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WHY SECOND ORDER PARABOLIC SYSTEMS? 

ABDERRAHMAN BOUKRICHA AND MALTE SIEVEKING 

0. Introduction. A natural phenomenon is envisaged, describable by a 
set of functions 

Pi(x9 t), 1 g / S m, 

subject to some evolutionary law. Here, x is interpreted as a space variable 
and the pt(x, t) as the concentration of "species" / = 1,. . . , m at x and 
at time t. We ask for certain "first experiments" which permit us to con
clude that the evolutionary law governing the envisaged phenomenon is 
a system of partial differential equations of parabolic type independent 
of the initial distribution p(x, 0). These "first experiments" do not neces
sarily have to be real experiments, but may be any source of information. 

We shall, in fact, provide a set of general properties listed below as 
A b A2, . . . , which in a purely mathematical way imply that the pfa, t) 
solve a system of equations of the form 

(*) h**>l) = £/'*x)^S*x> ° + S**" (x)ikPÀX> ° 
+ Fj(x, p(x, 0) ', * e {1, 2, . . . , n},j, / e { 1 , 2 , . . . , m). 

Some of the properties A b A2, . . . are in fact necessary for a process to 
satisfy such a system of equations. A particularly simple property con
sidered is 

If pt(x, 0) is nonnegative for all x and /, then 

Pi(x, t) is nonnegative for all x, i and t ^ 0. 

In compiling our set of assumptions A1? A2, . . . , we have tried to make 
them as simple and as few in number as possible, as well as being subject 
to actual verification by measurement. 

Once the form of the evolutionary law governing the envisaged process 
is determined to be (*), one can try to find the coefficients 
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for any concrete process by a set of "secondary experiments". In fact, 
these coefficients are determined by the values of 9/9/|,=o pj(x, t)9 for a 
finite set of polynomials pj(x, 0) of degree ^ 2. For example, if, for some 
fixed n, i and k, we set 

Pn(y, 0) = (yt- - xt) (yk - xk) and p, = 0, for / # n, 

then d/dt\t=Q pj(x, t) = «j-;J + Fj(x, 0, . . . , 0); and if Gj(y, 0) is constant, 
for all j , then 

_9_ 
dt <Tj(x, t) = Fj(x, o\{x, 0), . . . , am(x, 0)). 

For a qualitative mathematical analysis of (*), however, it will in general 
not be necessary to know the values of affix), b*Jt/(x)9.... 

The motivation for our somewhat unusual approach is the fact that 
a great many different processes, occurring in most physical and biological 
sciences, have been modeled by such parabolic systems. The mathematical 
analysis of such systems often uses only very general abstract properties 
and, for reasons of economy, tries to minimize them. It is therefore natural 
to attempt to unify the model building aspect associated with them, using 
a systematic approach which employs the same "axiomatic" methods 
which the mathematician uses when analysing the final model. 

We now list the "axioms" to be used in this paper and comment on 
them. Let Q—the reactor—be an open (bounded) subset of Rw. At each 
time t, any of a fixed number m of species is present with a concentration 
Pi{x) (x e Q, / = 1 ,2 , . . . , m). The possible concentration vectors p = 
(ph • • • » Pm) fonn a set C of continuous functions p: Q-* Rm. C is or
dered componentwise, i.c.,p ^ a if for all /, x pt(x) ^ tfv(X). C is supposed 
to satisfy certain properties (see §1) which are satisfied, for example, by 
the cone of all non-negative continuous functions/: Q -> Rm with compact 
support. The following "axioms" will be used. 

(Ax), (DETERMINISM). There is a semigroup Pt acting on C such that the 
concentration p(-, t + h) at time t + h is given by Php(-, t). 

COMMENT. (AX) states that the concentration at time t uniquely deter
mines the concentration at any time t + h in the future. 

Let us briefly discuss situations where Ax does not hold. 
a) The number of particles (or members of a population) at time t in 

a unit volume at x which is counted by p4{x, t) may be the result of a 
stochastic movement of these individuals and as such a random quantity. 
In this case Ax does not hold. However, if we replace pt(x, t) by the mean 
of pi, a(x, t) over a large number of experiments a, there is a good chance 
that Ax may hold. 

b) It may be that the future concentrations o(x, t), for t ^ s, depend 
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not only on p(-, s) (the present) but also on p{% r), for r < s (the past). 
This happens quite naturally not only in biology (see [2]), but also in the 
study of anorganic materials which have a "memory" [8], and models 
for heat conduction in such materials have been constructed [12]. 

c) There may be external influences (like a time-dependent magnetic 
field) such that the concentration p( •, t + h) depend not only on p( •, t) and 
h but also on t; hence, p(*, 14- h) — Pt+h,t p('> 0- Instead of the semigroup 
property 

Ps+t = Ps o Pt 

we would find 

PttSoPrq = Ptq (t^s^r^g^O). 

The effect of such a double dependence on time would be that we get 
time dependent coefficients in (*), for example, a'f}/(x, t) instead of a^,(x). 
The considerations of this paper may be generalized to cover such systems. 

(A2). (SMOOTHNESS). Ptp(x) depends in a differentiate way on t, x, p. 

A2 will be made precise when needed. We don't bother with the physi
cal meaning of A2 except to note that often a discrete model (with respect 
to t, x) will be more appropriate than a continuous one. 

(A3). (LOCALITY). Let pl9 p2 e C be twice continuously differentiate and 
equal to each other in a neighborhood of x e Q. Then 

l i m - j - ^ ^ x ) - Ptp2(x)) = 0. 
no l 

COMMENT. In general, we would expect A3 to be violated if Pt p(x), for 
t ^ s, depends on Pr p, for r < s, and not only on Ps p. In such a case a 
disturbance at a finite distance from x at time t may travel in time s — r 
to x and influence the rate of change of p at (x, s). However, A3 may be 
violated even when A1? A2 hold, m = 1 and the Pt are linear. In fact, this 
situation is well understood by Markov-process theory which (in terms 
of a precise mathematical model) provides the interpretation of A3 that 
p(x, t) is the concentration at (x, t) of a diffusing particle which moves 
along a continuous path in Q. This interpretation explains why, in concrete 
situations, A3 may be expected to hold if &\ and A2 hold. 

On the otherhand there are Markov processes Pt with essentially no con
tinuous paths. See [1] for the equations which, in such a case, replace (*). 

(A4). (LINEARITY), p -• Pt p is a linear mapping for any t ^ 0. 

COMMENT. If the change of p(x, t) is due only to diffusion of non-in
teracting particles we expect A4 to hold. Suppose, however, that particles 
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react with each other according to some mass action kinetics. Then we 
expect A4 to be violated. In that case we may consider the derivative 

DuPt = Qt 

of Pt at some concentration (which we will take to be an equilibrium in 
this paper) which is linear by definition. 

We now slightly generalize A4 to take into account reactions. 

(A5). (SEMILINEARITY). There is a linear operator L and a function F 
o n û x R » such that 

d_ 
dt l*=o 

(Pt p)(x) = (Lp)(x) + F(x, p(x)), 

for any p which is twice continuously differentiate and such that p = a 
in a neighborhood of x, for some aeC. 

COMMENT. Obviously, (A5) is necessary for (*) to hold. To test A5 (as
suming Al5 A2), one can proceed as follows. Given p e C, x e Q, put 

Px(y) = p(x\ (y e 0) 

F(x, p(x)) = £\t=Q(PtPx)(x). 

Then, test the linearity of p -• d/dt\t=0 Pt p(x) - F(x, p(x)). That is, in 
order to eliminate the influence of reactions, we subtract the rate of change 
at the well-stirred concentration px. 

A5 admits the following interpretation. A particle of species /, starting 
at time zero at x, moves along a continuous path in 0 according to a 
linear difiusion law, as if there was no coupling between the different 
species until some time z > 0, when it reaches a point y, where it reacts 
with other particles. This reaction exclusively depends on F(y, p(y, z)). As 
a result, the particle vanishes or multiplies or changes into a different 
species j . Then it starts anew from y moving along in 0 according to the 
diffusion law characteristic for j and so on. This interpretation can be 
proved mathematically if Fis linear. Note that our notion of semilinearity 
is more restrictive than that of Friedmann [5], for example. 

(A6). (POSITIVITY). If p ^ 0, then, for all t ^ 0, Ptp Z 0. 

COMMENT. If p(jc) is to be a concentration of particles at (x, 0) and 
Ptp(x) is to be the concentration at (x, t), then A6 is evident. The lineariza
tion of Pt at a nonzero equilibrium, however, will in general fail to satisfy 
A6. Now, a phenomenon which is intuitively related to a diffusion is that 
a common maximum of all concentrations pj at a point x is flattened in 
the immediate future: 
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d_ 
dt Ptp(x)£0. 

t=o 

We shall make use of this property only in case u = (wl9. . . , um) = 
(pi(x),. . . , pm(x)) happens to be a positive equilibrium of Pt. 

(A7(w)). (MAXIMUM PRINCIPLE FOR U). If peC is twice continuously 
differentiable and Uj = pj(x) (1 ^ / g m) is a local maximum of pj at 
x, then 

^ 
Ä Ptp(x)^0. 

The paper is organized as follows. In §1, (*) is derived with Fj(x, p(x)) 
= 2 / cjÀx)p/(x) from A1? A2, A3, A4, A6. In addition, it is shown that 
af^ = &}f/ = 0, for y ^ / ; that is there is no coupling of the species except 
by the cJt/ which are shown to be è 0 for j # /. In §2, the same result 
is proved for the linearization of a process satisfying a modification of 
A1? A2, A3, A6. In §3, (*) is derived from A b A2, A3, A5, A6. In §4, (*) is 
shown to hold for the linearization at a constant strictly positive equi
librium u, using A1? A2, A3, A7 («). Whereas, in §1, §2, and §3, we show 
that af^ = Z?^ = 0, for / ^ A there seems to be no reason why this should 
hold in the present situation. In fact, a (mathematical) example seems to 
show that coupling by second order terms (cross diffusion) may be pos
sible. (See also [8]). There is, however, an additional algebraic structure 
imposed on the coefficients if the corresponding Cauchy problem is "cor
rectly posed". In §5, we prove this classical observation in the setting of 
strongly continuous semigroups on Hilbert space with Q = Rw or Q 
bounded. Our result is that, for any x e Q and any y e O , all of the 
eigenvalues of (Hi}k

af,Äx)yiyk) n a v e non-negative real part. Except for 
§5, all our arguments are completely elementary and well known for 
m = 1. 

CONCLUSION. The widely used model (*) for the description of time 
dependent processes (as well as some additional structure of the coeffi
cients) follows from the simple properties given above. With the possible 
exception of the smoothness, these properties have a physical meaning. 

ACKNOWLEDGEMENTS. Our interest in the subject started with reading 
Chapter I of P. Fife [4]. We thank P. Fife for continuous stimulation, 
J. Weidman for help in proving theorem 4, and also J.B. Ferebee for 
manuscript reading. 

1. Linear systems. 
NOTATIONS. Throughout this paper, C, the set of possible "concentra

tions", will be a convex cone of continuous mappings from 0 to Rm such 
that: 
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(a) For any neighborhood V of a point x e Q and any p e C, there is 
a continuous <p: Q -» [0, 1[ such that #>(ß\K) = {0}, p = 1 in a neigh
borhood of jc and <p • pt C; and 

(]8) If p e C - C and p è 0, then p e C. 

NOTE. If l:C -» R is linear and /(/) è 0, for / e C, then /(/) ä /(g) if 
/ è s , / , s e C , b y ( | 8 ) . 

Let C2(x) be the space of all / : Q -• Rw which are twice continuousl 
differentiate in a neighborhood of x. Write/ = x g iff = g in a neighbor
hood of x. Throughout this section, Pt will denote a family of operators 
on C satisfying Al5 A2, A3, A4 A6, of the introduction. 

We now fix the meaning of A2 for this section. For xe Q, denote, by 
Dp(x)9 the set of functions g: 0-+Rm such that there i s / e C and j8 e Rw, 
with 

(0 f = ,g; 

00 l i m X ( / > ( / W - / W ) = ^. 
no * 

By (A3), ß does not depend on the choice of / i f g e C 2(X); in this case, 
put Ag(x) = ß. Let ej, = (0, . . . , 0, 1, 0, . . . , 0), Jj(x) = (*,— yd, and 
J j*W = (*,- - yt)(xk - yk) (je { 1 , 2 , . . . , m}, /, k e {1, 2, . . . , «}). 

(A2). (SMOOTHNESS). Let P+(y) be the set of (pi, . . . , pm) such that each 
PJ is a real polynomial in x e Rn of degree ^ 2 which is non negative in 
a neighborhood of y. Then /^(jy) c Dp(y). 

NOTATION. Since Pt is linear on C it extends in a unique way to a linear 
operator, again denoted by Pt, on C — C = <C>. Also, A extends in 
a unique way to a linear operator on Dp(y) — Dp(y) = (Dp(y)y. Put 

Cj(y) = ^ - ) ( > 0 

65O0 = A(4ej)(y) 

a%y) = ^A(Ai
y
kej)(y). 

Let A»* be the matrix with columns a**. Let b* be the matrix with columns 
b). And, let c be the matrix with columns Cj. 

PROPOSITION 1. Suppose p e C is twice continuously differentiable with 
respect to x. Then, for all x e X, p e Dp(x) and 

i,k 

PROOF. By Taylor's formula, 
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(1 ) » «,* A 

with r(x, >>) = o (|JC — j|2). 

Using (1) and A2, we have r( •, >>) = p + <r, with «7 e (Dp(y)y, and 

A*O0 = -Za>k(y)PxiXk(y) - S W ^ ) - ^OOPO* 
t,k i 

Therefore, it suffices to show 

X\m ±-Ptz(y) = 0, 
no l 

for some r e C - C such that 

By property (a) of C and A2, there is ̂  e C such that 

0 g 0y on Q 

<l>,ix) = (x - y)2 

for all x in some neighborhood of y. For all e > 0, there is a neighborhood 
Ve of j> such that 

\r(-,y)j\ è ecpjon Vs. 

By property (a) of C, there is TS G C — C such that 

r£ = 0 on Û\FS 

KA £ W; y)j\ on Q 

Then vej S £ 0y on fl and, by the preceding note, Ptze S s Pt<j). Hence, 

öB = lim sup -i- Pt Te(y) è £ lim sup \- Pt <p(y) = e(A <f>(y)). 
no * no * 

By A3, de is independent of e > 0. Hence, <?e ^ 0. Let c be a constant 
concentration such that c < p(x). There is ere C such that a is twice 
continuously differenti able and a =x c - p. Replacing p by <7, we find 
5e à 0. Hence, d€ = 0, and the proof is completed. 

REMARK. For m = 1, the preceding result, as well as the proof using 
Taylor's formula, is classical. See [3,1, Theorem 5.7], for example. 

PROPOSITION 2. For any y e û, Ç = (£b . . . , f „ ) 6 R » : 
(i) the matrix £»,* 0#'*(>O &£* w diagonal with non-negative entries', 

(ii) f/z<? matrix b'(y) is diagonal; 
(iii) c/fyO0 ê 0, for 7 * '* 
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PROOF. Let h(x) = ( £ , £,<*, - j ,))2 . 
By A2, there is p e C such that 

P =yhey 

ApOO = (^ hey) (7) = lim-fp, p{y). 
no * 

Since p(y) = 0, we have, by proposition 1, 

«*i tJP, p(y))s = (ApW), = E^ÀP^My) 

+ L KMAy) + (c,j pj)(y) = S «,(j) «*. 
i , * 

This proves the second part of (i). Now suppose / ^ j and £i\* <t/tJ{y) 
&£A > 0. There is a > 0 such that 0 > - a Ei,*<#/ ftr£* + <V, ,(>>). B v 

A2, there is p e Z ) ^ ) such that p = y (1 — a A)ey. Hence, by proposition 1, 

0 ^ lim \(Pt p(y)), = - a S <#/O0 ft & + <v,yO0 < 0. 
n o * i,k 

This contradiction proves (i). 
To prove (ii) and (iii), choose a > 0 such that a — y{ > 0, and put 

h(x) = a — x{. By A2, there is p e Dp{y) such that p = y hey. Since y ^ /5 

we have p / j ) = 0, and, by proposition 1, 

^i \t=Q 
(PtP(y)) = -K,Ay) + c/tJ(y) (a - yi). 

If we choose a very large, we find c/y j ^ 0. This proves (iii). If we then 
choose a such that a - yt becomes very small, we find — b), (y) ^ 0. 
Finally, if we do the same calculation with h(x) = a + xt- instead of 
h(x) — a — xh we find b)f/{y) = 0- This proves (ii). 

THEOREM 1. Suppose p0 e C and p(x, t) = Pt p0(x) is twice continuously 
differentiable with respect to x. Then p(x, t) is right differentiable with 
respect to t ^ 0 and 

3 m 

01 i, k t k=l 

with (cfjk,j)t,k positive semidefinite and 

cj>k ^ 0, for j # k. 

PROOF. Since Pt+h p = PtPh p9 we have 

\{p(x, t + h)- p(x91)) = \{Ph+t p(x) - Pt p(x)) = \(Pha(x) - a(x% 
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for a = Ptp. Hence, it suffices to consider s = 0. The assertion then 
follows from proposition 1.2. 

NOTE. A system of type (**) is called a weakly coupled system of linear 
parabolic equations of order 2. According to [11], such a system models 
diffusing particles with spontaneous decay from one species into another. 

2. The linear approximation at zero. In this section, Pt will denote a 
family of operators satisfying Ai, A6 of the introduction. Additional 
smoothness and locality properties will be stated below and required for 
proposition 3. 

DEFINITION. Let D be a set of functions from Q into some topological 
vector space E over R. Call a function h -+ g(h) from [0, 1] to D differ-
entiable at 0 if 

lim h-Hg(h) - g(o)) = g\o) 
hiO 

existse for all xe Q, and put 

E>og(x) = g'(x) (x e Q). 

Let T be the closure of the space <Z>> of D with respect to the pointwise 
convergence. We say that a mapping L: D -* E is differentiable at p e D, 
if there is a linear mapping V from Tto E such that, for all g: [0, 1] -> D 
which are differentiable at 0 and such that g(0) = p, we have 

lim X (Lg(h) - Lg(0))(x) = L'(D0g)(x) (x e Q). 
A I O AZ 

Put DpL = L'. We now take D = C and assume 

A£ (Smoothness). 
(i) For all t ^ 0, i^O = 0, Pt is differentiable at 0; if Qt = A l l i e n 

ß , maps C into C. 
(ii) For any x e ö , P+{x) a DQ(x), where A?(x) is t n e set of al l /such 

that d/dt\t=0 Qtg(x) exists for some g e C such that g = xf. 

We now assume that Qt is local, that is, 
(A§) For any x e ü and pÌ9 p2 e C f| C2(x) such that ^ = x p2, we have 

lim-\-lim4-(Pthpi(x) - Pthp^x)) = 0. 
no l hiO n 

PROPOSITION 3. g, satisfies A1? A2, A3, A4, A6 (and, hence, Theorem 1 
is applicable). 

PROOF. Put g(A) = h-p with p e C , 0 g A G R. Then h -+ Ps(g(h)) is 
differentiable and 
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DQPs°g = QsP. 

Hence 

Qt+,p = lim 4-/»,+,*(*) = l i m - l p ^ t e W ) = QAQsP) 
hio n AIO « 

and Qt is a semigroup on C. If p e C, then Qtp = \ìm(ì/h)Pthp ^ 0. 
Whence A l 5 A6 is satisfied by Qt. A2, A3, A4 are obvious. 

REMARK. A§ and A§ follow from A3 and A£: 

(i) For all / ^ 0, Pfi = 0, P , is differentiable at 0 and Qt = A)^* 
maps C into C. 

(ii) For all x e Q and p e P%(x) U (C2(x) fl C), there is g e C with 
p —x g such that the following equation (makes sense and) holds. 

dt 
I Qtg(x) = lim * l i m - k / y z g _ A g ) (*). 
t/=o no h. h io * 

3. Semilinear Systems. In this section, Pt is a family of operators on 
C satisfying A b A\, A3, A5, A6. Thus, Pfi = 0, Pt is differentiable at 0 
and Qt = A ) ^ maps C into C. By §2, Qt satisfies Ah A2, A3, A4, A6 and, 
hence, by Theorem 1, p(x, t) = Qt po(x) is right differentiable, for t ^ 0, 
if p e Cand p(», t) is twice continuously differentiable in x. Furthermore, 
if Bp(-, t) (x) = d/dt+ p(x, t), we have 

Bp = 2 Ö«* ^ + 2 *» ?*, + cp 

l,k I 

cj(y) = B(ej) (y) 

where **>> = * W & ) 0» 

^ ( ^ = i -Ä(z /^ . ) (^ ) . 

On the other hand, if p e C2(x) fl Dp(x), Ap(x) is defined by 

Ptfix), 

Ap(x) = | -
l/=0 

for s o m e / e C w i t h / = , p , and by A|, then 

fip = (D0A)p. 

By A5 there is a function F 0 : û x R ra-> Rm such that p -> ̂ p(x) 
F0(x, JO(A:)) is linear on C2(x) f| ##(*)• Therefore, F0(x, 0) = 0 and 

lim ±-[A(hp)(x) - F0(x, hp(x)) - A(0)(x) - F0(x, 0)] 
Ä 1 0 " 
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= Ap(x) - F0(x9 p(x)) 

= Bp(x) - lim-f-^oC*, hp(x)). 
hio n 

Put F(x, y) = F0(x, y) + c(x)y - limhi0(l/h)F0(x, hy). Then 

Mx) = S ^k(x)pSiXt(x) + S fr(*K(x) + F(*, />(*)), 
f, k i 

and we gave 

THEOREM 2. Le/ p0 e C and p(x, t) = Ptpo(x) be twice continuously dif
ferentiable with respect to x. Then p(x, t) is right differentiable with respect 
to t ^ 0 and 

•ê+lfc> 0 = H aik{x) px.Xk(x9 0 + 2 b<(x)px.(x, t) + F(x, p(x)\ 
01 i,k i 

F(x, 0) = 0, F(x, - ) 15 diffeentiable at 0 and 

D0F(x9 -)y = c(x)y. 

REMARK. In order to test the semilinearity of the operator A put px(y) = 
p(x)(x, yeQ, p^C) and, since p* e C2(x), (Apx)(x) is well defined. Let 
(Äp)(x): •= (Apx)(x). Now, (Äp){x) is an element of Rm which depends 
only on (x9 p(x)) e Q x Rm. Therefore, (Âp)(x) = F(x, p(x)) with a map
ping F: Q x Rw -> Rw and ^ is semilinear if and only if A — Ä is linear. 
4 is more likely to be semilinear if A is differentiable at 0. (which it is, by 
A|). 

LEMMA. Suppose A is differentiable at zero; that is, limhió(l jh) A(hp) (x) 
exists and is equal to Bp(x), for a linear operator B. Then A is semilinear if 
and only if 

Àf{x) - Äp(x) = Vim±[A{hp){x) - Ä(hp)(x)l 

The straightforward verification is left to the reader. 

4. The linear approximation at a nonzero constant equilibrium. In this 
section Pt will be a semigroup of (possibly nonlinear) operators on C 
and u = (wi,. . ., um) e C a concentration vector such that 

0 < w,eR (1 g i <L m) 

Ptu = u (t ^ 0). 

In addition, (Pt) is supposed to satisfy A3, A7(w) and to be smooth in the 
following sense : 

(Af) (Smoothness). 
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(i) Pt is differentiable at u for any / ^ 0 and Qt = DuPt maps C into 
C - C. 

(ii) For anyjcefl and any fe ((C2(x) fl O U ^+(*)X there is a g G C 
with/ = x g and such that both sides of the following equality make sense 
and hold 

d_ 
dt Qtg{x) = \im ±-A(u + hg)(x) 

t=0 h 10 ft 

= lim i - l imi- [Pt(u + hg) - (n + %)]. 
AIO « no * 

THEOREM 3. There are real valued functions a*/1,,, bljf/, Cj,/ on Q such that 
if for Po e C p(x> 0 = QtPo(x) is twice continuously differentiable with re
spect to x, for all t ^ 0, then, p(x, t) is right differentiable with respect to 
t ^Oand 

•jrpr p = S «'* Px,xk + E ¥ Pa + CP-
Ol t,k t 

Furthermore for any y G Û, X G Q the matrix 2 aik(x) yiyk is positive semi
definite. 

PROOF. There is a unique linear extension of Qt to C — C, which again 
will be denoted by Qt. Let us show that (Qt)t^o is a semigroup (of linear 
operators on C - C). For this purpose let g(h) = u + hp0 p0 e C, 0 < 
A G R. Then g is differentiable at 0 and (D0(Pt o g) = Dupt)p0 = (Qtpo. 
Hence 

ß5+,po = limi-[P J + / Ä(A)-P,+ , i i] = lim-l[/y>,g(/0 - /VP,Cg(0)] 
AIO n hio n 

= QsDgmPtg'{0) = QsDuPt p0 = QsQtPo(s, t^O, peC). 

Hence Qt+S p = QtQs p for p G C and by linearity also for p G C — C, 
(j , / ^ 0). Hence Ax holds for Qt with C replaced by C - C = <C>. 
Note that <C> also has properties (a), (ß) of §1. In order to investigate 
the locality of Qt let px =xp2pi, p2£ C2(x) H C. Then, by A^ and A3, 
there are gi, g2 G C with ^ = x g,- and such that 

d_ 
dt 

±-A(u + hgl) (x) = ^A(u + hg2) (x) 

Qtgl(x) = lim 1 ^(Äg! + i/) (x) = jr\ Qtg2(x). 
t=o hio n ai\t=0 

Now suppose pi, p2
 G < 0 fi C 2 W and pi = xp2. Let e = (1, 1, . . ., 1). 

There is 0 < e G R such that 0\ = p\ + se, #2 = p2 + ££ are non-negative 
on a neighborhood of x. By property (a) of C and the preceding argument 
d/dt\t=0 Q^ i (x )and dldt\t=0Qta2(x) exist and are equal. By the same argu-
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ment limti0(llt)Qt(ee) (x) exists. Hence, by linearity, d/dtt=0 Qtpi(x) and 
d/dt\t=o Qtp2(x) exist and are equal. Therefore A3 holds for (Qt) with C 
replaced by <C>. For xe Q, let DQ(x) be the set of all / : Q -> Rm such 
that /3 = l im n 0 0/0 (ö*g(*) — #(*)) exists for some g e <C> with g = , 
/ . If fe C2(x), then ß does not depend on the choice of g, and we may 
define 

Bf(x) = /3. 

Let 0 < s e R. Then by /4|ey, (J j + e)«?/, (Jj'* + e)ej belong to Z)P(x) 
and ej, A\ eh Jy* ey belong to Z>Q(». Put 

<VOO = (Bej) (y) 

b)(y) = B(4ej)(y) 

a%y) = ±.B(4>kej)(y). 

Suppose p e DQ f] C2(y). By Taylor's formula 

Pix) = p(y) + S 4 (x ) pXi(y) + S 4- 4 ' *(*) P W * ) + r ( x ' ^) 

with r(x, y) = °(\x — y\2) and 

W = S aHy)pXiXk(y) + L ^ K W + tfjOpOO + *r(-, J) (*) 

To complete the proof it suffices to show Br( •, y) (y) = 0. For this pur
pose let g(x) = \x — j>|2 and for any 0 < £ , A e R w = « + h(f — e ge), 
/(x) = r(x, y). Then w e DQ(y). Since w > 0 there is a neighborhood F 
of y such that w ^ 0 on V provided h is sufficiently small. Since u is con
stant and f(x) = o (\x — j | 2 ) , w has a local maximum at x0. By A|, w e 
Z y » and by A7(w) 

dt Pt(u + ha) (y) g 0 

for some a e C — C with a =yf — e ge. By A| we may assume a e DQ(y) 
and 

Bo(y) = Km \-jr 
A I O AZ « ' 

Pt(u + A(7)(̂ ) g 0. 
!*=0 

Since also e gè e £>e(j/) and .0 is linear 

Bf(y) - e £(ge) (y) g O (e > 0) and hence 

Bf(y) é 0. 

Replacing p by — p we find 

#00 â o 
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and hence 

Bf(y) = 0. 

The following example shows that the coefficient afi need not be zero for 
7 # / in contrast to the special situation of §1 — §3. 

EXAMPLE 1. Consider the system of equations 

V xx = W 

Wxx + aW Vxx = Wt on R x ] 0, oo[ 

V(x,0)=Mx) (xeR) 
mx,0)=f2(x) (xeR). 

(1) 

CLAIM 1. There is a strongly continuous semigroup Pt on the Banach 
space C of all / = (J\, f2); R -• R2 tuch that fi has bounded continuous 
derivatives up to order 3 and/2 is continuous and bounded, the norm being 

11/11 = s u p | / 2 ( x ) | + 2 s u p | A « ( * ) l , 
i=Q x 

such that Ptf solves (1) f o r / e C. 

PROOF. Put 

? < / l W = J \{-^)V2e~'x'y'2/uf^dy= <x> r>-
since 

(S,fi) <" (x) = J ^ ( J^-)1/2
 e-'»

2^/<'> (x - y) dy (r = 0, 1, 2, 3) 

Stfi has continuous bounded derivatives up to order 3 and 

l(S,/i)(2>(*i) - (S,/i)(2)(*2)l g sup IS,/,® j Ion - x2|. 

Hence (S r/i)
(2 ) is Holder continuous on R uniformly in / ^ 0. Now for 

any bounded Holder continuous function <p there is a solution s to the 
Cauchy problem 

sxx + s9 = st on R x ]0, oo[ 

s(x90) =f2(x) (xeR) 

(Friedmann [5] theorem 12 page 25). In this way we find a solution Ptf= 
((Ptf)i, (Ptfti) of (1) with (PJ), = SJL (2) is equivalent to: 

(se-Mt)xx + (se~Mt) (<p - M) = (e~tM s)t. 

If M = ||pH = supxeR \<p(x)\ then by the maximum principle 
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\e-*'s(x9 01 â \StMx)\ ^ «./ill and 

|*(x, 01 ^ ^ " II/2II. . 

Since by the maximum principle there is, for any T > 0, at most one 
bounded solution of (1) on R x [0, T[, and since Ptf(x) is bounded for 
(x,t)eR x [0, T[, the family of operators P, is a semigroup 

Pt+sf=PtPsf ( u ^ O ) . 

Since by the maximum principle there is, for any T > 0, at most one 
bounded solution of (1) on R x [0, JT[, and since Ptf(x) is bounded for 
(JC, /) € R x [0, T[, the family of operators Pt is a semigroup: P1+Sf = 
PtPsf, (t, s è 0). Let us show that 

Hm | | P , / - / A = 0 . 
no 

\\PJ-f\\ = lk(-, 0 -All + 2 fls^w - / 1
W I I ; H ' ( . , 0 = ( P Ì / ) 2 -

r=0 

Since S, is strongly continuous with respect to || || and (Stf)
{r) = St(f

ir)) 
the second term tends to zero as t tends to zero. By Friedmann ([5] theorem 
12 page 25) 

w(x, 0 = StMx) + a[ St_A(SrfiY2)(Prf)2](x)dT and 
Jo 

\w(x, t) — f2Ìx)\ è \\Stf2 — All + const. /. Hence 

Hm | |P , / - / | | = 0 . 
<-*o 

Let us show that / -> P , / is continuous on C. This is obvious for (Ptf)i-
For (Ptfh we easily see that 

ll(iV)2 - (PtfhW écl\f~f\ + c* f | |(P r/)2 - (PT/)2 | | Jr. 
Jo 

Hence by Gronwall's inequality 

\\{Ptf)2-{Ptf)2\\ &Cl\f-J\**. 

CLAIM 2. P, satisfies Ai, A2 (as in §4), A3 and A6. 

PROOF. AX and A3 are obvious. A6 is a consequence of the boundedness 
of Pt and the maximum principle. Obviously any constant u = (w1? u2) 
is an equilibrium. Let us show that Pt is differentiate at u. 
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\(P,(U + hf) -u) = (Stflt i-[(/»,(« + hf))2 - U2]) 

jfKPtu + hnh-u^SJz+f^SUiS^ + hMUKPÄu + WM dz 

= SJ2 + a P S,_r[(SJi)<2) {PAu + hf))2] dz. 
Jo 

Now by (3) 

(4) \\(PT(u + hf))2\\ ^ ^«"I'W ||n2 + A/2ll (0 g A S 1, 0 g r £ 0-

Multiplying the last equality by A and letting A tend to zero we find 

lim \\(Pt(u + hf))2 - u2\\ = 0. 
A i O 

Using this and (4) in the same equality yields 

\im\[Pt(u + hf))2 - u2] = Stf2 + ccu2 f S^AiSrfd^] dz. 
hlO ft J O 

Hence Pt is differenti able at u and 

Qtf= DuPtf= (S,/i, Stf2 + tfW2£s,_r(Sr/ì)
(2) * ) . 

Furthermore DP = C, DQ = C and 

37Ì ß* / = (C/i)*„ C/i),, + au2(A)xx), j - \ [Pt(u + hf)-u] 

= (KA)xx, h{f2)xx + ah2{f)xx(u2 + hf2)), 

^ T Q F [Pt(u + hf) - u]) = 4 1 g / / 
!*=0 / ai l*=0 

Qtf(x) — z(x> 0 solves the Cauchy problem 

r Ol)** = Ol); 

(5) I O2)** + <™20i)** = O2); 
I z ^ O ) =/!(*) z2(x,0) = /2(x). 

CLAIM 3. P, satisfies A5 only in case a = 0. Pt satisfies A7 for all a ^ 0. 

The proof is obvious from (1). 

REMARK. It is not difficult to work out the preceding example with 
Q = R replaced by Q = ]0, 1[. This is because a nice semigroup solution 
of 

Vxx = Vt on ]0, 1[ x ]0, oo[ 

V(x,0)=Mx) X G ] 0 , 1 [ 
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is given by u(x, t) = Stfi(x), x e ]0, 1[, t ^ 0 where f\ is a real valued 
function on R such that 

fi(x) = fi(x) for 0 < x < 1 
/ l ( l + X) = - / l ( i _ X) o g x 

7 i ( - * ) = -7 iW O g x . 

See also [9] for a system with cross population pressure. 

EXAMPLE 2. Consider the system 

(W = Vt 

(6) | F , , = ^ on R x ]0, oo[ 

U(JC, 0) = ./ÌW, w(x, 0) = /2(x) (x e R). 

This is the simplest wave equation. The Cauchy problem for (6) admits 
the following semigroup solution: 

Ptf(x) = ((Ptf(x))u Ptf(x))2) with 

(PtfWh = 4-^ ( 1 )(x + '> ~^ ( 1 ) ( x * 'M + T [ / 2 ( x + ° +/2(x - t)]-
Pt is defined, for example, on the space C of all (/i,/2) such that / i , / 2 and 
/!(1) are continuous with compact support. It is easy to see that Pt satisfies 
A1? A2, A3, A4, A7(0). Pt does not satisfy A6, however. This can be seen 
taking / = C/i, 0) such that fx ^ 0 and fx(x) = 1 - x2 for \x\ g 1/2. 
Then (Ptf(x))2 = - (x + 0 + (x - t) = -It for small t > 0. 

5. Weak parabolicity. In this section we ask the following question: 
Suppose 

Lf(x) = £>*(*) g ^ / ( x ) + Ç *<(*) -JL/KJC) + c(x)/(x) 

and L is the infinitesimal generator of some semigroup Pt. Does this 
impose any algebraic structure on the set of coefficients a**Äx), b)f/(

x), 
cjXx)f The problem is particularly interesting in the case where Pt is the 
linearisation at a nonzero equilibrium of a process of "reaction and 
diffusion" (see §4). 

DEFINITION. We say that L is weakly parabolic if there is a real number 
e ^ 0 such that for all x e Q, all y e Rn and all eigenvalues X of the matrix 

P(x, y) = L aik(x)yiyk 
i,k 
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the real part of X is greater or equal e. 

REMARK. If e > 0, L is called parabolic in the sense of Petrovski (see 
[5] Chapt. 9). 

In order to prove that L is weakly parabolic we assume tha,t 
(A) Pt is a strongly continuous semigroup on the Hilbert space L2(Q, 

O , X) of all Cm valued Lebesgue-square integrable functions/ = (fl9 . . ., 
fm) on Q, the scalar product being 

m /* 

</,£> = £ figidX. 

The domain of definition DA of the infinitesimal generator A ofPt contains 
the space C^of all infinitely differentiable, O-valued functions on Q 
with compact support and 

Af = Lf for au f e C$. 

Finally cJf/i b)}/ are locally bounded, measurable functions and af^ are 
continuous on Q: 

THEOREM 4. If Q = R" then L is weakly parabolic. 

PROOF. Suppose xQ e R«, y e R*, v e O , |v| = 1, X e C such that 

P(x0, y) = Œ ^k(x0)yiyk)v = Xv and 

ReX = -s < 0. 

Without loss of generality we may assume x0 = 0. Let >̂n = COS(JC n y)v. 
By an easy calculation we can see that there exists a strictly positive con
stant C with : 

a \<pn(xW dxY2 > C for all n e N9 
B (0,1) / 

where B(0,1) is the unit ball with radius 1 and center 0. Let g e Cg5 with 
g = 1 on B(0, 1). Hence <ftn = cos(x • ny)g{x) • v is in Cg5 and 

H^lb > C> 0. 

Let A« fix) - 2 rf*(0) Ô - Ç - / W for a l l / e Q?. <•,* ax,axk 

Then 

^ „ = - n*ty, - «(E J* sin(x • «y) g + * sin(x • ny)^) a'*(0) 

+ vcos(x- n ^ S - ^ - ^ O ) . 
i,ft OXtOXk 
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Hence 

(1) \\A~</;n + nU(J>n\\L2^nA + B, 

where A and B are constants independent of n. For any p > 0 , / e L 2 set 

fP(x)=f(px). 

P'Jix) = pp-2tfp(p-ixy 

It is easy to verify that/p e L2, iff e L2, and that P{ is a strongly continuous 
semigroup on L2. By the Hille-Yoshida theorem ([7] for example) there 
are constants M, w > 0 such that 

|P,| ^ M ewt (t > 0). 

It is easily verified that, as a consequence, we have 

\PPt\ S M ewP~2K 

Again, by the Hille-Yoshida theorem, 

(2) W-APfW» ê ReV^wP~2
 Uh2 ( / 6 DAP9 R e / , > p-2w), 

where AP is the infinitesimal generator of Pp
t and DAP its domain of defini

tion. The relation 

1 (Pptf-f)~g \UPr-hfP-fp)-gt 

nn-2 

y - v P-hJp 

1 
(Pp-hfp ~ /P) ~ i°2^ 

shows that 

(fe DAP and APf = g) <* </„ e Z)A and ^ = p%). 

Since, for any p > 0, 

f,eCS<zDA9iffeC$, 

we get, f o r / e C^ 

(^/)(x)= p-w,)(r^) 
32 

- s^-1 *} dk/w + r1 ? " ^ è /w 
f , * 

+ p-MpxM*)-
Hence 
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», i1/2 

1/2 

WAPf- A~f\\v £ (JR M (L *>(p-ix) - fl«(0))g^/)2 X(dx)) 

+ |((f»?^'lx)^))ïH: 

+ ^-(Jwjp-^)/W)2A(Ä) 

The first term on the right hand side tends to zero as p -> oo, since, by 
assumption (A) Hindoo \aik{p~lx) — aik{0)\ = 0 uniformly in x on every 
compact subset of Rn and d2,'dxidxk f has compact support, if fe C™. 
The second and third term tend to zero because b* and c are locally 
bounded, measurable functions on Q. Now take the limit as p tends to 
oo in (2). This yields 

\\Mf- A">fh £ ^ - II/II2 ( / e Cy, Re/. > 0). 

In particular, 

\\n*tyn + y ^ X è ^ II0JI2 ^ • § • C, for every « e N. 

This is a contradiction to (1). 

For applications the case where Q is a bounded open subset of Rn is 
more interesting than Q = Rn. In the following let Q be a bounded open 
set in Rn. 

THEOREM 5. Lis weakly parabolic. 

PROOF. Let x0eQ,yeRn,ve O with |v| = U e C such that 

^Oo> J>)v = ( L *l'*(*o)j'.0>> = ^v. 
1 , * 

Without loss of generality we can assume that x0 = 0. For a measurable 
function fon Q we define 

/,(*) 
_ ff(px) if pX6Û 
~" lO if px$Q. 

Let r > 0 such that B(0, r)eQ and p0 > 0 such that 

— Q c 5(0, r) (po exists, since Û is bounded). 

Then, we have, for p > p0 

fpeLKQ), iffeUKQ), and 

fpeC%(Q%iffeC%(Q). 

file:////Mf-
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We can then define P? and the same proof as that of Theorem 4 leads to 
the assertion. 

REMARK. We can replace L2(Q) in Theorem 4 and 5 by a Banach sub-
space of the space of bounded continuous functions on Q with the su-
premum norm. 

EXAMPLE. Mimura [9] proposed the system 

ut = A{(dn + d12v)u} + (Ri - axu - biv)u 

vt = J{(d22 + d2iu)v} + (R2 - a2v - b2u)v 

as a model of two competing species with self and cross-population 
pressures. Here djj, Rt, ai9 b{ are positive constants or zero. The linearisa
tion at a constant concentration (a, ß) with a > 0, /3 > 0 is 

Ut = Wii + di2ß)Ju + dX2aâv + • • • 

v* = (d22 + d21 a)Jv + ^2i/3Jw + • • • 

This system is weakly parabolic if and only if all eigenvalues of 

(dn + d12ß,adi2 \ ß 

\ßd2h d22 + ad2J 

have non-negative real part. It is easily seen that this is true, because trace 
B ^ 0 and det B ^ 0. 

REMARKS. Theorems 4 and 5 look like special cases of a general theorem 
which works for any open subset 0 of Rw and a wide class of Banach spaces 
of O valued functions on 0 including L2(Q, O ) . Weak parabolicity is 
certainly not a sufficient condition for L to be the restriction of a strongly 
continuous semigroup on L2. If, for example, all aik = 0, then by the same 
method of proof we find that necessarily Re À ̂  0 for any eigenvalue À of 

S ib\x)yk (y e C « J c e Q, i2 = - 1). 
k 

On the other hand, parabolicity in the sense of Petrovski is a sufficient 
condition provided the aik, b\ c are sufficiently smooth (see [5] chap 9). 
Parabolicity in the sense of Petrovski however is not a necessary condi
tion, the simplest counter example being PJ = / (t ^ 0). The question 
treated in this section is a classical one. When is a problem "correctly 
posed" in the sense of Hadamard? Further results and references may be 
found in a chapter called "inverse theorems" in [6]. These inverse the
orems however only work for coeffidients depending on t but not on x. 

6. Summary and a problem. We have shown that smooth, local, memory-
less processes which obey a kind of maximum principle are governed by 
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systems of weakly parabolic semilinear second order partial differential 
equations, at least near an equilibrium. 

It is remarkable that the former properties are common not only to a 
wide class of processes of reaction and diffusion but also to processes 
governed by wave equations. 

From the point of view of biological sciences, the axiom that the 
process should have no memory seems to be the most restrictive. From a 
mathematical point of view, however, it seems more promising to investi
gate the absence of locality (A3). In fact very little is known about processes 
with memory whereas for non local processes we have as a natural general
ization of a differential operator the notion of a pseudo differential 
operator. Hence the following question may lead to interesting further 
research. 

What kind of assumptions may replace (A3) in order that the resulting 
evolutionary law still is a system of pseudo differential equations? 
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