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ON FACTORIZATION OF OPERATOR POLYNOMIALS 
AND ANALYTIC OPERATOR FUNCTIONS 

L. RODMAN* 

ABSTRACT It is proved that the set of biquasitriangular monic 
operator polynomials which admit factorization into monic linear 
factors, is dense in the set of all biquasitriangular monic operator 
polynomials. An extension of this result to the factorization of an
alytic operator functions with compact spectrum is obtained as well. 
These results generalize a known factorization property of monic 
matrix polynomials. 

1. Introduction. Let L(X) = J^j=o^J'Aj be a ploynomial whose coefficients 
Aj are (linear bounded) operators / / - » / / , where H is a fixed separable 
(complex) Hilbert space. We shall assume always that the operator 
polynomial L(X) is monic, i.e., with leading coefficient A/ = /. The prob
lem of factorization of L{X) into a product of several operater polynomials 
is an important one and has attracted much attention recently. This prob
lem was studied in [9] in connection with oscillations of continua, and 
in [12, 1, 4, 11] (the list is far from being complete). In case H is finite 
dimensional, a comprehensive treatment of this problem can be found 
in [3]. 

It turns out that, in case H = C , not every monic operator polynomial 
L(X) = m^ofcAj, admits a factorization into a product of linear factors 

(i) UX) = (ÀI + Xr) (XI + X2) ••• (XI + X,), 

where X/. C -* C" are operators (unless, of course, n = 1). However, if 
the companion operator 
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of L(À) is diagonable, then a factorization (1) exists. The proofs of these 
facts can be found in [3, §3.7]. Observe that the set of diagonable linear 
operators in a finite dimensional (complex) linear space is dense. So, for 
a dense set of monic operator polynomials of degree / acting in a finite 
dimensional space, a factorization (1) exists. 

The purpose of this paper is to extend this observation to the case of 
infinite dimensional H, as well as to factorizations of analytic operator 
functions. 

2. Factorization of operator polynomials. Denoting, by L(H), the al
gebra of all (linear bounded) operators H - • H with the norm topology, 
we introduce the natural topology in L(H) x . • • x L(H) ( / times). 
We identify a monic operator polynomial L(À) = 2 2 = 0 ^ 4 / w i t n a n e l e ' 
ment (A0, Ax, . . ., A,_x) e L(H) x • . • x L(H). 

An operator A e L(H) is called biquasitriangular if ind(ÀI — A) = 0, 
for all À e C such that ÀI — A is semifredholm (i.e., \m(ÀI — A) is closed) 
and the semifredholm index makes sense (i.e., at least one of the 
numbers dim Ker(A/ — A) and codim \m(ÀI — A) is finite). See Chapter 
6 in [5] for the properties of biquasitriangular operators. Analoguosly, 
an operator polynomial L(À) will be called biquasitriangular if indL(À) = 
0 whenever the semifredholm index makes sense. Denote, by (BQT)„ 
the set of all biquasitriangular operator polynomials of degree / with the 
induced topology. We say that an operator polynomial L(À) e (BQT)/ 

is factorable if there exist Xi,. . ., X, e L(H) such that 

L{X) = (ÀI + * ! ) • • • (ÀI + X,\ 

The main result of this section is the following 

THEOREM 1. The set of all factorable biquasitriangular monic operator 
polynomials of degree I is dense in (BQT),. 

For the proof of Theorem 1 we need the following facts. 

PROPOSITION 2. (see Chapter 5 in [5]). Let S be the set of all A e L(H) 

with the property that there is a decomposition H = H\ 4- • • • 4- Hk into 
the direct sum of a finite number of (closed) A-invariant subspaces Ht, 
i = 1, . . ., k, such that A\H. = ÀJ, for some complex numbers Ài, . . ., Àk 

(the number k and the subspaces Hi, as well as the numbers Ài, may depend 
on A). Then the closure of S (in the norm topology) coincides with the set of 
all biquasitriangular operators. 

PROPOSITION 3. Let H = Hx -j- • • • 4- Hk be a decomposition of H into 
the direct sum of (closed) subspaces Hh i = 1, . . ., k. Then, for every 
finite chain of subspaces iVj D iV2 D • • • => N/ in H, there exist chains of 
subspaces Ma a Mi2 c - • • c Mt/ cz Ht, i = \, . . ., k, such that Mj ÊÉ 
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My + M2j + -h Mkj is a direct complement to Nj in H, for j = 1, 

PROOF. Induction on / . For the case / = 1, Proposition 3 is due to 
D. Gurarie, and its proof can be found in [12]. Assume Proposition 3 has 
been proved with / replaced by / — 1. Let Mu a HÌ9 . . ., Mk/ cz Hk 

be subspaces with the property that M/ = Mu + • • • + Mk/ is a direct 
complement to N/ in H. By the induction hypothesis, there exist chains 
of subspaces Ma cz Mi2 cz • • • cz Mit/^t in MtV, / = 1, . . ., k, such that 
Mj is a direct complement to M/ f] Nj in M/, j = 1, . . . , / — 1. As 
Nj = N/ 4- {M/ H Nj), it follows that Mj is also a direct complement to 
NjinHJ = 1,. . . , / - 1. 

PROPOSITION 4. For every mon/c operator polynomial L(X) of degree / 
there exist positive constants e and K such that any operator B e L(H') with 
\\B — QJI < £> where CL is the companion operator ofL(X), is similar to the 
companion operator CM of some monk operator polynomial M(X) of degree 
/ ; moreover, 

(2) I d ^ K\\B 

PROOF. We shall use the ideas developed in [2]. Write B in the block 
matrix form B = [B,j]<J=1, where Btj e L(H). Letting Px = [10 • • • 0]: 
H' -» //, observe that 

~ Pi ' 
PXCL 

-P'iCi, 

= /. 

Hence, there exists e > 0 such that, for every B e L{H/) with ||2? - CL\\ < 
e, the operator 

Q(B) def 

^ 1 

_ r l ' 

H' -* H' 

is invertible. Put M(X) = l'I - / V ? ( ^ + V2X + • • • + V^1), where 
[V\ V2 • • • V/] = Q(B)~1, V{: H -> J'. Then one easily verifies the equality 
Q(B)B = CMQ(B). Further, 

|ß(Ä)-i - /|| £ K, \\B - Cut W Cu è Ko \\B - Cr. 

for some positive constants A"x and K2 (where B e L(H/) is such that 
II-Ö — d l ! < £)• Taking into account the equality 

L(X) = W - .PiQCt/i + U2X+ ••• + UÀ''1), 
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where [Ux U2 • • • U,] = /, U{\ H -• / / ' , we obtain (2). 

PROOF OF THEOREM 1. Let LQ) = %j=o%JAj be a biquasitriangular 
monic operator polynomial (A/ = /) , and let 

Cr = 

be its companion operator. There exist everywhere invertible operator 
polynomials E(X): H' -> H' and F(X): H' -+ H' such that 
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E(X)(XI - CL)F(X) = 

L{X) 

o 

o 

(see, e.g., Theorem 1.1 in [3]). So Q, is biquasitriangular as well. As follows 
from the factorization theory for monic operator polynomials (see [2]), 
the existence of a factorization LQ) = (XI 4- Xi) • • • (/I/ + X,) is equi
valent to the existence of a chain of CL-invariant subspaces (H/ => ) M/-1 ZD 
M,-

where 

=> Mi such that the operators 

/ 0 . . . 0 0 . . . 0 

0 / . . . 0 0 . . . 0 

0 0 0 0 

are invertible (i.e., one-to-one and onto). 
Using Proposition 2, for given e > 0, find i? e/ , ( / / ' ) such that \\B — 

CL\\ < e and B\M. = ktI, i = 1, . . ., k, for some decomposition into the 
direct sum H/ = Ht• + • • • 4- Hk. Taking e small enough, in view of 
Proposition 4, we can ensure that B is similar to the companion operator 
CL of a monic operator polynomial L(X) of degree / ; moreover, 

(3) \CL - CL\\ ^ K\\B - CL 

where the positive constant K depends on CL only. We have 
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Qk = hl i = h . .., k, 
where Gt, i = 1, . . ., k, are subspaces such that H/ = Gi + • • • 4- Gk. 
By Proposition 3, for j' = 1, . . . , / — 1, there is a direct complement 
Mj to Ker Py in H/ of the form My = M ; 1 + • • • + M^-, where M,7 cz 
G, (/ = 1, . . ., k); moreover, M^x => • • • =) Mx. Obviously, My is Q -
invariant and Pyl^. is invertible. This implies existence of a factorization 
L(/l) = (XI + Zi) • • •(A/ + X,\ which proves (in views of (3)) Theorem 1. 

3. Factorization of analytic operator functions. In this section we shall 
extend the result of Theorem 1 to the frame-work of analytic operator 
functions. 

Let Q be a domain in the complex plane, and let W(X) : Q -• L(H) be an 
analytic operator valued function. We say that W(X) has compact spectrum 
if the spectrum a( W) of W(X), i.e., the set of points X e Q such that W(X) 
does not have a (bounded) inverse, is compact. Denote, by CS(Q), the 
set of all analytic operator functions on 0 with compact spectrum. A 
spectral theory of such operator functions was developed recently in 
[6, 7, 8]. We shall recall briefly the basic facts of this theory which will be 
used later. 

A quintet d = (A, B, C; G, H) is called a spectral node on Q, for W(X) e 
CS(Q% if G is a separable Hilbert space, A: G -> G, B: H -> G, C: G -> H 
are linear bounded operators, and the following properties hold true: 

(a) a(A) c Q; 
(b) W(X)~l - C(XI - A)~lB has an analytic extension on 0; 
(c) W(X) C(XI — A)"1 has an analytic extension on Q; 
(d) n£oKerC4> = (0). 

A spectral node exists and is unique up to similarity (Theorem 1.2 in 
[6]), i.e., any other spectral node for W(X) on Q has the form (S^AS, 
S^B, CS; G, / / ) , for some invertible operator S: G -> G. Also, ^04) = 
<7(*n 

PROPOSITION 5. Let (A, B, C; G, / /) 6<? a spectral node for W{X) on Q. 
Then: 

(i)for some integer m > 0, f/ze operators 

: G -> //*, [5, ^J9 , . . ., A^B]: H™ 

are left invertible and right invertible, respectively; 
(ii) there exist analytic and invertible operator valued fundtions E(X): 

Q-> H®G, G(X): 0 -> H ® G such that 
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E(X) 
W(X) 0 

o iG_ m = 
IH 0 
0 XI-A 

XeQ. 

For the proof of (i) see §6 in [7]; part (ii) is Corollary 4.2 in [6]. 
Divisibility is characterized in terms of spectral nodes as follows (see 

[7]): 

PROPOSITION 6. Let W(X), WX(X) e CS(Q) and let (A, B, C; G, H) and 

(Ai, Bx, Ci; Gì, H) be the spectral nodes of W(X) and WX(X), respectively. 
Then W(X) = U(X)Wl(X), X e Q,for some U(X) e CS(Q), if and only if there 
exist an A-invariant suspace G c G and an inv er tibie operator S: G -» Gx 

such that A\G = S~lAiS, C\Q = CXS. 

Given W(X) e CS(Q), let A be a rectifiable contour in Q such that a(W) 
is inside â. Let 

W»~-2ri 

(P, q = 1, 2, 
have 

i 
war1 k^lV(X)-1 

:H"^HP 

X*-lW(X)-i XPW(X)-1 ••• X"+^-2W(X)-1_ 

). Clearly, WPq does not depend on the choice of A. We 

PROPOSITION 7. A necessary {but not sufficient) condition for existence of 
a factorization 

(4) W(X) = V(X)N(X), 

where V(X) e CS(Q) and N(X) is a monic operator polynomial of degree / 
with a(N) a Q, is that the operator W/q is onto, for some q. 

Note that (because H is a Hilbert space) WPq is onto if and only if it 
is right invertible; also, if WPq is onto, then so are Wp-i,q, . . ., WXq. In 
case W(X) is a monic operator polynomial of degree m and Û = C, the 
operators WPq are easily seen to be onto for 1 rg p ^ m, q à m. Indeed, 
in this case, 

(C„ 

0 

0 
/ 

, [10 . . . 0]; Hm, H) 

is a spectral node for W(X) (here Cw stands for the companion operator of 
W(X), see [2]). Consequently, WPq has the form 
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0 0 

Whn = 1 g p :g m, q ^ m. 

0 . . . 0 / * 

PROOF OF PROPOSITION 7. Let (A, B, C; G, H) be a spectral node for 
W(X). Then 

WH = ß,(C, ^) -[B,AB,..., A*-i Bl where ß,(C, ^) = 

' C 

CAP-1 

By Proposition 5(i), for q large enough, W^ is onto if and only if QP(C, A) 
is such. If (4) holds, then, by Proposition 6, there is an ,4-invariant sub-
space G a G and an invertible operator S: G -• H' such that 

Hence 

S~lCNS, C\ 

QÀQ A)\ 

= [10 . . . 0]S. 

= 5 

is invertible, and, consequently, W/q (for q large enough) is onto. 

In view of Proposition 7, we shall introduce the following definition. 
An operator function W{X) e CS{Q) will be called /-complete if the oper
ator W/q\& onto, for some q. 

A natural topology is introduced in CS (0). Namely, a sequence 
Wn(X) e CS(Q), n = 1, 2, . . ., is said to converge to W(X) e CS(Q) if 
U i£=i 0(Wn) is contained in some compact set in Û and, for every compact 
K c Ö, we have 

lim sup || Jf^A) W(X)\\ = 0. 

As the right invertibility of a Hilbert space operator is stable under small 
perturbations, it follows that the set of /-complete analytic operator 
functions with compact spectrum is open in CS(Q). However, this set is 
not dense in CS(Q). 

As for operator polynomials, we say that a W(X) e CS(Q) is biquasitri-
angular if ind W{X) = 0, for every yieß, such that the semifredholm 
index makes sense. In view of Proposition 5(ii), W(X) is biquasitirangular 
if and only if the operator A from a spectral node {A, 2?, C; G, H) is such. 
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We now state the extension of Theorem 1 to the framework of an
alytic operator functions. 

THEOREM 8. Assume the domain Q is simply connected and Q ^ C. Then 
the set of /-complete biquastiriangular operator functions W(X) e CS(Q) 
which admit a factorization of type 

(5) W(X) = V(X) (XI - * ! ) • • • (XI - X,), X{ e L(H) 

with V(X) e CS(Q) and a(X{) c Q, i= 1, . . . , / , is dense in the set of all 
/-complete biquasitriangular operator functions in CS(0). 

PROOF. Let W(X) e CS(Q) be /-complete and biquasitriangular, and let 
(A, B, C; G, H) be a spectral node for W(X) on / . As A is biquasitriangular, 
by Proposition 2, there exists a sequence Am e L(G), m = 1, 2, . . ., which 
converges to A and such that, for each Am, there is a decomposition G = 
G\m 4- • • • 4- Gkm,m i n t o a direct sum of ^-invariant subspaces GJm 

such that Am\Gjm = Xjm /, for some complex numbers Xim, . . ., Xkfn>m. 
We can assume that U ^=0 a(Am) is contained in a compact set in 0. 

Let ö > 0 and z0 e C be such that 

Q H {XeC\\X- z0| <<5} = 0 . 

By Theorem 2.1 in [8], the operator function 

W(X) = / + CF-![<?2 - (X - z0) 04* - zQ)]-iC*9 

where 
oo 

F = 2 <52wC4* - zo)-»-iC*C(A - ZQ)-»-1, 
»=o 

belongs to C5(ö) and has the spectral node (A, B, C; G, H), for some 
B: H -> G. Proposition 6 now gives 

IV(X) = l/(A)^W), 

where £/(/l) is analytic and invertible in Q. Analogously, the operator 
function Wm(X) = / + CF~\Ô2 - (X - z0) {A* - zQ)]^C^ where Fm = 
2^052w(v4m - z0)-"-1C*C(/4w - zo)-""1 belongs to GS^O) (for m large 
enough) and has the spectral node (Am, Bm, C; G, H\ for some Bm: H -+ 
G. Putting Wm(X) = U(X) Wm(X\ it is easy to see that the sequence Wm(X\ 
m = 1 ,2 , . . . , converges to W(X) (in the indicated topology in CS(Q)). 

To complete the proof of Theorem 8 we shall show that Wm(X) admits 
factorization of type (4), for sufficiently large m. Note that because W(X) 
is /-complete, so is W(X) (cf. the proof of Proposition 7), and hence also 
Wm(X) (at least for m large enough). So the operators 
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Qp(Q Am) = 

C 

CA„ 
/ > = ! , . . . , / 

are onto. By Proposition 3, there exist ,4m-invariant subspaces M/ => 
• • • =) Mi such that Mj is a direct complement to Ker Qj(C, Am) in G, 

j = 1, . . . , / . In particular, QXC, Am)\M/ is invertible. Let 

Lm(i) = yi - c(Am\My(Tx + j y + . . . + r ^ - 1 ) , 

where [Tt • • • T] = (ß (C, ^) | M / ) - i ( so r , : # - M / ? i = 1, . . ., / ) . 
It follows from [2] that (Am\M/, T/9 C\M/; M/9 7/) is SL spectral node for 
Lm(A). So 

(at this point we use the simple connectedness of Q). Also,^m |M/ is similar 
to the companion operator CLm of Lm(X): QXQ Am)\M/ • AJM/ = CLm • 
ß/(C, Am)\M/. Now we show, as in the proof of Theorem 1, that Lm(X) 
admits a factorization 

Lm(A) = (XI - * ! ) • - . tf/ - * » , JT, E L(i/), 

and the simple connectedness of Censures again that a(Xt) <=. Q, i = 1, 
. . ., / . It remains to note that, by Proposition 7, Wm(X) = V(X)Lm(X), 
for some V(X) e CS(0). 
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