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MAPPINGS INTO SETS OF MEASURE ZERO

F.S. CATER

ABSTRACT. Let f and g be functions of bounded variation on
[0, 1] and let A denote Lebesgue outer measure. We give a necessary
and sufficient condition that AgS = 0 implies AfS = 0, for all sub-
sets S [0, 1]. This condition is AfX = 0, where X is a particular set
depending on fand g.

In this paper, f and g are real valued functions of bounded variation
on [0, 1] and A denotes Lebesgue outer measure. F and G are their total
variation functions, F(x) = V§(f) and G(x) = V§(g)for0 < x = 1. We
will give a necessary and sufficient condition that AgS = 0 implies AfS = 0,
for any set S <[0, 1]. This condition is disclosed by the status of just one
set determined by f and g. Our work will generalize and unify a number
of more or less known corollaries concerning functions satisfying property
N, absolutely continuous functions, saltus functions, and finite Borel
measures on [0, 1].

Define the set

X = {x€(0, I): either lim,_..|(f(x + h) — f(x)/(g(x + h) — gx))|
= o0 or x lies in the interior of the set g~1g(x)}.

(Here we omit those /4 for which g(x + #) = g(x).) We offer

THEOREM 1. A necessary and sufficient condition that
(*) AfX >0

holds is that there exists some set S<[0, 1] such that AgS = 0 < AfS.
Moreover, AgX = 0 whether (x) holds or not.

In other words, the question whether AgS = 0 implies AfS = 0, for
all sets S <[0, 1], is settled by the status of the one set, fX. Before develop-
ing a proof of Theorem 1, let us discuss some of its consequences. A
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function is said to satisfy property N (or be an N-function) if it maps sets
of measure 0 to sets of measure 0. From Theorem 1, follows

COROLLARY 1. In Theorem 1 let g be an N-function. Then f is also an
N-function if () dies not hold. In particular, f is absolutely continuous if
[fis continuous and (*) does not hold.

It follows from [1, pp. 125,100] that AP = AFP = AfP = 0, where P
is the set of all points where f is not finitely or infinitely differentiable.
We set g(x) = x to obtain

COROLLARY 2. In Theorem 1, let Xy = {x: f'(x) = 0} and X_ = {x:
f'(x) = —0}. Then fis an N-function if and only if Af(X+ U X_) = 0. When
[ is continuous, f is absolutely continuous if and only if Af(X+ | X_-)=0.

Corollaries 1 and 2 can also be obtained from [1, p.127]. The fact that
A(X:J X_) = 0 can be regarded as a special case of the last statement in
Theorem 1.

COROLLARY 3. In Theorem 1, let Ag[0, 1] = 0. Then Af[0,1] = 0 if and
only if (¥) does not hold.

Note that AfP = 0 if ' = 0 on the set P[1, p.271]. We set g(x) = x to
obtain

COROLLARY 4. In Theorem 1, let X = {x: f'(x) = 0} and X_ = {x:
f'(x)=—0}. Let f' = 0 a.e. Then Af[0,1] =0 if and only if Af(X+ U X_)
=0.

When Af[0, 1] = 0, f is called a saltus function or a generalized step
function. We will have more to say about saltus functions later.
Now, let g and g, be finite nonatomic Borel measures on [0, 1]. Let

Y = {x: either limy;_ p11/ppl = oo where [ is an interval

containing x, or u, vanishes on some interval containing x}.

COROLLARY 5. y; is absolutely continuous with respect to yu, if and
only if 14 Y = 0.

Proor. Let f(x) = 1[0, x] and g(x) = [0, x], for 0 < x < 1. Then
fand g are continuous nondecreasing functions on [0, 1], and in Theorem
I, X =Y. By[l, p. 100], we have 1Y = AfY = AfX. Now, S = AgS
= 0 implies 145 = AfS = 0 for all Borel sets S if and only if y4; is absolu-
tely continuous with respect to . The rest follows from Theorem 1.

Corollary 5 can also be obtained from the Radon-Nikodym Theorem.
We say that a nondecreasing continuous function f on [0, 1] is singular
if f' = 0 a.e. on [0, 1]. We will see that this is equivalent to the existence
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of a set Ec|0, 1], satisfying A([0, I\E) = Af(E) = 0. (Consult the com-
ments before Lemma 3.) From Theorem 1 follows

COROLLARY 6. Let f and g be continuous nondecreasing functions in
Theorem 1 and let g be singular. Then f is also singular if () does not hold.

COROLLARY 7. Let g, be a singular function and g, be an N-function of
bounded variation. Let f be of bounded variation. Let () not hold for f and
g1, and not hold for f and g,. Then fis a saltus function.

Proor. Corollaries 1 and 6.
Here is our only lemma that does not require bounded variation.

LEMMA 1. Let w be a real valued function on the interval [a, b] such that
the left limit w(x—) exists for a < x < b and the right w(x+) limit exists
fora £ x < b. Then

sup wla, b] — inf wla, b] = Awla, b] + X,z IW(x =) — w(x)|
+ Za$x<b |w(x +) - W(X)l.
Moreover, if w is monotone on [a, b), then equality holds.

PrOOF. Of course w has at most countably many points of discontinuity,
so each sum has at most countably many summands. Let (Z,) denote the
sequence of all nondegenerate intervals of the form (w(x+), w(x)), or
(w(x), w(x+)), or (w(x—), w(x)), or (w(x), w(x—)). Now, let y ¢ wla, b],
and inf wla, b] < y < sup wla, b]. Without loss of generality, we let
w(b) > y for definiteness. Let x, be the sup of the set {x: a £ x < b and
w(x) < y}. It follows that w is discontinuous at xy and y € I,,, for some
n. Thus

(inf wla, b), sup wla, b]) = wla, ] U J, I,

and the inequality follows, Finally, if w is nondecreasing on [a, b], then
the intervals 7, are mutually disjoint and disjoint from w[a, b], so equality
holds.

Our next lemma states much more than we actually need, but it may
be of some intrinsic interest. Note that if Ec[0, 1], then AgE £ AGE.
This follows from the fact that, for any interval I, Ag(G™U) < Al In
particular, AgE = 0if AGE = 0. Lemma 2 will tell us, among other things,
that the converse is also true, i.e., AGE = 0 if AgE = 0.

LEMMA 2. For integersiand m,0 < i £ 27 let J,,, = [(i — 1)27™, i2—™].
Let E be any subset of [0, 1]. Then

AGE = lim 3" g(Jsn N E).

m—oo =]
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In particular, A\GE = 0 if AgE = 0.

Proor. For any set S, let M(g, S) denote lim,,_,., > %, Ag(J;,, N S). We
first prove the lemma when E is a closed interval [r, s] = I. By Lemma 1,

2m

2, (sup g(Uiy N 1) — inf g4, N 1))

=1
S 58U 0D+ T lete—)— g0 + 3 Jgxr+) = 80|
=1 r<x=s r=x<s
It follows that
) V@ sMgD+ 2 lgx—)—gl + 2 lgx+)—gx),
r<x=s r<x<s
where V denotes total variation. Likewise
(2) ViNG)=AGI + r<£s |G(x =) — G(x)| + ézx:ﬁ |G(x +) — G(x)|.

But V¥(G) = V(g), G(x) — G(x—) = [g(x—) — g(x)|, and G(x+) — G(x)
= |g(x+) — g(x)|. It follows from (1) and (2) that AGI < M(g, I). But
the inequality AG(J;,, N I) = Ag(J;,, (1) is clear, so, in fact, AGI = M(g, I).
Hence M(g, I) = AGI.

The conclusion must hold when E is an open interval, or the union of
mutually disjoint open intervals. (Here an obvious convergence argument
is used.) So the conclusion must hold when E is any open subset of [0, 1].

Now let E be an arbitrary subset of [0, 1]. Let W be an open set con-
taining g(J;,, N E) such that AW < Ag(J;,, (| E) + 272m. Since g is con-
tinuous at all but at most countably many points, there is an open set
U c J,,, such that (J;,, 1 £)\U is countable and gU = W. Thus there is an
openset U,, < [0, 1] such that E\U,, is countable and

2m om
3) Z}llg(fim N U, s _Z_}llg(l.‘m NE)+ 2
Likewise, there is an open set V,, such that E\V,, is countable and
©) AGV, = AGE + 27
PutP = N3 (U, N V,). Then E\P is countable and
) lim AG(U,, N V,,) = AGE.

m—oo

From(3)and P = U,, ( V,, it follows that

2m
(6) "1'1_12 Z;Xg(l.-m N (WUn N V) = M(g, E) = M(g, P).

But AG(U,, N V,,) = M(g, U,, N V,»). In view of (5) and (6) it suffices
to prove that lim,, ... M(g, U,, ( V,,) = M(g, P).
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For each y and set 4, let s(4, y) = power of the set A (| g71(»). Suppose
that g(J;,, (| A) is measurable for all J;,. It is clear that

. 2"‘
'l'_{"go ; XeUimnay () = (4, y) ae.

and s(A4, y) is measurable. In particular, when A4 = [0, 1], we see that
s([0, 1], y) is measurable and, by Beppo Levi’s theorem,

Mg, [0, 1) = 500, 11, Dy S V(@) < .
But X2 ¥, .00 (1) = s(4, ) ae. and
lim § 7, () = (4. ) ae.
By the Lebesgue dominated convergence theorem,
lim 333, 1 4) = [ s(4, 3)dy = M(g, ).

We may further assume that U,; < U,, and V,; < V,, for all m.
Just replace U,, with Uy N U, N --- N U,, and V,, with V; ) V2
o N Ve

But g satisfies the property T)[1, p. 277] because [ s([0, 1], y)dy < oo.
This implies that

lim s(U,, N V.., y) = s(P, y) ae.
Moreover, lim,, .o X, nu,. v = Xgunp a-€., so g(J (1 P) is measurable
for any interval J. By the preceding paragraph, s(P, y) is measurable

and M(g, P) = [s(P, y)dy. But s(U, N ¥y, ¥) S 5(I0, 1], »), so, by the
Lebesgue dominated convergence theorem,

lim M(g, U, 1 V,)) = lim \s(U,, N V., y)dy

= js(P, »dy = M(g, P).

Note that E need not be measurable in Lemma 2. In the proof we saw
that
V(F) = AF[0,11 + 2. (F(x) = F(x=)) + ) (F(x+) — F(x))
(l) 0<x=1 0=x<1
= AF[0, 1] +OZ )= fx =)+ 20 1flx+)=fx0)l = V(f).
<x=1 0=x<1

We usually call a function f of bounded variation a saltus function if

@ V)= D =S+ 5 fee) - S
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In view of Lemma 2 and equations (1) and (2), we see that fis a saltus
function if and only if /[0, 1] = 0if and only if F is a saltus function.
Since f has at most countably many discontinuities, the set £]0, 1]\ [0, 1]
is at most countable. But f[0, 1] is compact, so f[0, 1] has Jordan content
0if Af[0, 1] = 0. Thus, f'is a saltus function if and only if [0, 1] has Jordan
content 0.

It follows from [1, p. 127], for example, that when F is finitely differen-
tiable on set P, then AFP = 0 if and only if F’ = 0 a.e. on P. In view of
Corollary 4, it follows that f is a saltus function if and only if /" = 0 a.e.
on [0, 1Jand Af(X+ U X-) = 0.

The significance of saltus functions is that any function of bounded
variation is the sum of a continuous function of bounded variation and
a saltus function [1, p. 99]. This decomposition is unique within an additive
constant.

From [1, p. 127] it follows that F' = 0 a.e. on [0, 1] if and only if there
is a set E < [0, 1] satisfying A([0, 1]\ E) = AFE = 0. Thus, a continuous
nondecreasing function f'is singular if and only if, for some set E < [0, 1]
we have A([0, 1]\ E) = AfE = 0.

The proof of Theorem 1 will emerge from the next two lemmas.

LeMMA 3. AgX = 0.
PRrROOF. Suppose, to the contrary, that igX > 0. Fix any £ > 0. Let
Z = {x€ X: gis continuous at x and g is not
constant on any interval containing x}.

So g(X\Z) is countable and AgZ > 0. Let T={0 =, < f;, < -+ < ¢,
= 1} be a partition of [0, 1] such that

() Xi18(t) = g(ti-)l 2 X Vi (8) — + AgZ.

Also, (i) holds when T is replaced by any refinement of 7. Now, each
x € Z lies in an interval [a, b] such that | f(b) — f(a)| = klg(b) — g(a)| and
(a,b) N T = @. Moreover, b — a and sup gla, b] — inf gla, b] can be
made as small as we please. Thus, intervals of the form [inf gla, b], sup
gla, b]] constitute a Vitali covering of gZ. By the Vitali covering theorem,
there exist countably many pairwise disjoint intervals [a;, b;] such that

0)) 2. [sup gla;, b;] — inf gla;, b]] 2 2gZ > 0,
@) 25 Lfb) — flay)| = k2 1g(by) — g(a))l,
and, by (i),

() 2 1e®) — ga)l = X; (sup gla,, b;] — inf gla,, b)) — %lgz-
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We combine (1), (2) and (3) to obtain
“ T 1f®) — fla)) z +kigZ > 0.

But k can be made arbitrarily large, so (4) implies that V(f) = oo.
LeMMA 4. Let S < [0, 11\ X and AgS = 0. Then AfS = 0.

PROOF. Suppose, to the contrary, that AfS > 0. Now, S = U,S, where
S, = {x € S: lim inf,_o |(f(x + h) — f(x))/(g(x + h) — g(x))| < n}. For
some N, AfSy > 0. Then AfW > 0, where

W = {x e Sy: fand G are continuous at x and f

is not constant on any interval containing x}.

Let T={0=1¢t<1t < --+ <t,= 1} be a partition of [0, 1] such that
() Tilft) = ft-dl 2 i VE(f) = 5 AW

Also, (i) holds when T is replaced by any refinement of 7.

Choose any ¢ > 0. By Lemma 2, AGW = 0 and there exists an open
set U © GW with AU < c. Each x € W lies in an interval [a, b] such that
G(b) — G(a) =z Nf(b) — f(a)| and Gla, b =« U and (¢, b)) N T = @.
Moreover, b — a and sup f[a, b] — inf f[a, b] can be made as small as we
please. The intervals of the form [inf f[a, b], sup f[a, b]] constitute a Vitali
covering of the set fW. By the Vitali covering theorem, there exist count-
ably many mutually disjoint intervals [a;, b;] such that

Q)] 2.: (sup fla;, b)) — inf fla;, b)) Z AfW >0,
)] 2 [G(b) — G(a)] = N1 35, |f(by) — flay)l,
and, by (i),

B 2 /) — fla)l 2 X (sup fla;, b] — inf fla;, b)) - %lf w.
We combine (1), (2) and (3) to obtain

) 2 (6 - Ga) Z 5 NLAfW > 0.

But U, Gla;, b] < U, and

) ¢ > 'z TGk — G@) 2 L N-1asw.

Since ¢ can be made arbitrarily small, it follows that AfW = 0. But AfW
> 0.
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PrROOF OF THEOREM 1. Assume that (*) holds. By Lemma 3, AgX = 0,
so we need only put S = X in the conclusion. Now, assume that (*)
does not hold. Then AfX = 0, and, for any set S, AfS < Af(S\X) +
Af(S N X) = 2f(S\X). If AgS = 0, then Ag(S\X) = 0 and, by Lemma 4,
Af(S\X) =0 = AfS. The last statement of Theorem 1 is just Lemma 3
again.

Let
Y = {x: the (finite or infinite) limit lim,_, |(f(x + A)
— f(x)/(g(x + h) — g(x))| does not exist and
x is not in the interior of g~1g(x)},
U = {x: the (finite or infinite) limit lim,_o(f(x + h)
—f(x))/(g(x + h) — g(x)) does not exist and

x is not in the interior of g~1g(x)}.
In conclusion we show that the sets Y and U are “small” in a sense.

THEOREM 2. Let Y and U be as described before. Then
(i) AfY = AgY =0,
(ii) AfU = AgU = 0 if g is nondecreasing on [0, 1].

PRrROOF. (i). First assume that f and g are nondecreasing, i.e., f = F,
g = G. Then Y = | ,,Y,,, where p and q are positive rational, and

Yy, = {x€ U: liminf,o(F(x + h) — F(x))(G(x + h) — G(x))
< p < q<limsup,_(F(x + h) — FG)I(G(x + h) — G(x))}.

For some p < ¢, let W denote the set of points in Y,, where F and G are
continuous. Let P be an open set containing GW. By the Vitali covering
theorem, there exist countably many mitually disjoint intervals (a,, b,)
< (0, 1) such that, for each n, (G(a,), G(b,)) = P, F(b,) — F(a,) <
p(G(b,) — G(a,), and T, (F(b,) — F(a,) 2 AFW. But AFW < ¥,(F(b,)
— F(a,)) = p X (G(b,) — G(a,)) < p AP. Since P is arbitrary, we obtain
AFW < pAGW. By an analogous argument, AFW = qAGW. Then AGW
= 0; otherwise AFW = pAGW < qAGW = AFW, which is impossible.
Hence, AGW = 0 = AFW. Since p and q are arbitrary, AFY = 0 = AGY.

More generally, we drop the hypothesis that f and g are nondecreasing.
For convenience, let (f, g) denote the quotient (f(x + &) — f(x))/(g(x + h)
— g(x)). Let ¥, be a set such that A(F + G)¥; = 0 and, for x ¢ ¥, all
the limits

lim (F, F + G), lim (F + f, F + G), lim (G, F + G),lim (G + g, F + G)
h—0 h—0 h—0 h—0
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exist, and, hence, the limits lim,_(f, F + G) and lim,_(g, F + G) also
exist. Now, (F + G) — Fand (F + G) — G are nondecreasing, so, in fact,
AFV, = AGV; = 0. By Lemma 3, there is a set V; such that Agl, =0
and for x ¢ Vs, lim,o|(F + G, g)| # co. But [(F + G, g)| Z 1, so, for
x¢ ViU Ve,

lim |(f; @)l = lim [(F + G, @)l lim |(f; F + G)|.
h—0 h—0 h—0

Hence Y < V; U V; and AgY = 0. By Lemma 4, AfY = 0 also. This
proves (i). (It is well to note here that if g(x + h) # g(x), then (F + G)
(x 4+ h) # (F + G)(x))

(ii). For x ¢ V1, the limit lim,_o(F + G, G) exists. By Lemma 3, there
is a set V3 such that Af¥V3 =0, and for x ¢ V3, lim,o|/(F + G, f)| # oo and
lim,_(f, F + G) # 0. Again, by Lemma 3, there is a set ¥, such that
AGV, = 0 and for x ¢ Vy, lim,o(F + G, G) # oo. It follows that, for

x¢(ViU V) N UV,
lim (f, G) = lim (f, F + G) lim (F + G, G).
h—0 h—0 h—0

Then U < (V; U V3) N (V1 U Vo) and AfU = AgU = 0.

Part (ii) reduces to [1, p. 125, Theorem (9.1)] essentially when g(x) = x
for all x. Absolute value is essential in part (i). Consider f(x) = x for all
x, g(x) = O for all irrational x, and g(n/m) = 2™ for rational numbers
n/m in lowest terms. The limit does not exist without the absolute value
at irrational points.

Finally, we observe that AgU = 0 in Theorem 2 whether g is nonde-
creasing or not. Note first that AgX = 0 in Lemma 3 even when lim
sup;_ol(f; g)| replaces lim,_q|(f, g)| in the definition of X. (This is clear
from the proof.) Thus, if AgU > 0, then there is a number £ > 0 such
that AgU, > 0, where

U,={xeU:0 <limsup(f, g = —lim ing(f, g) < k at x}.
A0 B

Now, lim,_¢|(f + kg, g)| does not exist at any x € U,. By Theorem 2(i),
llgUk = (. But lgUk > 0.

REFERENCE

1. S. Saks, Theory of the Integral, second revised edition, Dover 1964.

PORTLAND STATE UNIVERSITY, PORTLAND, OR 97207






