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CONVOLUTION THEOREMS FOR A CLASS OF 
BOUNDED CONVEX FUNCTIONS 

ST. RUSCHEWEYH AND V. SINGH 

ABSTRACT. Let C, 5x/2, S0 and K denote respectively the sub
classes of normalized univalent functions which are convex, star-
like of order 1/2, starlike and close-to-convex. Further, let Cr be 
the subclass of Cdefined by \zf"(z)lf'(z) -y\ < 1 + r , T ^ -1/2. 
The following results are established : (i) If/ e Cr and g e K, then 
we have h = / * g e S0 for y < .13 ; (ii) If / € Cr and g e 50, 
then h — f* g satisfies \zh'{z)\h{z) — 1 — 7"| -«c 1 -4- 7-; and (iii) If 
/ e Cr and g e 5,

1/2, then h - f*g satisfies Re (zh'(z)/h(z)) > 
1/[(1 + a) ((1 -f a)1/« - l)], where a = rliX + r). Here, * denotes 
the Hadamard product of analytic functions. 

1. Introduction and statement of results. Let E = {z\ \z\ < 1} denote 
the unit disc and let A denote the space of functions analytic in E with 
the topology of local uniform convergence. Iff and g are in A and have 
the power series/(z) = £ ^ 0 a^k, g(z) = Tit=ob^zk about the origin, then 
the convolution or Hadamard product of/and g is defined by 

00 

h(z) = (f*g)(z) = ZakbkzK 

A function fe A and normalized by f(0) = f'(0) — 1 = 0 : 
(i) belongs to the class Sa of functions starlike of order a, a < 1, if 

(1) R e ^ M > a , zeE; 

(ii) belongs to the class C of convex functions if 

(2) R e 0 ^ + l)>0, zeE; 

(iii) belongs to the class K of close-to-convex functions if, for some 
geS0 and some real a, 

(3) R e e ™ - ^ $ - > 0, zeE; 

and 
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(iv) belongs to the class M if, for every g e S0, 

(4) 4-(/*s)(*)*0, zeE. 

It is well known that CCZSI^^SQCIKCZM and that each of these classes 
is a subclass of the class S of normalized regular univalent functions in E. 
In 1973, Ruscheweyh and Sheil-Small [7] established the following 

THEOREM A. 

(i) If fand g are in C, then so isf*g. 
(ii) Iff e C and g e K, thenf* g e K. 

In view of the above theorem it is of interest to investigate whether con
volution by a function belonging to some suitable subclass of C maps 
one of the classes mentioned above to another interesting subclass of the 
same function class. In the present paper, we consider the following 
subclass of C. 

DEFINITION. A function fe C is said to belong to the class Cr if it sat
isfies the condition 

(5) */"(*) 
/'(*) 

< 1 + y,y ^ - ! / 2 , zeE. 

It is readily seen that C^ = C and that functions in Cr are bounded convex 
functions in E. We shall establish the following 

THEOREM 1. If fe Cr and - 1/2 ^ y < .13 and g e M, then / * g e 50. 
Further, for r * - 1/2, \(f* g) (z)\ <, ^ T max| zf\z)\. 

In particular, we note that if\f"(z)/f'(z)\ < 1, i.e., y = 0, and if g is close-
to convex, then/* g is starlike. We may also remark that the upper bound 
on y as given in this theorem is not best possible. 
In view of inequality (13) below, f* g of Theorem 1 is bounded. We 
expect that the factor ^~2 in the upper bound can be replaced by 1. If 
g e 50, this certainly holds, because then g(z) = zcp'(z), for some <p e C 
and Re <p(z)\z > 1/2. Moreover, functions whose real part is greater than 
1/2 and take the value 1 at the origin are bound preserving. 

THEOREM 2. If fe Cr, y ^ -1 /2 , geS0, and h(z) = (f*g) (z), then 

(6) 
zh\z) 
h{z) - 1 - < 1 + T% zeE. 

THEOREM 3. Iffe Cr, y > - 1/2, g e 51 /2 , and h(z) = ( /* g) (z), then 
zhf(z)jh(z) lies in the convex hull of the range of values of the univalent 
function 

(7) r/((l - az) (1 - (1 - « )"«) ) , a = r / ( l + r ) . 
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In particular, 

(8) Re ^ M - ^ 1/((1 + a)((l + a)"« - 1)) è 1/2. 

Equality here is attained for 

(9) / ( Z ) = / 0 ( Z ) = (1 - a z ) - i ' « - 1 

am/g = z/(l — z). 

The ranges of values of zh\z)\h(z) given by Theorems 2 and 3 are sharp. 
Further, the class of functions h satisfying (6) is a subclass of S0 and has 
been extensively studied in [8]. We need the following Theorem for the 
proof of Theorem 1. 

THEOREM B. ([5]) If Li and L2 are continuous linear functional on A 
with 0 £ L2(M), then to each fe M there corresponds a function 

(10) g{z) = — * ( z 4 - i f l — 1 — \ ^eR , | j c | ^ 1, ÖV 1 -+- i/z \ (1 — zx)2 ^ \-xz J r 

such that 

U U L2{g) L2(f)' 

In order to obtain the upper bound on y in Theorem 1 we need to study 
the subordination properties of functions in Cr. In conformity with com
mon usage, for fe A and g e S, we denote by f < g the fact that / is 
subordinate to g. In the present paper we also establish the following 

THEOREM 4. Iff e Cvr è - 1/2, a = rl(l + r )> t n e n 

(12) /(z)/z <Mz)/z = ((1 - az)-i/« - l)/z, a S 0, 

(13) / ' (z) </o'(z) = (1 - az)-<i+«>'«, 

(14) zf\z)lf{z) < z/o'(z)//o(z) = z/((l - az) (1 - (1 - az)i'«)), 

w/zere/0(z) w /Äe element ofCr as defined in (9). Further, 

(15) Re (z/'(z)//(z)) è r/((l + ar) ((1 + ar)"« - 1)), \z\ = r < 1. 

The proof of (14) is on the lines given in [4], but for (12) and (13) we need 
the following theorem. 

THEOREM C. ([6]) Let k{z) be a convex conformai mapping of E, k(0) — 1, 
and let 

(16) »1(2) = z e x p ( £ (* (*) -1) -^ - ) . 
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Iff e A andfiO) = /'((>) - 1 = 0 , then 

(17) zf(z)/f(z) < k(z) 

if and only if for all \s\ <: 1, |r| ^ 1 

n Rv tfjsz) ^ tmjsz) 
u ' s/(/z) ^ *m(fz) " 

THEOREM D : ([7]) Let <p and (ft be convex in E, and suppose f -< (ft- Then 
<p *f< <p*(ft. 

For the sake of completeness, we give below a result from [7] in the form 
we need it for proving Theorems 2 and 3. 

THEOREM E.If<p and (ft in A satisfy the condition 

(19) <p(z) *\+*Z
z <fc) * 0, \x\ = \y\ = 1, z e E, 

then, for fe A and f(0) = 1, {<p * (<ftf))/(<p * (ft) takes all its values in the 
convex hull of the range off 

We shall need to use Theorem E when (i) z<pe C and z (ft e SQ or (ii) zcp 
and z(ft are in S1/2. In both of these situations the proof is available in 
[7], Lemma 2.7 and 3.5, respectively. It may be observed that in Theorem 
4 we have not been able to prove the subordination for f(z)/z and a < 0. 
However, we shall show that fo(z)/z is a convex univalent function which 
follows from 

THEOREM 5. Letfe A withf(0) = 0 and, for real ju > 0, let 

(20) F ( z ) = - ^ i £ ^ - i / ( 0 ^ . 

77 /̂? F(z) w convex univalent iff(z) satisfies 

(21) R e ^ 7 7 ^ - + 1 )> 
f\z) + ; > { _ i / 2 ^ / / / i > i. 

The case ju = 1 is interesting enough to be stated separately. 

COROLLARY. IffeA and Re (zf"(z)/f'(z) + 1) > -1 /2 , /Ae/i F(z) de
fined by (20), vv/f/z fj, = 1,WÛ convex univalent function. 

This is an extension of a result of Libera [3] who established the conclusion 
of the corollary when/(z) is convex. This enables us to extend Theorem 
11 from [1] to the case 0 = a < 1/2. 

THEOREM 6. If f satisfies Re {zf"{z)lf'(z) + 1) > a, z e E, and /(0) 
= / '(0) - 1 = 0 , then, for 0 ^ a < 1/2, 
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(22) f(z)/z < ((1 - z)2«-i - 1)/ ((1 - 2a)z). 

In view of the remark in [1, p. 427] it is only necessary to show that the 
function in the right hand side of (22) is convex. But this follows from the 
fact that 

( l - z ) * - i - l = J L f - ( 1 _ 0 2 t f - 2 ^ 
( l - 2 a ) z 2 T J O U i} 

and the integrand satisfies the conditions of the corollary. 

2. 
PROOF OF THEOREM 1. Forfè Cr and gx e M, let h = / * gv In view of 

Theorem B9 the value region of zh'jh, z e E, is attained for g1 = g given 
by (10). Since 

(23) ( g , / x , ) = ^ g + ;M^-, ^ W i i , 

we need to find the conditions which assure that 

^±MELeS„ for every real ^. 

LEMMA 1. For every real LX, the function zf + ifif is starlike if and only 
iffe C and 

(24) 4 R e i _ R e ± > ( i m ( * " 
V V H > - V \ | V | |W| 

where v = f/zf and w = 1 -f zf'jf'. 

PROOF OF LEMMA 1. It is easily seen that, for every real ju, 

Re- M ^±^i>0 
1 - H IJLLV 

if and only if 

[X2 Re v — fx Im(vw) + Re w > 0, 
for every real ft. Hence, we must have Re w > 0, which shows t h a t / e C 
and Re v > 0. Therefore, we obtain 

(25) 4 Re v Re w ^ (Im(vvtO)2. 

This is equivalent to (24). We note that this condition can also be put 
in the form 

(26) | v w _ i| g i + Re(vw). 

We notice that i f / e C0, i.e., \zf"\f'\ < 1, then Re 1/w ^ 1/2 and Re 1/v 
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^ 1/2. Hence, (24) is certainly fulfilled iff e C0. However, iff e Cr, then, 
from the proof of Theorem 4 below, it follows that 

(27) w < (1 + z)/(l - az), a = r / ( l + r ) , 

and 

(28) Re 1/v ^ 1((1 + a) ((1 + a)1'« - 1)). 

Hence, 

(29) 4 Re ^ Re ^ è 2(1 - a)/((l + a) ((1 + a)"* - 1)), 

and an evaluation on a calculator shows that the right hand side of (29) 
is greater than 1, for y < .13. Further, from (23), we obtain 

| (g*/) (z)| ^ l/t+^2 m a * l*/'(*)l ^ -Z2" max|z/'WI, 

because max |/(z)| ^ max |z/'(z)|. 
It is clear that the given bound on y is a very crude one, but it has not 

been possible for us to use either of the conditions (24) or (26) to obtain 
a sharp bound on y. 

3. 
PROOF OF THEOREM 2. Let g e S0 and let gx e C such that zg[(z) = g(z). 

Then, for A = g*f,feCr, 

zh'jz) __ g(z)*zf\z) __ gl(z)*z(zf'(z)y 
h(z) g(z)*f(z) gi(z)*zf'(z) 

and 

mz) ft(,).^)(^L-r) 
( 3 0 ) AW ' r ft(*W(i) 

Since gi 6 C and zf'(z) e 50, by Theorem E, the right hand side of (30) 
lies in the convex hull of the range of zf"/f — y. This proves Theorem 
2. 

4. 
PROOF OF THEOREM 4. It is easily seen t h a t / e Cr if and only if 

(3D 1 + zf"(z) = ' + <°(z) a = r/Cl + r) 
^ i j i + / , ( z ) j _ a ? ) ( z ) , a r /u + n , 

where p(0) = 0 and |#>(z)| < 1, z e £. Hence, 
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(32) U Ä ^ 1 ± 1 . 
/ (z) 1 - az 

Applying Theorem C with k(z) = (1 4- z)/(l — az) and taking s = 1, 
t = 0, we obtain 

(33) / ' C 0 < U - <*z)-(1+a)/«. 

An elementary calculation shows that the function 

(34) cp(z) = ((\ - az)-(1+*>/a _ ! ) / ( ! + a ) 

satisfies 

<"> * - ( ' + w ) > 0, for a é 0 

and 

(36) Refi + ?&-)> - 1 /2 , forO < a < 1. 

Hence, the right hand side of (33) maps E onto a convex domain, for 
a ^ 0. Thus, convoluting both sides of (33) by the convex function — (1/z) 
log (1 — z) and using Theorem £>, we obtain (12). We shall show sub
sequently that the right hand side of (12) maps £onto a convex domain. 
Now, we shall prove (14). As the method of proof is similar to the one 
in [4], we shall give the essential steps only. We first notice that if G(z) 
= zf'(z)lf(z) and 

(37) 1 4- Zf"(z) = * + z 

K } + f\z) 1 -az' 

then 

(38) G(z) = z/((l - az) (1 - az)l/«)) = 1/(1 + (1 + a)Gx(z)l 

where 

(39) -Gl(2) = 1 - {-%-^a)/a = | J> -d -«**)*. 
Since the integrand on the right hand side of (39) is a convex function, 
the function Gi(z) being a constant multiple of the Libera transform [3] 
of a convex function is also a convex univalent function. Consequently, 
G{z) is univalent in E. We shall establish 

LEMMA 2. IfG(z) is defined by (38), H(z) = (1 4- z)/(l - az) and k ^ 1, 
then Hk(z), defined by 

(40) Hk(z) = kH(z) + (1 - k)G(z), 
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is univalent in E and H(z) < Hk(z). 

PROOF OF LEMMA 2. Following [4], it is enough to show that 

(41) Re(G'(z)/H'(z))< 1. 

Towards this, we notice that 

(42) G'(z)IH'(z) = T(z)/((l + a)S(z))9 

where 

(43) T(z) = 1 - (1 + z) (1 - az)1/a 

and 

(44) S(z) = (1 - (1 - az)i/«)2 

is a bivalent convex function. Further, because 

(45) T'(z)/S'(z) = (1 + a)z/(2(\ - (1 - az)i^) = (1 + a)z/(2u(z)), 

where u(z) is a convex univalent function, 

(46) Re(r(z)/S'(z)) = (1 + a) Re(z/(2w(z)) < 1 + a 

since for any normalized convex univalent function u(z), we have Re 
(u(z)/z) ^ 1/2 and, consequently, Re (z/u(z)) < 2. Hence, a result of 
Libera [3] implies (41). 

The remaining part of the proof of (14) is exactly similar to [4] and the 
details will therefore be omitted. 

In order to establish (15), we notice that (38) gives 

Re(c(z) - -1) = Re j ~ j | + «>ffi> 
V w 2) 1 + (1 + a)Gi(z) 

(47) 
> 1 - (1 + a) max |Gi(z)[ 
- 1 + (1 + a)max|Gi(z)r 

Further, in view of (39), 

(48) Gi(re^) = - — f f (1 - axei(f>){l-a)/a dx dt. 
r Jo Jo 

Hence, for — 1 ^ a ^ 1, 

(49) \Gi(re^)\ ^ f f 0 + ax)(1~«)/a rfx A, 
Jo Jo 

equality being attained for <p = %. The max|Gi(re'V)| is attained at <p = %, 
and substituting this in (47), we obtain (15). 

5. 
PROOF OF THEOREM 5. From (20), we obtain 
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{fi + l)F'(z) + zF"(z) = (fi+ \)f'{z) 

and, therefore, 

where <p(z) = 1 + zF"(z)/F'(z). Then, using Jack's Lemma [2], it is seen 
that Re <p(z) > 0 when (21) holds. 
Since 

((1 - az)-i / a - l)/z = JL f z(i _ a^-ci+a)/«^ 
z Jo 

and (34) and (36) show that the integrand satisfies the conditions of the 
corollary, it follows that the function in the right hand side of (12) is a 
convex function for a > 0. 

6. 
PROOF OF THEOREM 3. We need to note that 

zh'jz) _ g*zf __ g J f 
h(z) g*f g*f ' 

and because g e S1/2 and / e Cr c 51/2, in view of Theorem Is, ZÄ'/Ä will 
lie in the convex hull of <p(z) = zf'(z)/f(z). Since, by Theorem 4, 

(50) <p(z) < z/[(l - az) (1 - (1 - az)i'«)] = ^(z) 

the convex hull of <p will be contained in the convex hull of <j). The ine
quality (15) therefore establishes the theorem. 
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