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STURM-LIOUVILLE DIFFERENTIAL OPERATORS 
IN DIRECT SUM SPACES 

W. N. EVERITT AND A. ZETTL 

ABSTRACT. Sturm-Liouville boundary value problems on 
two intervals are studied in the setting of the direct sum of the 
L2 spaces of functions defined on each of the separate inter
vals. The interplay between these two L2 spaces is of critical 
importance. This study is partly motivated by the occurrence 
of S-L problems with coefficients that have a singularity in the 
interior of the basic interval. Such problems are not uncom
mon in the applied mathematics and mathematical physics 
literature. 

1. Introduction. Sturm-Liouville (S-L) problems with coefficients which 
have a singularity in the interior of the basic interval under consideration 
have recently been studied in the Physics literature [2,5]. Here the interior 
singular point is viewed as a left end point of one interval and a right end 
point of another. In effect, then, we have two differential expressions : 
one for functions defined on interval Jl5 the other for functions defined 
on I2. For the general theory developed below whether the right end point 
of li is the same as the left end point of I2 is of no importance. Indeed the 
intervals Ix and I2 are to be taken as arbitrary; they may be disjoint, 
overlap, or even be identical and with the same or different differential 
expressions. 

The purpose of this paper is to provide an operator theoretic framework 
for the study of two differential operators together: Mx defined on an 
interval /x and M2 defined on I2. In particular we define a minimal and 
a maximal operator each associated with both expressions and charac
terize all self-adjoint extensions of the minimal operator in terms of 
"boundary conditions". These conditions involve both expressions on 
both intervals. 

In the regular case they can be interpreted in terms of the values of the 
unknown function/and its quasi-derivative at all four end points. These 
conditions include the so called "interface" conditions obtained by other 
methods (see [8]). A special case of these interface conditions is the so 
called condition for a "point interaction of strength a", (see [5, pp. 20,21]). 
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In the singular case our conditions are given, just as in the one interval 
case, in terms of bilinear forms associated with the differential expressions. 

A simple way of getting self-adjoint operators in the direct sum space 
L2(h) ® L2(I2) is by taking direct sums of self-adjoint operators from 
L2(Ii) and L2(I2). In particular, if Ax is a self-adjoint realization of Mi 
in L2(/i)and A2 is a self-adjoint realization of M2 in L2(I2), then Ai® A2 

is a self-adjoint operator associated with both expressions Mx and M2. 
We stress that our development below yields all such self-adjoint operators 
and in general, many more. Thus some of the self-adjoint operators S 
generated by both differential expressions Mx and M1} obtained below, 
are such that Pi S is not self-adjoint where Px is the natural projection 
"down" toL2(/x). Some of these ideas and methods are also to be found in 
the important paper [5] by Gesztesy and Kirsch. We comment on some 
results of [5] in this paper at appropriate places in the text. 

Notation and basic assumptions. Let — oo ^ ar < br ^ oo ; let Ir denote 
an interval with left end point ar and right end point br, r = 1,2. We 
use [a to indicate a closed end point a and (a to indicate an open end point 
a; use of the square bracket [a implies that a e R, the set of real numbers. 

Consider Lebesgue measurable functions /?r, qr, wr from Ir into R 
satisfying the following basic conditions : 

(1.1) l//7r, qr, wr e Lloc(/r), wr(t) > 0, a.e., r = 1, 2, 

which are taken to hold throughout this paper. Differential expressions 
Mi and M2 are defined by 

(1.2) Mry = -{pry'y + qry on / r , r = 1, 2. 

Let Hr = L2
r(/r) denote, for r = 1, 2, the set of (equivalence classes) of 

Lebesgue measurable functions/defined on Ir satisfying 

(1.3) f \f(0\2wr(t)dt< oo, /•= 1, 2. 
J ir 

Let 

Dr = {fe Hr\f, Prf e ACxJJr) and w?Mrfe Hr}, r = 1, 2. 

Below we will denote prf by /r
[1] and call it the quasi-derivative of/. The 

subscript r will be omitted in most cases since it is clear from the context. 
The operator Tr defined by 

(1.4) Trf=w71Mrf, feDr 

is called the maximal operator of Mr on 7r, r — 1, 2. It is well known (see 
[7, p. 68] that Dr is dense in Hr. Hence Tr has a uniquely defined adjoint. 
Let 

r0, r = r * and Z \ r = domain of T*, r = 1, 2. 
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The Operator r0>r is called the minimal operator of Mr on Ir. Let 

(1.5) [/, g]r = fgm - fmg, f,geDnr= 1, 2, 

where yLU denotes pxy' when r = 1 and p2y' when r = 2. Observe that 
Green's formula holds : 

r Mr[f\g - VßiM = [/, guß) - ir, guai 
(1.6) J« Ja 

f,geDr, a, ßel„ r = 1,2. 

For / , g e Z>r, the limits l i m ^ [/, g]r(/3) and lima_»ßr [/, g]r(a) exist 
and are infinite. These are denoted by [/, g]r(br) and [/,g]r(<zr)> respectively, 
r = 1,2. 

Let 

(1.7) H= Hl®H2 = Ll^h) © Lllh). 

Elements of H will be denoted by / = {fu f2} with/i e Hi, f2 G H2. 
When Ix Ç] I2 = (f>9 the direct sum space Lj^/i) © Ll2(I2) can be 

naturally identified with the space LlfJi U h), where w = wr on 7r, r = 
1, 2. This remark is of particular significance when 7X and I2 are abutting 
intervals, i.e., when /x U I2 may be taken as a single interval. 

We now establish some further notation. 

A) = Au © Au, £ = Di © A, 

r 0 / - {7o,i/i> r 0 , 2 / 2 } , /x G z)0f l9/2 G z)0i2, 

where / = {fl9f2}. 

(1.8) 

(1.9) 

Also, 

(1.10) 

(1.11) 

(1.12) 

Tf= {TJi, T2f2}, f={fl,f2},fieD1,f2eD2, 

If, S] = [/I, *di(Ai) - l/i, SiM«i) 

+ L/2, *zfe(*s) - [/* g2]2(a2), / , ? e A 

if, g) = if, £l)l + (/z. #2>2 

where, as usual, 

0>, z)r = f yit)z(t)wr(t)dt, r = 1, 2. 

Note that T0 is a closed symmetric operator in H 

2. Self-adjoint Sturm-Liouville operators in the one interval case. We 
summarize the characterization of all self-adjoint extensions of the 
minimal operator TQti given in Naimark [7, v. II, Ch. V]. See also 
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Akhiezer and Glazman [1]. For definitions and proofs not given here 
the reader is referred to these two books. 

The classification of the self-adjoint extensions of TQ}1 depends, in an 
essential way, on the deficiency index of r 0 1 . We briefly recall the de
finition of this notion for abstract symmetric operators in a separable 
Hilbert space. 

A linear operator A from a Hilbert space H into H is said to be sym
metric if its domain D(A) is dense in H and 

(Af, g) = (/, Ag), fi g in D(A). 

Any such operator has associated with it a pair (d+, d~), where each of 
d+, d~ is a nonnegative integer or + oo. These extended integers are called 
the deficiency indices of A and are defined as follows. 

For X in C, the set of complex numbers, let Rx denote the range of 
A — IE, E being the identity operator. Let 

(2.1) N, = {feD(A*)\A*f=Xf} 

and with 

N+ = Nt-, N- = N-i9 d+ = dimN+, d~ = dim N~. 

The spaces N+, TV- are called the deficiency spaces of A, and the pair 
(d+, d~) are called the deficiency indices of A. For later use we recall 
the following two results. 

For any A e C\R, we have, from the general theory 

(2.2) D(A*) = D(A) + Nx + Nh 

where D(A), Nx, Nj are linearly independent, and the sum is direct 
(which we indicate with the symbol +)• 

Any self-adjoint extension S of the symmetric operator A satisfies 

A c S = 5* c A*, 

and hence is completely determined by specifying its domain D(S), D(A) 
cz D(S) c D(A*). This can be proved using formula (2.2). 

THEOREM 2.1. Suppose the symmetric operator A in a Hilbert space H 
has equal deficiency indices: d+ = d- = dandO ^ d < oo. Let (j>\, . . . , <f>d 

be an orthonormal basis of N+
t and let 0ls . . . , 0d denote an orthonormal 

basis of N~. 
Let U = (ujk), j \ k = 1, . . . , d be a d x d matrix of complex numbers. 

Define 

(2.3) D , = { ^ 2 ^ ; + t(tuJ^k)ej\y^D0iCjeC,j= 1, . . . , r f} . 

If U is an unitary matrix, then Dv is the domain of a self-adjoint extension 
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of À. Conversely, if D(S) is the domain of a self adjoint extension S of A 
then D(S) = Du for some d x d unitary matrix U. 

PROOF. See Naimark [7; §14.8, p. 36]. 

THEOREM 2.2. The operator 7o,i is a closed symmetric operator from 
Hi into Hi and 

(2.3) Tli = Th Tf = 7o,i. 

PROOF. See [7; §17.4, pp. 68-69]. 
To relate the deficiency indices of JT0>I to the equation 

(2.4) M\y = Àwiy on Ix -— (#i, Z )̂, 

observe that 

Nx = {yeHi\ Tfcy = Txy = w^Mxy = Xy}. 

From this we can conclude that Nf, TVjf consist of the solutions of the 
equation 

(2.5) Mx y = Àwy 

which are in the space I/j^/i), for A = 4- / and X = — /, respectively. Thus 
d£, dì are the number of linearly independent solutions of (2.5) which 
are in the space Hi for À = + / and À = - /, respectively. It is well known 
that df — dï under conditions (1.1) (see [4; §9]). The common value 
is denoted by d\. From the above discussion we see that there are only 
three possibilities: d\ = 0, 1, 2. 

The end point ax is regular if it is finite and 

(2.6) pîl, qi, wi e L[ai, ax 4- e], for some e > 0. 

Similarly, the end point bx is regular if it is finite and (2.6) holds with the 
interval [ai, ax + s] replaced by [bi — e, bi]. As mentioned earlier, when 
we speak of Mx on [a\, b{), it is implied that a\ is regular. Similarly for b\. 

We say that the end point ai or bx is singular if it is not regular. Thus 
#i is singular if a\ — — oo or if one or more of the functions pll, qi, W\ 
are not integrable in any right neighborhood of a\. An important dis
tinction between the regular and singular cases is due to the fact that at 
a regular end point c all initial value problems of equation (2.4) with 
initial conditions y(c) = <?i, ym(c) = c2, cx, c2 e C have a unique solution. 
This is not true if c is singular (see [3]). 

If one end point is regular, then d = 1 or d = 2, [4]. For historical 
resons the former is called the limit point case, LP for short, and the latter 
is known as the limit circle or LC case. Both the LP and LC cases refer 
to a given singular end point. 

Some of the basic facts in the one interval case are summarized in 



502 W. N. EVERITT AND A. ZETTL 

THEOREM 2.3. 

(a) Z>o.i = ( / e Di\ lf> s P i ) - M sK*i) = 0>for all g e Z^}. 
(b) If Mi is in the limit point case at an end point c, then [f g](c) = 0, 

for all f g 6 Du c = a\ or c = b\. 
(c) If an end point c is regular, then, for any solution y, y and yLn are 

continuous at c. 
(d) If a\ and b\ are both regular, then, for any fu j-2, du ô2 in C, there 

exists a function f in Dx such that f{aY) = fufll\a\) = 7-2, f(bi) = öu 
fLl\(b) = d2. 

(e) If ai is regular and b\ singular, then a function f from Dx is in Z>0,i if 
and only if the following conditions are satisfied: 

(i) f(ai) = 0 andfl\a{) = 0; and 
(Ü) [fg](bi)=0,forallginD1. 

The analogous results holds when a\ is singular and b\ is regular. 

Since r0)i is symmetric, it follows that if Si is any self-adjoint extension 
of r0,i we have 

(2.7) r0 ii c S 1 = Sf c nA = Tu 

Thus such a self-adjoint operator S\ is completely determined by its do
main D(Si). From (2.7) we have 

(2.8) Z>0fi
 c ^ 1 ) <= A-

To specify Z>(.Si), we start with formula (2.2) applied to TQy. 

(2.9) D1 = D0,i + Nt + #f . 

The next result describes those restrictions of Dx which are self-adjoint 
domains. 

THEOREM 2.4. If the operator S\ with domain D(S{) is a self-adjoint ex
tension of the minimal operator T0fi with deficiency index d, then there exist 
cjju . . . , (jjdin D(Si) a Dx satisfying the following conditions: 

(i) (jju . . . , (J)d are linearly dependent modulo Z)01 ; 
(») lb, Mbi) - [&, &K«i) = 0,j,k=\,...\d; and 

(iii) D(Si) consists of the set of all fin Di satisfying 

(2.10) [/, ^ P x ) - [/, <J,j](ai) = 0, 7 = 1, . . . , J. 

Conversely, given (pu . . . , <J)d in Dx which satisfy conditions (i) and (ii), 
the set D(Si) defined by (iii) is the domain of a self-adjoint extension ofT0tu 

PROOF. See Naimark [7, Theorem 4, pp. 75-76]. 

REMARK. When d = 0 conditions (i), (ii), (iii) are vacuous. In this case 
it follows directly from formula (2.2) that the minimal operator TQti is 
itself self-adjoint and has no proper self-adjoint extensions. When d > 0, 
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conditions (iii) are "boundary conditions" and (i) and (ii) are the condi
tions on the "boundary conditions" which determine self-adjoint opera
tors. 

To illuminate conditions (ii) and (iii) we consider some special cases. 
These will be convenient to use for comparison purposes in §3 when we 
discuss the corresponding "two interval" cases. 

Case 1. Both end points a\ and b\ are regular. From [7, Lemma 2, p. 
63], given any <x\, cc2, ßx, $2 in C, there exists a <J) e Dx such that (p(a{) = 
ai. # 1 ] (ÛI ) = a2, 4)(bx) = ßu <jp\b{) = j82. Using this it is not difficult 
to show that (iii) is equivalent to the equations 

! n
 flll/(ai) + « ^ " f o ) + bnf(bi) + 6i2/ci](*i) = 0 

auf (au + a22f
l\ax) + 621/(6i) + b22f™ (bl) = 0. 

Condition (i) is equivalent to the linear independence of the two equations 
(2. 11) and (ii) can be reduced to the following three conditions 

(2.12) Ö 11̂ 22 - «12̂ 21 = 1̂1*22 - 1̂2̂ 21 

(2.13) anäi2 - änai2 = 611*12 - *ii*i2 

(2.14) #21̂ 22 — #21̂ 22 = 2̂1*22 — *21*22-

REMARK. Note that (2. 13) and (2. 14) hold whenever the matrices A = 
(atj), B = (btj), i,j = 1, 2, are both real and (2. 12), in this case, reduces 
to 

(2.15) det ,4 = det£ . 

The special case det , 4 = 0 = det B of (2.15) contains the separated 
boundary conditions case: 

anKai) + ^ 1 2 / ^ 1 ) = 0 

b2if(h) 4- *22/c"(*i) = 0 

Case 2. Assume a\ is LP and b\ is regular. In this case d = 1. Recall 
that, by part b of Theorem 2.3, [/, g] {a{) = 0, for any/, g e D^ Hence 
(2. 10) reduces to 

(2. 17) [/, &] (*i) = 0, 7 = 1 . 

Proceeding as in Case 1 above, (2.17) can be replaced by 

(2.18) bnAbi) + W [ 1 ] ( W = 0, 

Condition (i) means that not both of 6 n , b\2 are zero and (ii) becomes 

(2. 19) bnb12 - bnb12 = 0. 

Since bn can be taken to be real (2.19) just means that both bn, b\2 must 
be real. 
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Of course the case when ax is regular and b\ is LP is entirely similar. 
If one end point is regular and the other LP then only a condition at 

the regular end point is needed to determine a self-adjoint extension. If 
both end points are LP, then d = 0 and the minimal operator r0>i is itself 
self-adjoint with no proper self-adjoint extensions. At each LC or regular 
end point a condition is needed to determine a self-adjoint extension ac
cording to (2.10). In the case of a regular end point these conditions can 
be interpreted in terms of the values of the function/and its quasi-deri
vative/[1]. This cannot be done at a singular end point c, say, since only 
in rather exceptional cases will the limits f(t),flli(t) as t -> c both exist 
and be finite fo r / e D\ or even/a solution of Mxf = wxf. This holds even 
though, as we have seen, [f,g] (c) = limt_>c[f, g] (/) exists, for all/, g e D^ 
Thus [/ g] (c) = f(c)g[v (c) — /C1] (c)g(c) is meaningless, in general, at an 
LC end point c. 

3. The two interval case. In this section we characterize the self-adjoint 
extensions of the symmetric operator T0 which was defined in §1 and il
lustrate (and hopefully illuminate) this characterization in a number of 
special cases. A critical role is played by an extension of Theorem 2.4 to 
the two interval case involving the extended sesquilinear form [/, g] in
troduced in §1. 

We have seen that TQ is a closed symmetric operator in the direct sum 
Hilbert space H = Hi © H2. We summarize a few additional properties 
of TQ in the form of a lemma. 

LEMMA 3. 1. We have 
(a) r0* = r j i © Tlz = 7*10 T2. In particular, D(T$) = D = Dx ® 

(b) N+ = N+ © Ni, N- = Nï © Nï. 

(c) The deficiency indices (d+, d~) of TQ are given by: 

d+ = dt + dt, d- = dï + d-2. 

(d) D = D0 + Af+ + N-. 
Proof. Part (a) follows immediately from the definition of the operator 

TQ and from the general definition of an adjoint operator. The other parts 
are either direct consequences of part (a) or follow immediately from the 
definitions. 

Since df = dj,j = 1,2 we have d+ = d~ = d. Also, the only possible 
values of d are 0, 1,2, 3, and 4. 

Applying Theorem 2.1 to the symmetric operator T0 with equal and 
finite deficiency indices d we get 

THEOREM 3. 2. Let <j>i,. . . , (j>d be an orthonormal basis ofN+ and 0 l 9 . . . , 
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dd be an orthonormal basis ofN". For U = (ujk),j, k = 1, . . . , d, a är x d 
matrix, define 

(3.1) Du = {y + Z crfj + 2 cj£ukj0k\yeDo,CjeC9j = 1, . . . , d}. 
j=\ y=i k=l 

If U is unitary, then DLJ is the domain of a self-adjoint extension of TQ. 
Conversely, if S is a self-adjoint entension of TQ with domain D(S), then 
there exists a d x d unitary matrix U such that D(S) = D^. 

REMARK. If Uj is a unitary matrix of dimension dj, j = 1, 2, then the 
"block diagonal matrix" 

£/ = 
~Ui 0" 
o u2_ 

is unitary of dimension d. Such a U\ determines a self-adjoint extension 
S\ of r0,i m Hi* anc* ^2 determines a self-adjoint extension S2 of T0 2 in 
the space H2. So some self-adjoint extensions S of T0 in the space H — 
/fi -h //2 are generated by pairs of self-adjoint extensions, one from Hi, 
the other from H2. Note, however, that there are many self-adjoint ex
tensions of TQ in H which are not generated by a unitary matrix of such 
block diagonal form, i.e., which do not correspond to pairs of self-adjoint 
operators in this way. 

The next result is fundamental to our work here. It is a straightforward 
extension of Theorem 4, pp. 75-76 in [7]. 

THEOREM 3.3. If the operator S with domain D(S) is a self-adjoint ex
tension ofT0, then there exist <J>j <= D(S) cz D,j = 1, . . . , d satisfying the 
following conditions: 
(3.2) (i) ijji, . . . , <Jjd are linearly independent modulo DQ; 
(3.3) (ii) [0y, <jjk] =~(W, k= \,...,d;and 

(iii) D(S) consists precisely of those fin D which satisfy 

(3.4) [/, $j\ = 0, j = 1, . . . , d. 

Conversely, given <pj e D, j = 1, . . . , d which satisfy (i) and (ii), the 
set D(S) defined by (iii) is the domain of a self-adjoint extension of TQ. 

PROOF. The proof is entirely similar to that of Theorem 4, pp. 75-76 
in Naimark [7] and therefore omitted. 

REMARK 1. Let the vectors / = {f,f2} and g = {gx, g2} be in D. From 
(1.11) we have 

(3.5) [/, g] = L/i, gyUbi) - L/i, gûiiai) + U* g2h(b2) - L4 gM°è-
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Conditions (3.4) can be viewed as general "boundary conditions" for the 
equation 

(3.6) -(py'Y + qy = Iwy 

on both intervals I\ and I2, with p = px on 71? or p = p2 on I2, etc. Condi
tions (i) and (ii) can be interpreted as conditions on the "boundary con
ditions" (iii) which determine self-adjoint domains. 

These criteria depend on the coefficient functions, since the (ft/s depend 
on D which depends on the coefficients. In some special cases this depend
ence can be eliminated as we will show below. 

If Si is a self-adjoint extension of r 0 1 and S2 is a self-adjoint extension 
of r0)2, then 

(3.7) S = Si e S2 

is a self-adjoint extension of TQ. Are there others? Below we will refer to 
self-adjoint extensions of T0 which do not arise as in (3.7) as "new". 

The conditions (2.4) stated in terms of the form [, ] depend on the 
sequilinear forms [, ]x and [ , ]2. From Theorem 2.3 part (b), it follows 
that, at any LP end point, the term in (3.4) which involves that end 
point is zero. 

Case 1. d = 0. This can only occur when all four end points are LP. 
In this case T° | is itself self-adjoint and has no proper self-adjoint exten
sions. 

Case 2. d = 1. In this case we must have three LP end points and one 
LC or regular. There are no new self-adjoint extensions, i.e., all self-adjoint 
extensions of T0 can be obtained by forming direct sums of self-adjoint 
extensions of T0ti and T0t2. These are obtained as in the "one interval" 
case. In other words the conditions of Theorem 3.3 reduce to the known 
self-adjointness conditions on the interval with the LC or regular end 
point. 

Case 3. d = 2. There must be two LP end points. Each of the other two 
may be LC or regular. 

(i) If both LP end points are from the same interval, say / l5 then 

s = r0ii e s2, 

where S2 is a self-adjoint extension of T0j2, generates all s.a. extensions of 
T0. The conditions of Theorem 3.3 reduce to those for determining the 
extensions of T0t2 on I2. 

(ii) If there is one LP and one LC or regular end point from each in
terval, then "mixing" can occur and we get new self-adjoint extensions 
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of TQ. For the sake of definiteness assume that the end points a\ and b2 

are LP and a2, b\ are LC or regular. The other cases are entirely similar. 
For / , (Jjj e D, with / = {fl9 f2}9 fy = {^yl, </,#}, condition (3.4) reads 

(3 8) ° = [ / ' $A = [ / l ' M l i b ù " [ / l ' M l i a ù 

+ [/ , ^/2]2(^2) - [ 4 M^2)9 7 = 1 , 2 . 

By Theorem 2.3, part(b), the terms involving the LP end points a2 and b\ 
are zero so that (3.8) reduces to 

(3.9) [/i, ^ ( ô x ) - [/2, 0y2]2(a2) = 0, 7 = 1 , 2 . 

Similarly, in this case, (3.3) reduces to 

(3.10) 0 y l , faMbi) = [ f e ^afefo) = 0, j , k = 1, 2. 

Conditions (3.9) and (3.10) depend on the coefficient functions pr, qr, 
H>, r = 1,2 since the functions 0r5 depend on D which depends on these 
coefficients. In general this dependence cannot be removed except in cer
tain special cases including those cases of regular end-points. 

Suppose bi and a2 are regular. Then (3.9) is equivalent to the two equa
tions 

{ anf2{a2) + a12fP(a2) + *u./i(*i) + *i2/i
C1](*i) = 0 

«21/2(02) + a22fP{a2) + b2lMbd + *22/i[u(*i) = 0, 

where ars, brse C, r, s = 1, 2. This follows from Theorem 2.3, part (d). 
Given #rs, òrs e C, choose <̂>12 e D2 and <̂ n e Di such that 

^12(̂ 2) = «ig, <f>[\\a2) = - a n , 

0n(*i) = -Ï12, » 1 ) = *n-

Then (3.9) with 7 = 1 becomes the first equation in (3.11). Similarly 
the values of <f>2i e D, and ^22 e D2 can be chosen so that (3.9) with 
j = 2 becomes the second equation in (3.11). 

Now (3.10) becomes a set of conditions on the two equations in (3.11). 
There are three of these : one for j = 1, k = 2 (the case j = 2, k = 1 is 
equivalent to this one), one for j — k = 1 and one for j = k == 2. These 
are as follows : 

(3.12) 011*22 - «12*21 = *n*22 - ^12*21 

(3.13) anä12 - 012*11 = é u ô i 2 - 612*11 

(3.14) «21*22 — «21*22 = «21*22 — *21*22-

Condition (3.2) is equivalent to requiring the linear independence of the 
two equations in (3.11), i.e., the two four-vectors 
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(3.15) (tfn, Ö12, en, b12) and (a21, #22, b2l, b22) 

are linearly independent. 
In particular (3.15) implies that both equations in (3.11) must be 

present, i.e., not all four coefficients of either equation can be zero. 
Next we list a number of examples to illustrate the type of boundary 

conditions that determine self-adjoint domains in this two interval case. 

EXAMPLE 1. 

(3.16) Mbi) = f2(a2) and/r j(6i) = f^(a2). 

This is the case an = — 1, a\2 = 0, bn = 1, bi2 = 0, a2\ = 0, a22 = — 1, 
b2i = 0, b22 = 1. 

If bi = a2 so that the two intervals are adjacent, then the vector / 
= {/i> f-ii c a n De identified with a function / which, together with its 
quasi-derivative /C1], is continuous on the interval (al5 b2), including the 
point bi = a2. 

Note that the self-adjoint operator determined by (3.16) whenZ^x = a2 

is equivalent to the unique self-adjoint operator obtained in the one in
terval theory on (ab b2), i.e., the minimal operator in L%(ai, b2); recall 
that in this Case 3 we have assumed the LP condition holds at ax and b2. 
This equivalence is based on identifying the space L%(ai, b2) with the direct 
sum space Z^2(tfi, b{) ® Ll2(a2, b2). Here w is identified with the function 
defined on (al5 b2) whose restriction to (a1? bi) is Wi and whose restriction 
to (a2, b2) is w2. 

It is interesting to observe that while the one interval theory in L ^ i , 
b2) yields only one self-adjoint operator, since ax and b2 are both LP, 
the two interval theory on (al5 b{) and (a2, b2) yields infinitely many self-
adjoint operators. However, only one of these self-adjoint extensions is 
unitarily equivalent to the unique self-adjoint operator obtained in the 
adjoint operators. However, only one of these self-adjoint extensions is 
single interval theory on (al5 b2), i.e., that described by the special choice 
of (3.11) given by (3.16). 

EXAMPLE 2. 

(3.17) A(bi) = 0 = Ma2). 

This is the case bn = \ = a2i and all other coefficients zero. 
If bi = a2 and the vector / = {/ls f2} is identified with the function ft 

defined on (öl5 b2) by f(t) = fx{t), for t in (a\9 Z?i), and/(/) = / 2 ( 0 . f° r t 

in (a2, b2), then (3.17) is simply the continuity requirement f o r / at bi = 
a2. Of course /C1] might not be continuous at b±. 

EXAMPLE 3. 

(3.18) /f1](*i) = 0 = ^ " ( u 2 ) . 



DIFFERENTIAL OPERATORS 509 

Just as in Example 2, the vector / can be identified with a function / 
defined on (ÛJ, b2), if bx = a2. Then (3.18) requires/C1] but not / t o be 
continuous at Z>1# 

EXAMPLE 4. Let 0 = bn = &i2 = a2i = «22- Then equations (3.11) 
become separated 

«11/2(02) + a ^ / P W = 0 

*2i/i(*i) + b22f^\bx) = 0. 

Observe that the self-adjointness condition (3.12) is automatically satisfied 
since both sides of (3.12) are zero and (3.13) and (3.14) reduce to 

(3.20) U11Ä12 - 011Û12 = 0 

(3.21) £21^22 - ^21^22 = 0, 

respectively. 
Since b2 is LP and the first equation in (3.19) is a separated boundary 

condition at the regular end point a2, this equation with condition (3.20) 
determines a self-adjoint operator S2 in H2. Similarly, the second equation 
in (3.19) with (3.21) determines a self-adjoint operator Si in H\. The opera
tor of Example 4 is simply Si © S2 in H. 

EXAMPLE 5. Choose an = 1, a12 = 0, bn = — 1, b\2 = 0. Then the first 
equation in (3.11) becomes 

(3.22) fate) = fi(bi). 

When (3.22) holds, then, under conditions (3.12), (3.13), and (3.14), the 
second equation in (3.11) reduces to 

(3.23) f?\bù -f¥\02) = cfxibù, creai. 

To see this, note that (3.12) reduces to a22 = — #22- Thus we get 

(3.24) a22f?\a2) - a22f?\h) = -a2lf2{a2) - b^Uh). 

If #22 = 0, then Ò22 = 0 and a2\ = — b2\. But this would make equations 
(3.19) linearly dependent. Hence a22 ^ 0- Diving (3.24) by a22 we get 

(3.25) /£«(*!) - / P W = cMh), c = (a21 + b2l)/a22. 

Now (3.13) is equivalent to c = c, giving (3.23). 
In case b\ — a2, (3.25) can be interpreted as an interface condition. 

We identify the vector / = {/, f2) with the function / defined on (ah b2) 
whose restriction to (a1? b{) is fx and whose restriction to (a2, b2) is /2. 
Then 
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(3.26) yfu(fti) = \imp(t)fVl mto) = lirnpWV), 

and equation (3.22) can be interpreted as 

(3.27) lim J{t) = /fa) = f2(a2) = lim f(t). 

With these interpretations, equations (3.22) and (3.23) are well known 
self-adjoint interface conditions [5, 8]. In [5], (3.25), and (3.22) with the 
interpretations (3.26), (3.27) are referred to as a point interaction of 
strength c. 

In (3.25), c = 0 is allowed, but then Example 5 reduces to Example 1. 

EXAMPLE 6. f2(a2) = -/i(*i) 

/i[1](^i)+/2[1](^2) = ^ i (^ i ) , creai. 

To verify this, take an = 1, a12 = 0, bn = 1, b12 = 0, a22 = 1, b22 = 1. 
Then the first equation in (3.11) becomes f2(a2) + fi(bi) = 0 and the 
second reduces to 

J?\a2) +/icl](*i) = -a2lf2(a2) - bnAih). 

Conditions (3.12), (3.13) hold for arbitrary a2h ft2i» and (3.14) gives 

#21 ~ #21 = ^21 — ^21 o r #21 ~ ^21 = #21 "" ^21-

Now, substituting the first condition into the second, we get 

/2
C1](#2) +/icl](*i) = (#21 - 62i)/i(*i) = cMh) 

with c = c, i.e., c real. 
More generally, we get 

EXAMPLE 7. f2(a2) = rf^bi), where r is real, r ^ 0, and /2
[13(tf2) - ^_1/i [1] 

(*i) = cf\(b\), where c is real. 
Choosing flu = 1, <zi2 = 0, Z?n = — r, 612 = 0, we get the first equation. 

The choice a22 = 1, b22 = — r_1 gives the second equation with c = 
— (^2i + ^2i)- Conditions (3.12) - (3.14) are satisfied if c is real. Clearly 
any real number c can be realized with an appropriate choice of a2\ and&21. 

Case 4. d = 3. Here we must have either d\ = 2, d2 = 1 or d\ = 1, 
</2 = 2. We assume the former holds. The latter is entirely similar. Thus, 
we must have either al5 £ b a2 are LC or regular and b2 is LP, or aÌ9 bÌ9 b2 

are LC or regular and a2 is LP. Again, for definiteness, we assume the 
former holds. In this case only the term involving a2 (which is LP) in 
(3.4), equivalently (3.5), is zero for all / in D. Using the notation from 
Case 3 the "boundary condition" (3.4) becomes 
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28) ° = [ / ' ^ = [ / l ' M l { b l ) " [ / l ' ^jMai) " [ / 2 ' ^'2]2 (ß2) ' 
7 = 1,2,3, 

and the "conditions on the boundary condition" (3.3) become 

(3.2") 

y, * = l, 2, 3. 
Since the conditions (3.28) involve both intervals (aÌ9 b2), (tfj., b2), 

there is "mixing" and we obtain self-adjoint operators which are not direct 
sums of self-adjoint operators from the one interval case (as well as all 
those which are). 

If all three end points aÌ9 bÌ9 a2 are LC, then condition (3.28) cannot 
be simplified except for some special cases. But, just as in Case 3, if one 
or more of a^ bÌ9 a2 is regular, then the term in (3.28) and (3.29) which 
involves that point can be simplified. 

Case 3a. All three points «x, Z>1? a2 are regular. In this case the values of 
the <f>fs at each of these three end points can be determined arbitrarily. 
So, proceeding as we did in Case 3, we can show that each of the condi
tions (3.28) is equivalent to one of the three equations 

(3.30) 

(3.31) 

(3.22) 

*n/i(*i) + a12f^(ai) + bnMbù + bnffXbù 

+ cnf2(a2) + cl2fP{a2) = 0, 

*2l/l(*l) + tf22/lCl3(«l) + *2l/i(*l) + b22f^\h) 

+ c21f2(a2) + c22fï
lXa2) = 0, 

W i f e ) + <Wi[1](*i) + é3i/i(*i) + bZ2f^\bx) 
+ ^3l/2(ö2) + C32f^\a2) = 0. 

The linear independence condition (i) of Theorem 3.3 is equivalent to 
the linear independence of these three equations. 

Two special cases of equations (3.30), (3.31), (3.32) are mentioned. 
In the first the boundary conditions from the interval I\ are not linked 
with those of interval I2. The second is a special case of the first in which 
the boundary conditions at a\ and bi are separated. 

Case 3a(i). The intervals Ix and I2 are decoupled. This can be achieved 
by choosing cn = ci2 = c2X = c22 = a3l = a32 = 631 = bS2 = 0. (One 
can take g/s of the form fa = {<j>ll9 0}, <p2 = {fai, 0}, fa = {0, ^31}.) The 
three boundary condition equations now reduce to 

(3.33) anfMi) + ai2/i["(«i) + *ii/i(*i) + bnf?Xh) = 0, 

(3.34) aoMaù + a22f^(aù + b21f1(b1) + b22f?\h) = 0, 



512 W. N. EVERITT AND A. ZETTL 

(3.35) c3lf2{a2) + c32fp(a2) = 0. 

Equation (3.35) is independent of (3.33) and (3.34), but these two are 
coupled. 

The self-adjoint conditions (3.3) now reduce to the known one interval 
two point self-adjoint boundary conditions on (3.33) and (3.34) and the 
usual one interval one end point self-adjointness condition on (3.35). See 
Naimark [5, pp. 78, 79]. We state these for the convenience of the reader 
but omit the straightforward but tedious calculations showing their 
equivalence with (3.3): 

(3.36) «11*22 - 012*21 = 6n62 2 - b12b21, 

(3.37) fln<2i2 - «12*11 = 611612 - è i 2 ï l l , 

(3.38) «21*22 — *21*22 = 621622 — 621622, 

(3.39) c31c32 - c31c32 = 0. 

Of course, in this case, the boundary conditions (3.33), (3.34) satisfying 
the self-adjointness criteria (3.36), (3.37), (3.38) determine a self-adjoint 
extension S\ of T0>i and the "boundary condition" (3.35) with coefficients 
satisfying (3.39) determines a self-adjoint extension S2 of TQt2. The self-
adjoint operator determined by (3.33) - (3.35) satisfying (3.36) - (3.39) 
is simply the operator S\ ® S2 in H = Hi + H2. 

The particular case of this special case mentioned above is obtained 
by decoupling the equations (3.34) and (3.35). This can be done without 
violating the linear independence condition by choosing 6n = 6i2 = «21 = 
a22 = 0. Now each of the three equations (3.30), (3.31), (3.32) involves 
only one end point: 

(3.40) anMa,) + «i 2 /? ](*i) = 0, 

(3.41) 621/1(61) + 622/^(60 = 0, 

(3.42) c31f2(a2) + c32f£U(a2) = 0. 

The self-adjointness conditions are 

(3.43) anä12 - äua12 = 0, 

(3.44) 621622 - 621622 = 0, 

(3.45) C31C32 - c31c32 = 0. 

Case 3a(ii). Although a\ and a2 are end points of different intervals, 
they can be coupled in the same way as a\ and 61 were coupled in (3.33), 
(3.34) and 61 can be decoupled. Choose 6 n = 612 = 62i = 622 = «31 = 
*32 = cz\ = c32 = 0 s o t n a t (3.30) to (3.32) become 



DIFFERENTIAL OPERATORS 513 

(3.46) flu/iOzi) + al2f^\ax) + cuUa2) + cl2fP(a2) = 0, 

(3.47) a21fM) + <Wfu(ßi) + c2lf2(a2) + c22f2™(a2) = 0, 

(3.48) 631/1(61) + bsz/FKbi) = 0. 

The self-adjointness conditions now are 

(3.49) anä22 - a12ä2i = cnc22 - c12c21, 

(3.50) anä12 - al2än = cncl2 - cl2cn, 

(3.51) tf21ä22 - ^21^22 = £21^22 - ^21^22, 

(3.52) ^31^32 - ^31^32 = 0. 

In addition, the three equations (3.46), (3.47), (3.48) must be linearly 
independent, i.e., the three vectors (an , a12, 0, 0, c n , c12), (a21, a22, 0, 0, 
<?2i, c22), (0, 0, Z>31, #32, 0, 0) must be linearly independent. 

We now return to the general Case 3a where the boundary conditions 
are given by equations (3.30), (3.31), (3.32). These boundary conditions 
determine a self-adjoint extension of the minimal operator T0 in the space 
H if and only if the following two criteria are satisfied. 

(i) The three equations are linearly independent, i.e., the three six 
dimensional vectors are linearly independent: 

(aji, aj2, bji, bj2, cn, cj2)J = 1, 2, 3. 

(ii) The coefficients aJk, bJk, cjk satisfy the following set of conditions : 

(3.53) bnb22 - b12b2i = anâ22 - ai2ä21 + cnc22 - c12c21 

(3.54) bnb32 - b12b31 = anä32 - ai2ä31 + cnc32 - cl2c3l 

(3.55) b2ib32 - *22*31 = #21^32 ~ #22<% + Ql^32 ~ c22^31 

(3.56) bnb12 - bnb12 = anä12 - äna12 + cnc12 - cnc12 

(3.57) b2ib22 - ^21^22 = «21^22 - #21^22 + £21^22 - ^21^22 

(3.58) &31*32 ~ ^31^32 = #31^32 - ä31a32 + C3ÌC32 - C31C32. 

The verification of these conditions is quite similar to that of Case 3. 
We omit the straightforward but tedious details but do point out that, 
since \<j)j, £k] = 0 if and only if [<ßk, <£j] = 0, (3.3) yields six conditions: 
[^i, $ = 0, [^i, 03] = 0, [02, 0 3 r = 0 and [fa, <Jjj\ = 0,y = 1, 2, 3. The 
first of these is equivalent to (3.53), the second to (3.54), etc. 

Case 5. d = 4. This means that d± = 2 = d2. Therefore each one of the 
four end points a\9 b\, a2, b2 is either LC or regular. With the notation 
/ = {/i>/2}> <]>j == {̂ /i> ^2}» conditions (3.4) of Theorem 3.3 take the form 
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[/i, 0yi]i(*i) = L/i,&i]i(*i) + L/* fe]2(^2) - 14 fehfe) = 0, 
7 = 1, 2, 3, 4. 

At a singular end point these conditions can be simplied only in special 
cases. 

Case 5(a). All four end points are regular. Just as before, equations 
(3.59) can be written as 

(3 60) ajlfl(ai) + fl^"(öl) + bnfl(bl) + Wi1]<*i> + ^ l / 2 f e ) 

+ c>2/Rfl2) + dnf2(b2) + <WF3(*2) = 0, y = 1,2,3,4. 

In order for these boundary condition equations (3.60) to determine 
a self-adjoint extension of TQ they must be linearly independent and 
satisfy the following set of 10 conditions: 

, _ n 0/1^*2-0/2<**i + cnck2-cj2ckl = bnbk2-bJ2bkl + bndk2-bJ2dkl, 
(3.61) 

j , k=\,2, 3, 4. 

There are only 10 of these conditions since they are symmetric in y and k. 
There are many interesting special cases. 

Case 5a(i). Any one of the four end point conditions can be "separated 
out", e.g., to get separated conditions at b2, choose 0 = dji = dj2, j = 
1, 2, 3 and 0 = #41 = A42 = Z>41 = bA2 = c41 = c42. Then equation j = 4 
in (3.61) becomes 

dAiMb2) + dA2fp(b2) = 0 

and the other three reduce to (3.30), (3.31), (3.32). Thus besides the 
linear independence condition (i), the self-adjointness conditions are 

^41^42 - ^41^42 = 0 

and (3.53) through (3.58). 
The procedure for getting separated conditions at any one of the other 

end points is entirely similar and so we omit the details. 

Case 5a(ii). Separated conditions can be obtained at any two of the four 
end points. As always, the four equations (3.60) must be linearly in
dependent. To get separated conditions at, say a\ and b2, we consider 
the special case of (3.60) given by (3.11) and 

(3.62) C3i/!(fli) + c32/i
cl](«i) = 0, 

(3.63) duf2(b2) + dA2fP(b2) = 0, 

The self-adjointness conditions now are given by (3.12), (3.13), and 
(3.14), in addition to 
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^31^32 - 3̂1̂ 32 = 0 = ^41^42 ~ <4l^42-

Similarly, we can obtain separated conditions at any two other end points. 
The conditions, given that an appropriate change in notation has been 
made, are the same. Notice that it makes no difference whether or not the 
two end points with the separated conditions are from the same interval. 

Next we simply list a number of self-adjoint boundary conditions, i.e., 
conditions which determine a self-adjoint extension of T0 in H. The 
verification is left to the reader. 

I. /i(*i) = /i(*i), ni\ai) - ni\h) = aMaù, cx real 

Ma2) = f2(b2\ &\a2) - fPXbd = c2f2(a2\ c2 real 

H. /x(fli) = /fa), yf»(fli) - fP(a2) = csfMi), c3 real 

/i(*i) = Mb2)9 f?\h) - ftXbd = c.MhX Q real 

Note that both I and II include the case cj = 0 so that both the functions 
and the quasi-derivatives match up. 

The four equations 

in. /fa) + Mbù + f2(a2) + Uh) = o 
Mai) +/i(6i) -f2(a2) -f2(b2) = 0 

fil\ai) + /[1](*i) +fi1\a2) +/nb2) 
= Û3I/I(ÛI) + bzlMh) + C3i/2(fl2) + d^Mb2) 

JÎHaù + /i[1[(^i) + f2m(a2) + f2
a\b2) 

= û4i/i(«i) + *4i/i(*i) + Q1/2O2) + d^Mb2\ 

with any real coefficients ßyl9 6yb cyi, rfyi,./ = 3, 4, determine the domain 
of a self-adjoint extension in / / provided that 

1. the four equations are linearly independent, and 
2. tf31 - aA1 + C31 - C41 = ^31 - 641 4- rf3i - rf4i. 

Particular examples of coefficients satisfying conditions 1 and 2 are: 

(i) fl31 = Ô31 = C31 = rf3i = 1, tf41 = 0 = Z>41, c 4 i= 1=^41. 

In this case the third and fourth equations of III become, respectively, 

/P](tfl) +/lC1](*l) +/2
C1](a2) +/2

[1](^2) = 0 

and 

f2(a2) = -/2(*2) orMa\) = — /i(*i). 

Here we have used the first and second equations of III. 
In the examples above we have emphasized self-adjoint boundary 

conditions at regular end points. In a future paper we plan to study the 
form of the singular LC boundary conditions including some special 
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ones of interest in Mathematical Physics. We also plan to take up the 
general higher order case as well as the cases of finitely many or countably 
infinitely many intervals. 
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