Tl) + A r z ) 

, . è AXZi, Tx) + ^ ( X i - Z i , tx - Ti) + A2Û)(Z2, T2) 

^^(Zj^o+^Mi+lxi-Zji + Ui-nD+A^i + izd + kzi) 

^ M ( 2 ^ + Qy + /<i)^oi(Zi, n ) + ^ | Im Z\ + ̂ | Im r|), 

where M is the constant of (2). 
Now, using inequalities (14) and (15) to estimate the right hand side of 

(13), one gets 

sup \g(X)\3H+2 sup IsU)!2 

^ C2 e x p ^ l + MAi)ù)(Zh zi) + (2* + MA0 (|Im Z| + Im z)\ 

where C2 = C2e
D+2MX'2. Next, using inequalities (8) and (16) to estimate 

the right hand side of (I) one gets 

\S(Z, z)\ à C exp(-fl(|ImZ| 4- Im* + co(ReZ, Rer))), 

where C= 1/C2 • C?("+1) and a = max{(3# + 3 + M)AXX2 + 1,2* + M%}. 
The implication (iii) => (i). We want to find a fundamental solution 
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E for S, EeD'œ, so that supp E cz {(*, t) e Rn x R; t ;> -b0 + Z>i|x|} 
for some positive constants b0 and Z .̂ For any Z e Cw, we define, in C, the 
curve r(Z) = (r = n + JT2; *I e R, r2 = ,4(1 Im Z| 4- <u(Re Z, n))} 
directed in the sense that n is increasing. Let us assume that n = 1. 
Define the linear form E on D^ by 

OD <„*>- H ^ v 
ImZ=-/li/7(Z) S( — Z, —T) 

Jl>0 

From the condition on the growth of S one has for T^F(Z), Z = x — 
/Ai, Ai > 0, 

g r : z x ^ -^exp(ö(Ai + I m r + <a(x, n))) 

^ -^exp(l + A)aXi + a(l + A)co(x, n)), 

where Û and ^ are the constants of condition (iii). By applying the standard 
Paley-Weiner theorem to <f> e D and using (17), it follows that the integral 
on the right hand side of (II) converges. Thus the linear form E is well 
defined. Next, we show that E is continuous. Since Dw is a Montel space, 
it suffices to show that E is sequentially continuous. Suppose that <f>j -> 0 
in Dw as y -> oo ; it follows that, for all A2 > 0, 

SUp [ÔAZ, T)\ ^2û>(x,n) _ , Q a s y _> 00. 
(Z,r)eCxC 

Hence, it follows that 

|<£,py> I è ±eaiA+1)* f J |py(Z, z)\ e{l+A)™^\dz\ dZ 

JiX) 

V ' C l ( - ^ j f T 2 ) l 

ZeC HZ) 
ImZ=—^i 

where M and & are (fixed) positive constants. Since the double integral 
on the right hand side of (18) converges for A3 large enough and the 
supremum on the same side converges to zero for all A3 > 0 as j -• 00, it 
follows that <£, cpj} -> 0 as 7 -• 00, i.e., E is continuous. Hence E e D'œ. 

Next, we show that S * E = d. From the definition of E it follows that 
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{S*E, <p} = <£, S*(p} = I I <p (Z, z) dzdZ, <p e Dw. 

z<=c nz) 

Since (f> is entire, it follows from Cauchy's theorem and a change of variable 
that 

<£*£, <py = I I <p(zx, z)dzdx = #>(0, 0) = <<5, #>>, i.e., S*E = d. 
XŒR 1 E R 

Finally, we prove that supp £ c : {(x, t) eRxR, t ^ — Z?0 4- Z?i \x\, for 
some Z?o, &i > 0}. Take&0 = 3a(l + \/A), bi = IM where a and yl are 
the constants of condition (iii) above. Let <pe Dw so that supp <p a 
{(x, t) e R2; t < -bQ + bx \x\}. We prove that <£, <p} = 0 .Let's assume 
that x > 0. There exists an el9 0 < a < 0.1 so that / ^ — Z>0 — «si + 
èix. Since /)<*»'> <p(Z, z) = (/){/%>) (Z, z) = Z V p(Z, r), for all k, /e N, 
it follows from the Paley-Wiener theorem applied to D(kf/) <p that, for 
all A > 0, there exists a constant CXtn so that 

| # Z , r) | ^ C , , £ 1 | Z | ^ | r | - ^ - ^^ ^ Re *> 

+ #suppp(Im z> I m 7) + £il(Im Z, Im r)|. 

For Z = x — / Ai, Ai > 0, Im T = Aî 4 + Ao)(x, n ) and J ^ — ò0 — e\ 
+ ^ix, it follows that 

(20) 

#suppy>(Im Z , ï m 0 

= sup <-Ai, x} + {t, X\A + Ao)(x, n)> 
(#, J) G supp (p 

^ Sup < - Ai, x> + ( ~ ~b0- el9 XiA + Aco(x, z{) 
(x, t) Œ supp <p \ •"• 

< - b0AAi — £I(AIT4 -h v4co(x, ri)) + (&i — b2 - «SI)^O)(X,TI), 

for some constant k\. Using (20) to estimate the right hand side of (19) 
one gets 

(21) |p(Z,z)\ è Q j £ ] e
e i ^ + £ i ; ^ - ^ i ^ | Z | - Ä | r r / e - w + ^ - ^ - ^ ) ^ ^ n ) > 

Using condition (iii) and the estimate (21) it follows that 

KE,(p}\ <: cCi>ne-{b«A-sl-£ìA-aA~a)À1 

(22) 
x f f \Z\-k\T\-'e-u+^-M-°iA-*)°>v>r)\dT\dZ. 

Im Z=-h r(Z) 

By choosing A, /: and / large enough, it follows that the double integral 
on the right hand side of (22) is bounded and (22) gives 

(23) |<£, <p} | ^ C;,ei exp( -Ai (M - ei - ^ i - «4 - fl)). 
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By the choice of b0 and a one has ÒQA — e\ — e\A — a A — a > 0, and by 
sending Ai to infinity it follows that <£", <p} = 0. In case x < 0, / ^ — b0 — 
bix we consider the curve r(Z); Z = x + iXi, Ài > 0 and we send X\ 
to infinity. This proves the implication in case n = 1. For n > 1 we 
consider the corresponding hyperplanes and the argument is similar to the 
case n = 1. This completes the proof of the theorem. 
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