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STRONGLY EXTREME POINTS IN LPfa X) 

MARK A. SMITH 

ABSTRACT. A natural characterization of strongly extreme 
points in the unit ball of Lp (fi, X), where 1 < p < oo, is given. 
This characterization is compared to similar known results con
cerning strongly exposed points and extreme points. 

Sundaresan [8] and Johnson [6] considered the problem of characterizing 
extreme points in the unit ball of LP(/u, X), where X is a Banach space, 
(S, 2, ju) is a measure space and 1 < p < oo. It is easily shown that suffi
cient conditions f o r / t o be such a point are that | | / | |^=1 and, for almost 
all s in the support of/, the element f(s)/\\f(s)\\ is an extreme point of the 
unit ball of X. In [8] it is shown that these conditions are also necessary in 
the case that X is a separable conjugate space, S is a locally compact 
HausdorfTspace and y. is a regular Borei measure; in [6] the same is shown 
in the case that A îs any separable Banach space, S is a complete separable 
metric space and y is a Borei measure. However, Greim [4] has produced 
an example of a nonseparable X and a norm one / in LP(X, X), where X is 
Lebesgue measure on [0,1], such tha t / i s an extreme point of the unit ball 
of LP(X, X) but, fpr all s in [0, 1], the element f(s)/\\f(s)\\ is not an extreme 
point of the unit ball of X. 

Johnson [7] and Greim [5] considered the similar problem of characteriz
ing strongly exposed points. In [7], a sufficient condition is given for g in 
L*(y, X*), where p~x + q~x = 1, to strongly expose / of norm one in 
L*(y, X). In [5], the proof that this condition is sufficient is used to show, 
in the case that X\s a smooth Banach space, that / in LP(y, X) is a strongly 
exposed point of the unit ball if \\f\\p = 1 and, for almost all s in the sup
port o f / the element f(s)/\\f(s)|| is a strongly exposed point of the unit 
ball of X. It is also shown in [5] that these conditions are necessary in the 
case that X is a separable Banach space (y arbitrary) and in the case that 
y is a Radon measure on a locally compact HausdorfT space (X arbitrary). 

In this paper, the problem of characterizing strongly extreme points in 
LP(y, X) is considered. It will be shown (Theorem 1) t h a t / i s a strongly 
extreme point of the unit ball of LP(y, X) if \\f\\p = 1 and, for almost all 
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s in the support of/, the element f{s)j \\f{s)\\ is a strongly extreme point of 
the unit ball of X. Also, it will be shown that these conditions are neces
sary in the case X is separable (Theorem 2) or in the setting that y. is a 
Radon measure on a locally compact Hausdorff space (Theorem 3). 
Thus, when characterizing a strongly extreme point, a notion lying strictly 
between that of strongly exposed point and extreme point, the natural 
sufficient conditions are obtained with no restriction on X (for a strongly 
exposed point, X was required to be smooth) and, in the simple setting 
of Lebesgue measure on [0, 1], the natural necessary conditions are 
obtained with no restriction on X (for an extreme point, X must be sepa
rable). 

The notation and terminology is relatively standard: (Ufa X), || • ||̂ ) 
denotes the Lebesgue-Bochner space of equivalence classes of /Mntegrable, 
^-valued, strongly measurable functions on the measure space (S, 2, ju) ; 
without loss of generality, the measure JLL is assumed to be complete ; for 
/ in Ufa X), the set {s e S: f(s) #= 0} is denoted by Sf and the function 
s -* Il/C*) Il is denoted by | / | ; and, whenever X is the scalar field, Ufa X) 
is denoted by Ufa. 

Recall an element x of the unit sphere of a Banach space X is a strongly 
extreme point of the unit ball if and only if, for every e > 0, there exists 
ô > 0 such that the conditions ||x ± z|| < 1 + ö imply ||z|| < e; equiv
alente, every sequence {zn} such that ||JC ± zn\\ -* 1 converges to zero. 

The following lemma may be known, but, since the author could not 
find a reference for it, a proof is included for completeness sake. 

LEMMA. Let (S, 2, pt) be a measure space, X a Banach space and 1 ^ p < 
oo. For {fn} and fin U>(JLL, X), if \\fn\\p-+ \\f\\p and fn-+f almost everywhere, 
then fn-+fin Ufa X). 

PROOF. Since \\fn\\p -> ||/^|| and |/M| -* | / | almost everywhere, it follows 
that (see [1, Exercise 4T]) 

(1) lim f \\fn\\Pdfi= f | | / | | ^ , for a l l e i n 2. 
n-*oo JE JE 

For each positive integer n, define ln on 2 by ln(E) = ||/n%^|||, for E in 
2. In view of (1), the Vitali-Hahn-Saks theorem [3, p. 158] yields 

(2) lim Xn(E) = 0 uniformly in n. 
/ i (£)-K) 

Let e > 0 given. Since/e Ufa X), there exists a set Fin 2 of finite measure 
such that ||/%s\F 11$ < s/2. By (1), there exists a positive N such that 
ll/n%svpll$ < £> whenever n ^ N. From this and the fact that/w e Ufa X), 
for n = 1, . . ., TV — 1, there exists a set A in 2 of finite measure such that 
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(3) f \\fn\\PdM < e, for all n. 
JS\A 

In view of (2) and (3), since f„ ->f almost everywhere, the Vitali conver
gence theorem [3, p. 150] yields t ha t / , - > / i n LP(ju, X) and the proof is 
complete. 

THEOREM 1. Let (S, 2, ju) be a measure space, X a Banach space and 
1 < p < oo. Iff in Lfi([i, X) has norm one and, for almost all s in the support 
off the element f(s)/\\f(s)\\ is a strongly extreme point of the unit ball of 
X, then fis a strongly extreme point of the unit ball ofLP(jLt, X). 

PROOF. Suppose {gn} is a sequence in LP(/u, X) such that \\f ± gn\\p -> 1. 
Since / h a s norm one, it follows that | | 2 /± gn\\p -> 2. By the triangle 
inequality in X and LP(fj), 

(4) 112/± gjp é IKI/I + | / ± gn\)\\p fk WfWp + 11/± gn\\r 

Since the left side and the right side of (4) tend toward two, the uniform 
rotundity of LP(ju) yields that \f ± gn\ -> | / | in LP(fj) and, hence, there 
exists a subsequence of {gn}, called {gn} again, such that 

(5) 1/ ± gn\(s) -+ \f\(s), for almost all s in S. 

Thus, for almost all s in Sf, it follows that \f± g„\(s)/\\f(s)\\ -> 1 and, 
hence, by the hypotheses, gn(s) -• 0, for almost all s in Sf. Also, by (5), 
for almost all s in S\Sf, it trivially follows that gn(s)-+ 0. So | | / + g j | ^ 
-•11/1|^ a n d / 4- gw -^/almost everywhere. An application of the Lemma, 
with /„ = / + gw, yields gw ~> 0 in LP(/u, X), and the proof is complete. 

The proofs of the next two results are modeled after the proofs given 
by Greim [5] for the corresponding results concerning strongly exposed 
points. 

THEOREM 2. Let (S, 2, ju) be a measure space, X a separable Banach 
space and 1 < p < oo. Iffis a strongly extreme point of the unit ball of 
LP((JL, X), then | | / | |^= 1 and, for almost all s in the support off, the element 
f(s)l\\As)\\ is a strongly extreme point of the unit ball ofX. 

PROOF. Clearly, | | / | |^= 1. For each positive integer n and s in Sf, let 

E(s, n) = { z e l : ||(/(*)/1|/(*)||) ± z\\ < 1 + l/n}, 

d(s, n) = inf{s > 0: every z G E(S, n) has ||z|| < e}, 

e(s) — inf{d(s, n): n is a positive integer}. 

For s in Sf, note that/0)/||/(.s)|| is a strongly extreme point of the unit 
ball of X if only if e(s) = 0. Extend each d(-,n) and e to all of S by letting 
d(s, n) = e(s) = 0 for s in S\Sf. To show that e is a measurable function, 
it suffices to show each d(-, n) is a measurable function, and, for this, it 
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suffices to show {s e S: d(s, n) > ô} is in 2 for each ö > 0. Fix such a ö. 
For each positive integer n and z in X, let 

A(n, z) = {seSf: z e £(5, «)}. 

Then ^(«, z)e 2 since / is a measurable function. Let D be a countable 
dense subset of X. Note that d(s, zi) > ò if and only if s e /*(«, z), for some 
z in D with ||z|| > 3. Hence {s e S: d(s, n) > ô} is the countable union of 
sets in 2 and so is in 2. To finish the proof, it remains to show that {,SG5: 

e(s) > 0} has measure zero. If it does not, then there exists ö > 0 such 
that A = {se S: e(s) > 5} has positive measure. To obtain a contradic
tion, it suffices to produce a sequence {gn} in LP(ju, X) such that 

\\gn(ß)\\ ^ò\\f(s)\\, for all s in A, and 

WÄs) ± gn(s)\\ è (1 + l/n)\\f(s)l for all s in 5; 

for then, | | g j | , ^ 3 | | / x J , > 0, since A a Sfi and | | / ± gn\\p ^ 1 + 1/n, 
contradicting the hypothesis that fis a strongly extreme point of the unit 
ball of LP(fi, X). To this end, let A(n, z) be defined as above and note 

A Œ {seS: d(s, n) > 5} = U {A(n, z):zeD with ||z|| > <?}. 

So A may be written as the disjoint union of a sequence {Bm} in 2, where 
each i?m is a subset of some y4(«, zm), with zw in D and | |z j | > d. Now, 
define gn by 

00 

&,(*) = ll/WII S z«Z„ (s), 

for .y in S. Then {gw} satisfies the conditions in (6). This completes the 
proof. 

THEOREM 3. Let p be a Radon measure on a locally compact Hausdorjf 
space 5, X a Banach space and Ì < p < 00. If f is a strongly extreme 
point of the unit ball of LP(JLL, X), then \\f\\p = 1 and, for almost all s in the 
support off, the element f(s)/\\f(s)\\ is a strongly extreme point of the unit 
ball of X. 

PROOF. For the moment, suppose that / is continuous and never zero 
on S. Proceed as in the proof of Theorem 2. The sets A(n, z) are open and, 
hence, so is their union 

U {A(n, z): z e X and ||z|| > 0} = {s e S: d(s, n) > d}. 

This shows that e is a measurable function. In order to show {s e S: 
e(s) > 0} has measure zero, replace the set A in the proof of Theorem 2 
by a compact subset with positive measure (A a {seS: e(s) > ô}, A 
compact and fi(A) > 0) and continue as before. Then, by its compactness, 
A is contained in a finite union of the sets A(n, z), and defining the sequence 



STRONGLY EXTREME POINTS IN LP(fl, X) 5 

{gn} in a manner analogous to Theorem 2 completes the proof in this 
case. Now suppose that / is arbitrary. Since Sf is ^-finite, by repeated 
applications of Luzin's theorem [2, p. 335], it follows that Sf may be 
written, up to a ^-null set, as the disjoint union of a sequence {Km} of 
compact subsets of S of positive measure such that / restricted to each 
Km is continuous and never zero. Let K be one of these sets and let fiK 

denote ß restricted to K. Since / is a strongly extreme point of the unit 
ball of D'i/!, X), it follows that fK = \\f%K\\~plf\K is a strongly extreme 
point of the unit ball of Lt(fiK, X) ; for, if {hn} is a sequence in LP{fiK, X) 
such that \\fK ± hn\\p -> 1, then, after extending each hn to be zero on 
S\K, it follows, by direct computation, that \\f± WfxKWphnWp-* 1 anc* 
hence | | / ^ H A " * ° i n LP(^ x) a n d s o hn~*® i n LP(MK, X\ By applying 
the first case tofK in L*(fiK, X), it follows that, for almost all s in K, the 
element//^/H/tfCy)!! —f(s)/\\f(s)\\ is a strongly extreme point of the unit 
ball of X. This completes the proof. 
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