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ON REGULAR GROWTH AND ASYMPOTIC STABILITY 

F. V. ATKINSON AND J. W. MACKI 

We are concerned with the global asymptotic stability of the trivial 
solution to the question 

(1) f + q(x)y = 0, 0 ^ x ^ X, 

when q{x) is right-continuous, nondecreasing, and l i m ^ ^ x ) = +00. 
It is well known that (1) possesses a zero-tending solution under these 
assumptions, and examples exist which show that not all solutions need 
satisfy 

(2) lim y(x) = 0. 
X-+X 

What is needed is an extra assumption preventing q(x) from doing most of 
its growth on arbitrarily small sets, i.e., a regular growth assumption. The 
paper of Macki [1] surveys the various distinct notions of regular growth. 
In this paper we present a definition of regular growth which improves and 
unifies the various existing concepts. 

Such regular growth conditions are obtained by a converse path, by 
assuming that (1) has a solution not satisfying (2), and making deductions 
about the behaviour of q(x) in relation to certain sequences of x-values. 
These deductions, when used as hypotheses, then form necessary condi­
tions for (1) to have a solution not satisfying (2) and provide a concept 
of irregular growth. The more such deductions are utilised in this way, 
the narrower may be the class of q(x) of irregular growth, and so the 
wider the class of q(x) of regular growth for which (2) must be the case. 

We shall work in terms of various notions of "irregular growth". 
Roughly speaking, these have the character that there must be a family 
of sequences satisfying certain conditions (see, e.g., (i), (iii), (iv), (v) 
below) for which a certain series (see (ii)) converges. The converse notion 
of regular growth, as generally presented in the literature, takes the 
form that, for every such set of sequences, the series in question must 
diverge. We will not present these converse notions explicitly here, since 
they are obtainable by immediate translation from the associated con-
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cepts of irregular growth. Our aim is to obtain as narrow as possible a 
formulation of the latter idea. 

The following theorem gives a notion of irregular growth close to that 
of McShane ([2] or [1, p. 365, Definition 4]), but more strict, so that it 
yields a more general idea of regular growth, and so a more general 
sufficient criterion for all solutions to satisfy (2). 

Subsequently, we add conditions to yield a still stricter notion of 
irregular growth, and so a concept of regular growth more general, not 
only than that of McShane, but also that due to Sansone ([3] or [1] p. 
363, Definition 2]). 

Most writers on this topic take the case X = oo in (1), (2). Our treat­
ment of a McShane-type condition does not, however require this, so 
long as the equation is oscillatory at X. 

THEOREM. Let q(x), x0 ^ x ^ X ^ + oo, be positive, nondecreasing and 
right continuous, with l im^^^^) = + oo. If X < + oo, we also assume 
that ail solutions of (I) are oscillatory at X. Suppose that (1) possesses a 
solution y{x) violating (2), with zeros {xn} of y(x) and zeros {zn} of y\x). 
Then q(x) is of irregular growth in the sense that, for any e in (0, TT/2), there 
exist sequences {bn}, {cn} such that 

(i) - - - < zn < bn < xn < c„ < zn+1 < • •. ; 
(Ü) En=ilog[q(cn)/q(bn)] < oo (equivalent^, £^ i{[?(0 /<7(^)] - 1} < 

oo, or again ££=i {1 - q(bn)/q(cn)} < oo); 

(iv) ^1q1/2(x)dx -• s; and 
(v) \i(bn - x)q(x)dx - eV2. 

PROOF. Let r(x) > 0 be defined by r2 = y2 + (y')2/q, where y(x) solves 
(1) but violates (2). Then y(x) is oscillatory with zeros {xn} of y(x), and 
zeros {zn} of y'(x) (Figure 1). Now, d(r2) = (y')2dlq~l) ^ 0 and r(zn) = 
y(zn), so that amplitudes of y(x) are decreasing to a nonzero limit, which 
implies in turn that r(x) decreases to R > Oasx -> X. 

For a given e in (0, rcß), we define {bn}, {cn} by 

(3) y{bn) = y(zn)cos e, y(cn) = y(zn+1)cos e, 

with zn < bn < xn < cn < zw+1(Figure 1). 

^—^ y(bn) = y(zn) cos e 

k 
^.r^» 

k K 
Cn f f f l 

Figure 1. 
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For x in [bn, cn] we have \y(x)\ ^ \y(bn)\ = r(zM)cos e, so 

(4) x e [bH, cn] => (/)*/? = r2 - y2 ^ r
2(zw+1) - r2(zM)cos2 e - R2 sin2 a. 

Therefore (y')2 ^ (\/2)R2(sin2e)q for x in [è„, cnl n > Ne, with Ne suitably 
large. This lower bounded (y')2 allows the estimate 

r\b„) - /-2(C„) = - Jj» rf(r2) = Jj« (j')2( - rf?-i) 

S (l/2)7?2 sin2^(Z>„){^-i(Z.„) - q-Kc„)}, n > N,. 

This implies (ii), since 

oo > i*(0) - /P è £ [ - fW(r2)l ^ (l/2)/?2 s in2 c f; {l -q{b„)lq(cn)}. 

To prove (iii), (iv) and (v) we introduce the phase angle d(x) by 

(6) tan 0(x) = y(x)q^(x„W(x), x e [bn, c„], 

with d(xn) — niz. Then 

(7) 0'(x) = q1/2(xn)cos2 e + ^(x)^r-1/2(xjsin2ö, x G [bH9 cn]. 

Note that (ii) and the fact that q(x) is increasing imply that q(x) = 
q(xn) [1 + tf(l)] uniformly for x e [bn, cn], as « -» oo. Thus 0'(*) = q1/2(x) 
[1 -f 0(1)] uniformly on [bn, cJ as n -» oo. 

If we define r2(x) = y2(x) + (y'(x))2/q(xn) on [òw, c j , then 

(8) y(bn) = rn(bn)sin d(bn) = r(zn)cos e, 

so sin d(bn) = r(zn)r~\bn)cos e = [R + o(l)] [7? + oO)]"1 cos e. This 
implies that 

(9) 0(bn)=(n-j^7ü + e + o(\) 

and a similar argument shows that 

(10) 0(O = (* + -y ) f f - e + Ö(1). 

Now, (iii) easily follows. 

TT - 2£ + 0(1) = pfl'WrfjC = fV / 2 (* ) [ l + 0(l)]dx 

= [i + o(i)] f V w * . 
ibn 

To prove (iv) and (v), we choose 0 < ö < e and introduce points Bn, 
Cn (Figure 2), such that y(Bn) = X**)cos <5, X Q ) = . K V H ) cos <5. 
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y(B„) = ><z„) cos Ô 

\B. V. •11+1 

\c„ 

Figure 2. 

Our previous arguments show that q(x) = q(xn) [1 + o(l)] and 6'(x) = 
q1/2(x) [1 + o(l)] on [Bn, Cn] as n -* oo. The analogues of (9), (10) hold 
(with e replaced by ö), so we conclude that 

(12) I q1/2 (x)dx -> s — <?, as « -^ oo. 

Thus, (iv) will follow (from letting d -> 0) if we can show lim^o lim 
supM_,oo Jg»-»-1 ql/2(x)dx = 0. To this end, note that 

£*+1 0 - x)q{t)y(t)dt = j;(z„+1) - j<x), 

so that 

(14) fZn+1 (t - Cn)q{t)di ^ IXCJI"1 y(z\n+1) - y(Cn)\ = sec Ö - 1, 

and so 

(15) lim lim sup | *(/ - Cn)q{t)dt = 0. 

Conclusion (iv) follows easily, i.e., 

T {J c+1 qin(t)dt}2 = Jc +1 ^1/2( /)[JZw+1 ?1/2(j)dr~U 

" J e LL ^ ^ ' " J C it-Cffo{t)dt. 

It remains to prove (v). We will show that 

(17) f*" (*„ - x)q(x)dx = 4-(£ - ô)2 + o(l), as n -+ oo, 

and 

(18) lim lim sup I (bn — x)q(x)dx = 0. 

From earlier arguments, we have j ^ 1 q1/2(x)dx = £ — 8 + o(l), and 
g(jc) = ?(£„) [1 + o(l)] on [B„ CJ, as n - oo. Thus 

(16) 



REGULAR GROWTH AND ASYMPTOTIC STABILITY 115 

(19) (*„ - Bn)qV\Bn) = (a - 8) [1 + o(l)]. 

(20) £ " (bn - x)q(x)dx = \{Bn- KYq{Bn) [1 + o(l)]. 

Combining (19) and (20) gives (17). 
Turning to (18), we note that, on [zn, Bn], we have \y(x)\ ^ R cos ô, so 

we can write 

[Bn \ ÇBn 

J 2 (K - ^)(x)öfx ^ ^ c o s g j z (bn - x)q(x)y(x)dx 

~ 1 {-(bn-Bn)y'(Bn)-y(Bn) + y{zn)}, 
Rcos ô 

where we have used the fact that y" = — qy, combined with an integration 
by parts. Now, 

y(zn) - y(Bn) = y(zn) (1 - cos Ö) -> R(l - cos 5), 

so this expression satisfies lim5_+0limw_»ooSup = 0. We estimate the re­
maining term, using (19), 

(bn - Bn)y\Bn) = q"KBn(bn - Bn)] [y\Bn)lq^{Bn)} 

= iß - $) [1 + />0)] [r\Bn) - y\BnY* 

= 0(1) [r\Bn) - r*{zn)co$òy\ 

Thus, the limw_00sup of this expression is 0(R sin d). This completes 
the proof of the Theorem. 

We now present a more restrictive definition of "irregular growth'*, 
so as to provide a stronger theorem on global asymptotic stability than 
the definitions of either McShane or Sansone. 

DEFINITION. Let q(x), 0 ^ x < X : g o o , be positive, non-decreasing, 
right-continuous and unbounded. If X < co, assume also that solutions of 
(1) are oscillatory at X. We then say that q(x) is of irregular growth if there 
exist sequences {xn}, xn -> X, {zn}, {bn}, {cn} satisfying (i) — (v) of the 
above Theorem,plus: 

(vi) The sequences {xn}, {zn} are independent ofe; 
(vii) 7iq-1/2(xn+1 - 0) g xn+1 - xn ^ itq-y2(xn). 

It is immediate that, as desired, this notion of irregular growth is 
stricter than that of McShane [1, 2]). For one thing, this involves inequali­
ties in the analogues of (iii)-(v) rather than limiting equalities; we have 
also made the additional requirements (vi), (vii). 

For the purposes of comparison with the Sansone condition [1, 3] we 
confine attention to the case X = oo, and make minor modifications to 
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allow q(x) to have jump discontinuities. The above requirement (vii) is 
one of Sansone's; it may be seen as a consequence of the Sturm com­
parison theorem for the situation that (1) has a solution with zeros at the 
xn. A further Sansone condition is, modified to allow for discontinuities, 

lim sup q(xn - 0)/q(xn+1) = 1. 
n—»oo 

This is a consequence of (vii) and the requirement that xn -+ oo. For 
suppose if possible, that, for all large n and some / with / < 1, we have 

q(xn - 0) < /2 q(xn+l) 

and so 

q-v\xn+l) < /q-v\xn - 0). 

Using (vii), we deduce that 

(Xn+2 — xn+l) < /(Xn ~ *n - l )> 

contradicting the hypothesis that xn -* oo. 
It remains to discuss Sansone's analogue of (ii) which, as modified 

slightly by Macki, takes the form 

g(xn + / An _ j 
q(xn - /An 

< oo, for all 0 < / < 1/2, 

where An = 7rq~1/2(xn). Since q(x) is non-decreasing, it will follow that 
our requirement is more stringent if we can show that 

(22) bn<xn- /7zq-l/\xn) < xn + /7zq-v\xn) < cn, 0 < / < 1/2, 

for n large and e sufficiently small in the specification (3) of bn and cn. 
We recall now that, by (7) and (ii), 

d\x) = qW(x) {1 + o(l)} = qv\xn) {1 + o(l)} 

uniformly on [bn, cn], as n -• oo. It thus follows from (9) that 

TT/2 - e = (xn - bn)qv\xn) (1 + o(\)) 

so that, for large n, 

bn<xn- q-v\xn) (*/2 - 2e\ 

say. This implies the first of (22), for a given / G (0, 1/2) and large n if 
e > 0 is suitably chosen. The last inequality in (22) is discussed similarly. 

This completes the proof that the irregular growth requirements (1) -
(vii) in the above Definition are indeed stricter than those of Sansone, so 
that the regularity criteria are broader. 
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