SOME ANALOGUES OF A LEHMER PROBLEM ON THE TOTIENT FUNCTION

M. V. SUBBARAO AND V. SIVA RAMA PRASAD

1. Introduction and notation. In 1932, Lehmer [9] considered the equation

$$
\begin{equation*}
M \phi(n)=n-1 \tag{1.1}
\end{equation*}
$$

where $\phi(n)$ is the Euler totient function and asked whether the sets S_{M} of integers n satisfying (1.1) have any composite numbers. Obviously in the case $M=1$, the answer is negative. But the problem is not settled for $M>1$. However, the following partial solutions are known in the latter case. Firstly, Lehmer himself proved that each member of S_{M} is odd, squarefree and has at least seven distinct prime factors. Later Lieuwens [10], correcting the proof of Schuh [13], showed that $\omega(n) \geqq 11$ for every $n \in S_{M}$, where $\omega(n)$ denotes the number of distinct prime factors of n. Kishore [7] increased the lower bound of $\omega(n)$ to 13. Recently, Cohen and Hagis [2], using computational methods, established that $\omega(n) \geqq 14$. In another direction, Pomerance [12] proved that every such n is $<r^{2^{r}}$, where $r=\omega(n)$, and obtained that the number of $n \leqq x$ in any of S_{M} with $M>1$ is

$$
O\left(x^{1 / 2} \log ^{3 / 4} x \cdot(\log \log x)^{-1 / 2}\right)
$$

In this paper we discuss two analogous problems involving $J_{k}(n)$, the Jordan totient function of order k and $\phi^{*}(n)$, the unitary analogue of the Euler totient function. It is well-known that they are given by $J_{k}(1)=1$, $\phi^{*}(1)=1$, and if $n>1$,

$$
\begin{gather*}
J_{k}(n)=n^{k} \prod_{p \mid n}\left(1-\frac{1}{p^{k}}\right), \tag{1.2}\\
\phi^{*}(n)=\prod_{p^{\alpha| | n}}\left(p^{\alpha}-1\right), \tag{1.3}
\end{gather*}
$$

where the product in (1.2) is over prime divisors of n and that in (1.3) is

[^0]over the prime powers unitarily dividing n. (We say that d unitarily divides n, and write $d \| n$, if $d \mid n$ and $(d, n / d)=1)$.

We prove that, for $k>1, J_{k}(n)$ divides $n^{k}-1$ if and only if n is a prime (Theorem 1). The case $k=1$ is Lehmer's unsolved problem, since $J_{1}(n)$ $=\phi(n)$.

One of the authors [14] conjectured in 1971 that $\phi^{*}(n)$ divides $n-1$ only if n is the power of a prime, the converse being trivially true. This appears to be as deep as Lehmer's problem. Clearly, the conjecture states that, for every $M \geqq 1$, the set S_{M}^{*} of integers n satisfying

$$
\begin{equation*}
M \phi^{*}(n)=n-1 \tag{1.4}
\end{equation*}
$$

contains only prime powers.
Since S_{M}, defined earlier, contains only squarefree numbers and $\phi^{*}(n)$ $=\phi(n)$ wherever n is squarefree, it follows that S_{M} is a proper subset of S_{M}^{*}. Therefore, a separate consideration of S_{M}^{*} is needed for the study of the equation (1.4).

First, we dispose of (in Theorem 2) the case $M=1$ and then go to the case $M>1$. Some significant features of this paper in the latter case are as follows. In $\S 3$, we prove that $\omega(n) \geqq 7$, for every $n \in S_{M}^{*}$ by a simple argument which is different from that used by Lehmer for his problem. Using this we improve the lower bounds for $\omega(n)$ with varying conditions on n and various values of M in $\S 4$. For instance, we prove that if $3 \mid n$ and $n \in S_{M}^{*}$, then $\omega(n) \geqq 1850$, which automatically holds for $n \in S_{M}$ and therefore improves a theorem of Lieuwens [10, Theorem 5] which says that $\omega(n) \geqq 212$ whenever $3 \mid n$ and $n \in S_{M}$. Also, we establish that if n is squarefree and $n \in S_{M}^{*}$, then $\omega(n) \geqq 53,140$ or 200 according as $M=5$, 6 or 7 ; these increase the hitherto known lower bounds, namely 33 of $\omega(n)$ for the Lehmer problem. We mention that these improvements are obtained by using methods different from those of earlier writers for that problem. Further, in $\S 5$ we show that if $n \in S_{M}^{*}$ has r distinct prime factors, then $n<(r-1)^{2 r-1}$ improving a result of Pomerance [12, Equation (1.2)]. In §6, an order estimate for $N^{*}(x)$, the number of $n \leqq x$ in any of S_{M}^{*}, with $M>1$, is obtained by showing

$$
N^{*}(x)=O\left(x^{1 / 2} \log ^{2} x \cdot(\log \log x)^{-2}\right)
$$

$\zeta(s)$ denotes the Riemann-Zeta function. It is well known that, for $s>1$,

$$
\begin{equation*}
\zeta(s)=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1} \tag{1.5}
\end{equation*}
$$

where the product is over all primes and that

$$
\begin{equation*}
\zeta(2)=\pi^{2} / 6 . \tag{1.6}
\end{equation*}
$$

2. The analogous problem for Jordan's totient function.

Theorem 1. For $k>1, J_{k}(n) \mid n^{k}-1$ if and only if n is a prime.
Proof. $J_{k}(n) \mid n^{k}-1$ implies $\left(n, J_{k}(n)\right)=1$, and, since $p^{2} \mid n$ for some prime p implies $p^{k} \mid J_{k}(n), n$ must be squarefree. Also $J_{k}(n)=n^{k}-1$ if and only if n is prime. Now, for $k>1$, by (1.2), (1.5), and (1.6),

$$
\frac{n^{k}-1}{J_{k}(n)}<\prod_{p \mid n}\left(1-\frac{1}{p^{k}}\right)^{-1}<\prod_{p}\left(1-\frac{1}{p^{2}}\right)^{-1}=\zeta(2)=\pi^{2} / 6<2
$$

completing the proof of the theorem.
Thus, the analogue of Lehmer's problem for the Jordan totient function is easily settled. One can consider the analogous problems arising out of other generalizations and analogues of the totient function like Schimmel's. However, we find a most interesting and surprisingly difficult case arising when the unitary totient function is taken. The rest of the paper is devoted to that problem.
3. Analogous problem for the unitary totient. The unitary analogue of Lehmer's problem is already mentioned in the introduction. We obtain a preliminary lower bound for $\omega(n)$, where $n \in S_{M}^{*}$, in this section. First, we note

Theorem 2. $n \in S_{1}^{*}$ if and only if $n=p^{\alpha}$, for some prime p.
Proof. If $n=p^{\alpha}$, it is in S_{1}^{*}. If $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}(r>1)$, then $\phi^{*}(n)<$ $n-1$, proving the theorem.

Throughout the following we take $M>1 . n$ always denotes an integer greater than 1 in S_{M}^{*}, for some $M>1$. Then, clearly, we have $(n, M)=1$, $\left(n, \phi^{*}(n)\right)=1$, and

$$
\begin{equation*}
\frac{n}{\phi^{*}(n)}>M \geqq 2 . \tag{3.1}
\end{equation*}
$$

Theorem 3. n is odd and not a powerful number.
Proof. If n is even, by (1.4), we have $\phi^{*}(n)$ is odd. But $\phi^{*}(n)$ is odd if and only if $n=2^{\alpha}$ and, in this case, (1.4) cannot hold with $M>1$. Hence n must be odd.

We recall that a number is said to be powerful if each exponent in its canonical representation is at least 2.

If n were powerful, then, by (1.3), (1.5), and (1.6), we have

$$
\begin{aligned}
\frac{n}{\phi^{*}(n)} & =\prod_{p^{\alpha| | n}}\left(1-\frac{1}{p^{\alpha}}\right)^{-1}<\prod_{p}\left(1-\frac{1}{p^{2}}\right)^{-1} \\
& =\zeta(2)=\pi^{2} / 6<2
\end{aligned}
$$

contradicting (3.1). Hence n cannot be powerful

We denote the sequence of odd primes by $\left\{q_{i}\right\}$. That is, $q_{1}=3, q_{2}=5$, $q_{3}=7, \ldots$. For any $r>1$, we write

$$
\begin{equation*}
Q_{r}=\prod_{i=1}^{r}\left(\frac{q_{i}}{q_{i}-1}\right) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{r}^{*}=\prod_{i=1}^{r}\left(\frac{q_{i}^{2}}{q_{i}^{2}-1}\right) \tag{3.3}
\end{equation*}
$$

Lemma 3.1. (i) $\omega(n) \neq 2$.
(ii) If $2<\omega(n) \leqq 6$, then $M=2$ and $3 \mid n$.

Proof. If $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$, with $p_{1}<p_{2}<\cdots<p_{r}$, then, by Theorem 3, $p_{i} \geqq q_{i}$, for $i=1,2,3, \ldots, r$, so that (3.1) gives $M<$ $n / \phi^{*}(n) \leqq \prod_{i=1}^{r} q_{i} / q_{i}-1=Q_{r}$.

Since $Q_{2}<2$, (i) follows in view of Theorem 2.
Since $Q_{r}<3$ for $2<r \leqq 6$, we get $M=2$, again by Theorem 2 .
If $2<r \leqq 6$ and $3 \nmid n$, then $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{6}^{\alpha_{6}}$, where not more than three α_{i} can be zero and $p_{i} \geqq q_{i+1}$, for $i=1,2, \ldots, 6$. Therefore

$$
\frac{\mathrm{n}}{\phi^{*}(n)}=\prod_{\substack{i=1 \\ \alpha_{i} \neq 0}}^{6} \frac{p_{i}^{\alpha_{i}}}{p_{i}^{\alpha_{i}}-1} \leqq \prod_{i=1}^{6} \frac{q_{i+1}}{q_{i+1}-1}<2
$$

contradicting (3.1). Hence $3 \mid n$.
Lemma 3.2. Suppose primes p, q are such that $p \mid n$ and $q^{\beta} \equiv 1(\bmod p)$. Then q^{β} cannot be a unitary divisor of n.

Proof. Given $p \mid n$ and $q^{\beta} \equiv 1(\bmod p)$, if $q^{\beta} \| n$, then also $\phi^{*}\left(q^{\beta}\right)=q^{\beta}-1 \mid$ $\phi^{*}(n)$ so that $p \mid \phi^{*}(n)$. Thus, $p \mid\left(n, \phi^{*}(n)\right)$, a contradiction. Hence the lemma.

Corollary 3.1. If primes p, q are such that $p \mid n$ and $q \equiv 1(\bmod p)$, then $q \nmid n$.

Lemma 3.3 If $3 \mid n$, then $M \equiv 1(\bmod 3)$.
Proof. Suppose $n=3^{\alpha} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$. Then $p_{i}^{\alpha_{i}} \not \equiv 1(\bmod 3)$ for $i=$ $1,2, \ldots, r$, by Lemma 3.2. Now, (1.3) and (1.4) give

$$
M\left(3^{\alpha}-1\right)\left(p_{1}^{\alpha_{1}}-1\right) \cdots\left(p_{r}^{\alpha_{r}}-1\right)=3^{\alpha} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}-1 .
$$

Writing this equation to the congruence modulo 3 , we get the lemma, since $p_{i}^{\alpha_{i}} \equiv 2(\bmod 3)$, for $i=1,2, \ldots, r$.

Theorem 4. $\omega(n) \geqq 7$.
Proof. If $2<\omega(n) \leqq 6$, then $M=2$ and $3 \mid n$, by Lemma 3.1. But if $3 \mid n$, by Lemma 3.3 , we have $M \equiv 1(\bmod 3)$ so that $M \geqq 4$. These two contradict each other. Hence $\omega(n) \geqq 7$.

Remark 3.1. Lehmer proved that $\omega(n) \geqq 7$, for all $n \in S_{M}$, using a different method. Since S_{M} is a subset of S_{M}^{*}, our proof also holds for the Lehmer problem.
4. Improved lower bounds for $\omega(\mathbf{n})$ with conditions on \mathbf{n} and M. In this section we obtain lower bound of $\omega(n)$ with different conditions on n and various values of M, using Theorem 4. The following definitions are needed in the proofs of the results in this section.

Definition 4.1. Suppose p is an odd prime. The sequence $G_{p}=\left\{P_{i}\right\}$ of primes, such that $P_{1}=p$ and, for $i \geqq 1, P_{i+1}$ is the smallest prime $>P_{i}$ satisfying $P_{i+1} \not \equiv 1\left(\bmod P_{k}\right)$, for $1 \leqq k \leqq i$, is called the " G-sequence of primes with p as smallest member."

For example, $G_{3}=\{3,5,17,23,29,47, \ldots\}$ and $G_{5}=\{5,7,13$, $17,19,23,37, \ldots\}$.

It may be noted here that the density and other aspects of G-sequences were studied by Golomb [4], Erdös [3], and Meijer [11].

Definition 4.2. If $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is a finite set of numbers each greater than 1 , by its "quotient", denoted by A_{m}, we mean

$$
A_{m}=\frac{a_{1} a_{2} \cdots a_{m}-1}{\left(a_{1}-1\right)\left(a_{2}-1\right) \cdots\left(a_{m}-1\right)} .
$$

Lemma 4.1. Suppose $m \geqq 2, A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}, B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$ are two sets of integers such that $1<a_{i} \leqq b_{i}$ for each i, with strict inequality for at least one i. Then $A_{m}>B_{m}$.

Proof. The lemma can be verified easily in case $a_{i}=b_{i}$, for all i, except for one index k, where $a_{k}<b_{k}$. By repeated application of the result, the lemma follows.

Theorem 5. If $3 \mid n$, then $\omega(n) \geqq 1850$.
Proof. Suppose $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$, with $3=p_{1}<p_{2}<\cdots<p_{r}$. Then, by Theorem 4, $r \geqq 7$. Also, by (1.3), (1.4), and Lemma 3.3, we see that the quotient D_{r} of $\left\{p_{1}^{\alpha_{1}}, p_{2}^{\alpha_{2}}, \ldots, p_{r}^{\alpha_{r}}\right\}$ satisfies

$$
\begin{equation*}
D_{r}=\frac{n-1}{\phi^{*}(n)}=M \geqq 4 . \tag{4.1}
\end{equation*}
$$

In view of Corollary 3.1 , the p_{i} are such that $p_{i} \not \equiv \mathrm{l}\left(\bmod p_{j}\right)$, for $i \neq j$, and they are among those that belong to the set $B=\{3,5,11,17,23,29$, $41,47,53,59, \ldots\}$, which consists of 3 and all odd primes $p \not \equiv 1(\bmod 3)$. Also, if b_{i} is the ith element of B in increasing order, then $p_{i} \geqq b_{i}$, for each i with strict inequality for $i=2$ or 3 or both. Further, if $i>6, b_{i}$ is of the form $29+6 x$, for some $x=1,2,3, \ldots$ But $29+6 x$ is composite if $x \in L$,
where $L=\{x: x \equiv 1(\bmod 5), 1(\bmod 7), 8(\bmod 11), 6(\bmod 13), 15(\bmod 17)$, $11(\bmod 19)$ or $22(\bmod 23)\}$. Therefore B is a subset of $A=\{3,5,11,17$, $23,29,41,47,53,59,71, \ldots\}$ consisting of $3,5,11,17,23$, and all positive integers in the progression $29+6 x$ with $x \notin L$. Clearly, if a_{i} is the i th element of A (in increasing order), then $b_{i} \geqq a_{i}$, for all i. Thus, we have, for any $i(1 \leqq i \leqq r)$, that $p_{i}^{\alpha_{i}} \geqq p_{i} \geqq b_{i} \geqq a_{i}$, and strict inequality holds, for at least one i, since $r \geqq 7$. Hence, by Lemma 4.1 and (4.1), we see that the quotient A_{r} of $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ satisfies $A_{r}>D_{r} \geqq 4$. That is, r is such that

$$
\frac{3 \cdot 5 \cdot 11 \cdot 17 \cdot 23}{2 \cdot 4 \cdot 10 \cdot 16 \cdot 22} \prod_{\substack{x=0 \\ x \notin L}}^{r-6}\left(\frac{29+6 x}{28+6 x}\right)>4
$$

or

$$
\prod_{\substack{x=0 \\ x \neq L}}^{r-6}\left(\frac{29+6 x}{28+6 x}\right)>\frac{22528}{12903}
$$

A computer run showed that the smallest such r is 1850 , proving the theorem.

Theorem 6. If $3 \nmid n, 5 \mid n$, then $\omega(n) \geqq 11$.
Proof. Here we take G_{5}, the G-sequence of primes with 5 as the smallest member. That is, $G_{5}=\{5,7,13,17,19,23,37,59,67,73, \ldots\}$. If p_{i} is the i th element in this sequence and P^{*} is the quotient of $\left\{P_{1}, P_{2}, \ldots, P_{10}\right\}$, we observe that $P^{*}<2$.

If $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ with $5=p_{1}<p_{2}<\cdots<p_{r}$ and $r \leqq 10$, we prove the quotient D of $\left\{p_{1}^{\alpha_{1}}, p_{2}^{\alpha_{2}}, \ldots, p_{r}^{\alpha_{r}}\right\}$ is $\leqq P^{*}$, from which the theorem is immediate. It suffices to prove this when $r=10$.

Because of Corollary 3.1, the p_{i} are from the set $\{5,7,13,17,19,23,29$, $37,43,47,53,59,67,73, \ldots\}$ of odd primes $p \geqq 5$ such that $p \not \equiv 1(\bmod 5)$. If $p_{i}=P_{i}$, for $i=1,2, \ldots, 10$, then $D=p^{*}$, proving our assertion. Therefore, let k be the least positive integer such that $p_{k} \neq P_{k}$. Then $2 \leqq k \leqq$ 10 . For any $k(3 \leqq k \leqq 10)$, we observe that $p_{i} \geqq P_{i}$ for $i=1,2, \ldots, 10$ so that Lemma 4.1. gives $D \leqq P^{*}$. Also, if $k=2$, all choices of p_{i} are such that $D \leqq P^{*}$. Hence the theorem.

We state below a theorem which follows on the lines similar to [2, Proposition 1].

THEOREM 7. If $3 \nmid n, 5 \nmid n$, then $\omega(n) \geqq 17$.
In the rest of this section we prove results which are improvements of [7, Lemma 1].

Theorem 8. If $n \in S_{M}^{*}$, for $M=3,4$ or 5 , then $\omega(n) \geqq 33$.

Proof. If $3 \mid n$, the theorem follows from Theorem 5.
If $3 \nmid n$ and $\omega(n) \leqq 32$, then $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$, with $p_{1}<p_{2}<\cdots$ $<p_{r}$, is such that $p_{i} \geqq q_{i+1}$, for $i=1,2,3, \ldots, r$, so that $n / \phi^{*}(n) \leqq$ $\prod_{i=1}^{32} q_{i+1} / q_{i+1}-1<3$. But this is a contradiction since

$$
\frac{n}{\phi^{*}(n)}=M+\frac{1}{\phi^{*}(n)}>3
$$

if $M=3,4$ or 5 . Hence $\omega(n) \geqq 33$ in this case also.
Lemma 4.2. If $n \in S_{M}^{*}$ has r distinct prime factors unitarily dividing it, then $Q_{r}>8 M / \pi^{2}$ or M according as n has a square factor or not. $\left(Q_{r}\right.$ is given by (3.2)).

Proof. Suppose $n=m \cdot m^{\prime}$ where m is squarefree, m^{\prime} is powerful and $\left(m, m^{\prime}\right)=1$. Then $\omega(m)=r \geqq 1$, by Theorem 3. Let $s=\omega\left(m^{\prime}\right)$. Now

$$
M<\frac{n}{\phi^{*}(n)}=\prod_{p \| n}\left(\frac{1}{p-1}\right) \cdot \prod_{p^{\alpha} \|_{n}}\left(\frac{p^{\alpha}}{p^{\alpha}-1}\right) \leqq Q_{r} \cdot Q_{s}^{*}
$$

where Q_{s}^{*} is given by (3.3). Hence $M<Q_{r} Q_{s}^{*}$ or Q_{r} according as $s \geqq 1$ or $s=0$. The lemma now follows from the fact that, for $s \geqq 1$,

$$
\begin{aligned}
Q_{s}^{*}=\prod_{i=1}^{s}\left(1-\frac{1}{q_{i}^{2}}\right)^{-1} & =\left(1-\frac{1}{2^{2}}\right) \cdot \zeta(2) \cdot \prod_{i=s+1}^{\infty}\left(1-\frac{1}{q_{i}^{2}}\right) \\
& <\frac{3}{4} \zeta(2)=\frac{\pi^{2}}{8}, \text { by }(1.6)
\end{aligned}
$$

Theorem 9.
(i) If $n \in S_{5}^{*}$ and n is squarefree, then $\omega(n) \geqq 53$.
(ii) If $n \in S_{6}^{*}$, then $\omega(n) \geqq 140$ or 48 according as n is squarefree or not.
(iii) If $n \in S_{7}^{*}$, then $\omega(n)>200$ or 103 according as n is squarefree or not.
(iv) If $n \in S_{M}^{*}$, for $M \geqq 8$, then $\omega(n)>200$.

Proof. These can be proved easily making use of Lemma 4.2 and Table IX of Legendre [8], which gives the values of Q_{r}^{-1} for $1 \leqq r \leqq 200$.

For instance, when $M=6$ and n is squarefree we must have $Q_{r}>6$, by Lemma 4.2. This requires $r \geqq 140$ from the table, proving the first part of (ii).

Theorem 10. If $2<\omega(n) \leqq 16$, then $M=2,3 \nmid n, 5|n, 7| n$.
Proof. $3 \nmid n, 5 \mid n, M=2$, respectively, follow from Theorems 5, 7, 8 and 9 .
If $7 \nmid n$, then $n / \phi^{*}(n)=* \prod_{i=1}^{21} q_{i+1} /\left(q_{i+1}-1\right)$, where $*$ indicates that the primes $q_{i} \equiv \mathrm{I}(\bmod 5)$ are excluded in the product. Since the product is <2, which contradicts (3.1), we get that $7 \mid n$.

Remark 4.1. Summing up the results of $\S 2$ and $\S 3$, we have shown that $\omega(n) \geqq 11$, for every $n \in S_{M}^{*}$.
5. Upper bound for \mathbf{n} with \mathbf{r} distinct prime factors. Throughout this section N, denotes an odd natural number.

Lemma 5.1. If $N \in S_{M}^{*}, m \| N, m \neq N$, then $m / \phi^{*}(m)<M$.
Proof. If $m=1$, the lemma is obvious.
Assume $m>1$. It is enough to prove the lemma for m having exactly $(r-1)$ unitary prime power divisors of N. Let $m^{\prime}=p^{\alpha}$ be the complementary unitary divisor of m so that $m m^{\prime}=N$ and $\left(m, m^{\prime}\right)=1$.

Since $N \in S_{M}^{*}$, we have

$$
\begin{aligned}
1 & =N-M \phi^{*}(N)=m m^{\prime}-M \phi^{*}(m)\left(m^{\prime}-1\right) \\
& =m^{\prime}\left[m-M \phi^{*}(m)\right]+M \phi^{*}(m)
\end{aligned}
$$

from which the lemma is immediate because $M \phi^{*}(m) \geqq M \geqq 2$.
Lemma 5.2. Suppose $\left(N / \phi^{*}(N)\right)>M$. If $m \| N, m \neq 1, m \neq N$ and $\left(m / \phi^{*}(m)\right)<M$, then the least among the prime power divisors of m^{\prime} $=N / m$ is less than $\omega\left(m^{\prime}\right) m$.

Proof. Since N is odd we have $m \geqq 3$. Let $m^{\prime}=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{t}^{\beta_{t}}$ with $p_{1}^{\beta_{1}}<p_{2}^{\beta_{2}}<\cdots<p_{t}^{\beta_{t}}$. Now $m / \phi^{*}(m)<M<N / \phi^{*}(N)$ implies $m^{\prime} / \phi^{*}\left(m^{\prime}\right)$ $>M\left(\phi^{*}(m) / m\right) \geqq 2$. That is,

$$
\begin{equation*}
\prod_{i=1}^{t} \frac{p_{i}^{\beta_{i}}}{p_{i}^{\beta_{i}}-1}>2 \tag{5.1}
\end{equation*}
$$

Also, $p_{1}^{\beta_{1}}<p_{2}^{\beta_{2}}<\cdots p_{t}^{\beta_{t}}$ and each p_{i} odd implies that $p_{i}^{\beta i} \geqq p_{1}^{\beta_{1}}+$ $2(i-1)$, for $i=2,3, \ldots, t$. Therefore, by the decreasing nature of $(x / x-1)$ and (5.1), we get

$$
\begin{equation*}
\prod_{i=1}^{t}\left(\frac{p_{1}^{\beta_{1}}+2 i-2}{p_{1}^{\beta_{1}}+2 i-3}\right)^{2}>4 \tag{5.2}
\end{equation*}
$$

Again, since $x /(x-1)$ is a decreasing function, we have

$$
\frac{p_{1}^{\beta_{1}}+2 i-2}{p_{1}^{\beta_{1}}+2 i-3}<\frac{p_{1}^{\beta_{1}}+2 i-3}{p_{1}^{\beta_{1}}+2 i-4}
$$

for each i, from which it follows that

$$
\begin{equation*}
\left(\frac{p_{1}^{\beta_{1}}+2 i-2}{p_{1}^{\beta_{1}}+2 i-3}\right)^{2}<\frac{p_{1}^{\beta_{1}}+2 i-2}{p_{1}^{\beta_{1}}+2 i-4} \tag{5.3}
\end{equation*}
$$

Now, from (5.2) and (5.3), we get

$$
4<\prod_{i=1}^{t}\left(\frac{p_{1}^{\beta_{1}}+2 i-2}{p_{1}^{\beta_{1}}+2 i-4}\right)=\frac{p_{1}^{\beta_{1}}+2 t-2}{p_{1}^{\beta_{1}}-2}
$$

or $p_{1}^{\beta_{1}}<2+2 t / 3<3 t \leqq m t$, proving the lemma.

Lemma 5.3. If $N \in S_{M}^{*}$ and $N=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$, with $p_{1}^{\alpha_{1}}<p_{2}^{\alpha_{2}}<\cdots<$ $p_{r}^{\alpha_{r}}$, then

$$
p_{i}^{\alpha_{i}}<(r-i+1)\left(\prod_{j=1}^{i-1} p_{j}^{\alpha_{j}}\right)
$$

for $i=2,3, \ldots, r$.
Proof. Fix i and write $m=\prod_{j=1}^{i-1} p_{j}^{\alpha_{j}}$. Then $m \| N, m \neq 1, m \neq N$, so that by Lemma 5.1, $m / \phi^{*}(m)<M$. Also, by (3.1), we have $N / \phi^{*}(N)>M$. Now, the lemma is immediate from Lemma 5.2.

A result of interest is established in the proof of Lemma 5.2. We record it as the following lemma.

Lemma 5.4. If $N=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$, with $p_{1}^{\alpha_{1}}<p_{2}^{\alpha_{2}}<\cdots<p_{r}^{\alpha_{r}}$, is such that $N / \phi^{*}(N)>2$, then $p_{1}^{\alpha_{1}}<2+2(r / 3)$.

Remark 5.1. Otto Grün [5] proved a similar result for odd perfect numbers. In fact he showed that the least prime factor of an odd perfect number N with $\omega(N)=r$ is $<(2 / 3) r+2$.

Theorem 11. If $\omega(n)=r$, then $n<(r-1)^{2 r-1}$.
Proof. Suppose $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$, with $p_{1}^{\alpha_{1}}<p_{2}^{\alpha_{2}}<\cdots<p_{r}^{\alpha_{r}}$, so that $n / \phi^{*}(n)>2$ and $r \geqq 11$, by (3.1) and Remark 4.1. Therefore, by Lemma 5.4,

$$
\begin{equation*}
p_{1}^{\alpha_{1}}<\frac{2}{3} r+2<r-1 \tag{5.4}
\end{equation*}
$$

Now, by Lemma 5.3 and (5.4), we successively have

$$
\begin{gathered}
p_{2}^{\alpha_{2}}<(r-1) p_{1}^{\alpha_{1}}<(r-1)^{2} \\
p_{3}^{\alpha_{3}}<(r-2) p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}<(r-2)(r-1)(r-1)^{2}<(r-1)^{22}
\end{gathered}
$$

More generally, $p_{i}^{\alpha_{i}}<(r-1)^{2^{i-1}}$, for $i=1,2, \ldots, r$.

$$
\text { Hence } \begin{aligned}
n & =p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}<(r-1)(r-1)^{2}(r-1)^{2^{2}} \cdots(r-1)^{2 r-1} \\
& =(r-1)^{2 r-1}
\end{aligned}
$$

Remark 5.2. Theorem 11 gives an improvement of a result of Pomerance [12, equation (1.2)] where he showed that $n<r^{2^{r}}$, for every $n \in S_{M}$, with $\omega(n)=r$. A similar result for amicable numbers is obtained by Borho [1].
6. Order estimate for $\mathbf{N}^{*}(\mathbf{x})$. Let $N^{*}(x)$ be the number of $n \leqq x$ in S_{M}^{*}, for some $M>1$. In this section we obtain an order estimate for $N^{*}(x)$. We state the following equivalent form of the combinatorial lemma proved by Pomerance [12, Lemma 4].

Lemma 6.1. Suppose $\delta \geqq 0,0<a_{1} \leqq a_{2} \leqq \cdots \leqq a_{t}, B_{i}=\sum_{j=1}^{i} a_{j}$, for $1 \leqq i \leqq t$, and $a_{i} \leqq \delta+B_{i+1}$, for $1 \leqq i \leqq t-1$. Then, given y with $0 \leqq y \leqq B_{t}$, there is a subset S of $\{1,2,3, \ldots, t\}$ such that

$$
y-\delta-a_{1}<\sum_{i \in S} a_{i} \leqq y
$$

Theorem 12. $N^{*}(x)=O\left(x^{1 / 2} \log ^{2} x \cdot(\log \log x)^{-2}\right)$.
Proof. Suppose $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}} \in S_{M}^{*}$, for some $M>1 ; p_{1}^{\alpha_{1}}<p_{2}^{\alpha_{2}}<$ $\cdots<p_{r}^{\alpha_{r}}$, and $n \leqq x$. Then, for each i, by Lemma 5.3,

$$
p_{i}^{\alpha_{i}}<(r-i+1)\left(\prod_{j=1}^{i-1} p_{j}^{\alpha_{j}}\right)
$$

so that

$$
\log p_{i}^{\alpha_{i}}<\log r+\sum_{j=1}^{i-1} \log \left(p_{j}^{\alpha_{j}}\right)
$$

Let $\Delta(x)$ be a function (to be chosen suitably) satisfying $1 \leqq \Delta(x)<x$. Now, for $x \geqq n>\Delta(x)$, we have $\log n>\log \Delta(x)$. Taking $\delta=\log r$, $t=r, a_{i}=\log \left(p_{i}^{\alpha_{i}}\right)$ and $y=\log \Delta(x)$ in Lemma 6.1, we get a unitary divisor m of n such that

$$
y-\delta-\log p_{1}^{\alpha_{1}}<\log m \leqq y
$$

That is,

$$
\begin{equation*}
\frac{\Delta(x)}{r \cdot p_{1}^{\alpha_{1}}}<m \leqq \Delta(x) \tag{6.1}
\end{equation*}
$$

Now, by (5.4), and the fact that there is a positive constant c such that $r=\omega(n)<(c \log n) /(\log \log n)$, for $n \geqq 3$ (see [6], p. 335), we get

$$
\begin{equation*}
r \cdot p_{1}^{\alpha_{1}}<r(r-1)<r^{2}<\frac{c_{1} \log ^{2} x}{(\log \log x)^{2}} \tag{6.2}
\end{equation*}
$$

for some $c_{1}>0$.
Then, (6.1) and (6.2) imply that, for every n with $\Delta(x)<n \leqq x$, there is a unitary divisor m of n such that

$$
\begin{equation*}
f(x)<m \leqq \Delta(x) \tag{6.3}
\end{equation*}
$$

where

$$
\begin{equation*}
f(x)=\frac{\Delta(x)(\log \log x)^{2}}{c_{1} \log ^{2} x} . \tag{6.4}
\end{equation*}
$$

Now, among the integers $n \in S_{M}^{*}(\Delta(x)<n \leqq x)$, we count those n for which a given m is a unitary divisor satisfying (6.3). Since $m \| n$ implies $\phi^{*}(m) \mid \phi^{*}(n)$, any such n must satisfy the congruences $n \equiv 0(\bmod m)$ and
$n \equiv 1\left(\bmod \phi^{*}(m)\right)$. By the Chinese Remainder Threoem, the number of such $n \leqq x$ is at most $\left[x / m \phi^{*}(m)\right.$], where $[t]$ is the greatest integer $\leqq t$.

Hence

$$
\begin{aligned}
N^{*}(x) & \leqq \Delta(x)+\sum_{f(x)<m \leqq \Delta(x)}\left[\frac{x}{m \phi^{*}(m)}\right] \\
& =O(\Delta(x))+O\left(x \sum_{f(x)<m \leqq \Delta(x)} \frac{1}{m \phi^{*}(m)}\right) .
\end{aligned}
$$

Now, using a result of Landau, we have

$$
\begin{equation*}
\sum_{m>y} \frac{1}{m \phi^{*}(m)} \leqq \sum_{m>y} \frac{1}{m \phi(m)}=O\left(\frac{1}{y}\right) . \tag{6.6}
\end{equation*}
$$

From (6.5) and (6.6), we obtain that

$$
N^{*}(x)=O(\Delta(x))+O\left(\frac{x}{f(x)}\right)+O\left(\frac{x}{\Delta(x)}\right)
$$

Choosing $\Delta(x)=O\left(x^{1 / 2} \log ^{2} x \cdot(\log \log x)^{-2}\right)$, all terms on the right of (6.7) will be $O(\Delta(x)$), proving the theorem.
7. Concluding remarks Using. computational methods similar to that of Kishore, Cohen and Hagis or by some other techniques, it may be possible to improve Theorem 6, by showing, say, $\omega(n) \geqq 13$ whenever $3 \nmid n$ and $5 \mid n$.

Considering the infinite nature of the set complement of S_{M} in S_{M}^{*} the order estimate we obtained for $N^{*}(x)$ is reasonably good as a first attempt. Further improvements of this are, of course, possible and will be considered in a future paper.

References

1. W. Borho, Eine Schranke für befreundte Zahlen mit gegenbene, Teileranzahl, Math. Nachr. 63 (1974), 297-301.
2. G. L. Cohen and P. Hagis, Jr., On the number of prime factors of n if $\phi(n) \mid n-1$, Nieuw Archief Voor. Wiskunde (3) XXVIII (1980), 177-185.
3. P. Erdös, On a problem of G. Golomb, J. Australian Math. Soc. 2 (1961/62), 6-8.
4. S. W. Golomb, Sets of primes with intermediate density, Math. Scand. 3 (1955), 264-274.
5. O. Grün, Über ungerade vollkommene Zahlen, Math. Z. 55 (1952), 353-354.
6. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Fourth edition, Oxford, 1960.
7. M. Kishore, On the number of distinct prime factors of n for which $\phi(n) \mid n-1$, Nieuw Archief Voor Wiskunde, (3) XXV, (1977), 48-53.
8. A. M. Legendre, Théorie des Nombres, Vol. I, Libraire Scientifique et Technique, Paris, 1955.
9. D. H. Lehmer, On Euler's totient function, Bull. Amer. Math. Soc. 38 (1932), 745751.
10. E. Lieuwens, Do there exist composite numbers M for which $k \phi(M)=M-1$ holds?, Nieuw Archief Voor Wiskunde (3) XVIII (1970), 165-169.
11. H. G. Meijer, Sets of primes with intermediate density, Math. Scand., 34 (1974), 37-43.
12. C. Pomerance, On composite n for which $\phi(n) \mid n-1$, II, Pacific J. Math. 69 (1977), 177-186.
13. Schuh, F.r., Do there exist composite numbers m for which $\phi(m) \mid m-1$ (Dutch), Mathematica Zutpen, B 13 (1944), 102-107.
14. M. V. Subbarao, On a problem concerning the unitary totient function $\phi^{*}(n)$, Notices Amer. Math. Soc. 18 (1971), 940.

University of Alberta Edmonton, Alberta, Canada T6G 2G1
Osmania University Hyderabad, 500007, India

[^0]: Received by the editors December 15, 1983.
 Partially supported by NSERC Grant No. A-3103.

