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REMARKS ON SHARKOVSKY'S THEOREM 

THOMAS D. ROGERS 

Dedicated to the Memory of Ernst Straus 

1. Introduction. When a continuous function has a cycle of given period, 
it has cycles of other periods specified through their appearance in a cer­
tain ordering of the positive integers, i.e., the Sharkovsky ordering. This 
note discusses the result and related ones, concentrating on simply-stated 
conditions which guarantee the existence of certain integer periods. We 
deliberately avoid referring to the dynamical structure of maps in this 
brief survey. For problems involving uniqueness, stability, or bifurcations 
of parameterized families of maps, the reader may consult the recent 
monograph of Collet and Eckmann [7]. 

The first section states the Sharkovsky theorem and related theorems 
for maps of the interval. The second section discusses circle maps. In the 
third section we inquire about analogous cycles found in discrete-valued 
maps, and we are led to stating what is believed to be an original combina­
torial problem associated with the cycle structure of a certain set of per­
mutations. 

2. Sharkovsky's Theorem. Let / be a closed interval and let / : / -> / be 
continuous. Denote self-composition of / inductively by f°(x) = x and 
fn(x) = X/»-i(jc)), n ^ 1. The set {x,f(x), P(x\ . . . } is called the orbit 
of x. If the orbit is finite, the least positive integer k with fk(x) — x is the 
period of x; in this case the orbit is called a &-cycle. 

Consider the following ordering of the positive integers 

1, 2, 4, . . . , 2", 2*+1, . . . , 2n+1 • 5, 2*+1 - 3 , . . . 2« . 5, 2» • 

3, . . . , 22 . 5, . . . , 22 . 3, . . . , 2 - 5, 2 • 3, . . . , 7, 5, 3. 

The order writes down, in the manner indicated, the successive powers 
of 2, then all numbers of the form 2n x odd integer, and finally the odd 
integers. A. N. Sharkovsky [18] proved the following beautiful theorem. 
I f /has a point of period m, then/also has a point of period n precisely 
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when n is to the left of m in the above ordering. It would be interesting 
to know if the Sharkovsky ordering also arises in any problems from 
number theory. 

Li and Yorke [11], unaware of Sharkovsky's work at the time, proved 
(among other things) that a point of period 3 implies points of all periods 
1 , 2 , . . . . Another corollary is that the existence of a point of period of 
the form 2W x odd integer implies infinitely many other periods, whereas 
period 2n implies only finitely many periods. Note too, that i f / h a s a 
point of period 2n x odd integer, then some power of/has period 3. For 
detailed proofs of the Sharkovsky theorem see Stefan [20] and (for maps 
with a single critical point) Guckenheimer [8]. 

The proofs are not easily banalized, but one may say they generally 
depend on the natural order relation of the real numbers, through which 
one keeps track of the successive images of certain intervals. For example, 
the original hypothesis of Li and Yorke assumes there is a point a e I with 
f3(a) ^ a < f(a) < f2(a) (so that period 3 is a special case). For k a posi­
tive integer, they find a subinterval Q c [ /3(Û), a] such that fk(Q) => Q, 
from which it follows that/has a point of period k. The argument depends 
essentially on the following proposition. Let A and B be closed intervals 
with A f] B empty or a singleton point. If / : A [j B -> R is continuous 
and/(,4) => (A [j B) and/(i?) •=> A, t hen /has points of all periods. For 
an «-dimensional version of this proposition see Rogers and Marotto [17]. 

Li, Misiurewicz, Pianigiani, and Yorke [12] have an elegantly stated 
generalization of the Li-Yorke theorem as follows. For x0 e 7, say the 
finite orbit {x0,/(x0),. . . ,/w(x0)} n a s n o division if there is no a e I such 
that/>(.%) < a for ally even, and/>(x0) > a for ally odd. They prove that 
i f / h a s no division and/n(x0) ^ xQ < f(xQ) orfn(x0) ^ x0 >/ (x 0 ) , then 
/ ha s a point of odd ( ̂  1) period. 

In regard to applications of Sharkovsky's theorem (difference equation 
models) it is interesting that the result is sturdy to perturbations in / 
Block [5] shows that i f /has a point of period n, then there is a neighbor­
hood N of / i n C(I) such that for all g e N and all positive integers k, with 
k left of n in the Sharkovsky order, g has a point of period k. Kloeden 
[10] and Butler and Pianigiani [6] have related results. 

Strafini [21] used properties of directed graphs to show that an odd 
period k ^ 1 implies all periods ^ k — 1, generalizing the period 3 
theorem of Li and Yorke. The points composing the &-cycle are located 
on the real line, and these determine k — 1 closed subintervals 7b I2, . . . , 
Ik-i. The associated digraph has vertices labeled Ih I2, . . . , Ik-i, and an 
arrow is drawn from/,- to Ij if/(/z) => /,-. Strafini proves that if such a 
graph has a nonrepetitive circuit of length k, then / has a k-cyc\Q. For 
example, in the case of period 3, the graph has arrows connecting li to 
72, h to 7i, and a loop at 72- To conclude period 5 from this graph, go 
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from li to I2, then go around the loop at I2 three times, and finally go back 
to Iv A graph-theoretic proof of the complete Sharkovsky theorem is due 
to Ho and Morris [9] and, independently, to Block, Guckenheimer, Misi-
urewicz and Young [4], 

3. Circle maps. Continuous maps of the circle have numerous applica­
tions to problems associated with biological clocks. See Winfree [22], for 
example. Block [3] studied the structure of the periodic points of a con­
tinuous circle map/assuming tha t /has a point of period 1, i.e., a fixed 
point. A nice result in this case is that if/has a point of odd period n > 1, 
/ h a s points of all period m > n; the corollary, that a circle map with 
periods 1, 2, and 3 has points of all periods, was obtained, independently, 
by Sieberg [19]. 

The following weaker theorem is due to Bernhardt [2]. Suppose / has 
smallest periods px and p2 with pl < p2 and suppose 2px ^ p2. Then px 

and p2 are relatively prime, and / has points of all periods of the form 
&Pi + ßp2 where a and ß are any positive integers. More simply, i f /has 
no fixed points and px and p2 are relatively prime then the same conclu­
sion holds [1]. 

A complete discussion of maps of the circle with no fixed points (or 
generally, circle maps of degree 1) is more complicated; see, e.g., Misi-
urewicz [14]. 

4. A combinatorial problem. In this last section we briefly consider a 
set of permutations which have complicated cycle structure. The problems 
formulated here are directly motivated by the cycle theory for continuous 
maps outlined above. 

Define A{n) to be the set of /such that ( i ) / i s a permutation of {1, 2, 
. . . , « } , and (ii) / strictly increases up to a unique maximum value and 
thereafter strictly decreases. Hence A{n) is a discrete analogue of families 
of single-humped continuous maps (the "quadratic family") whose cycle 
structure, and other dynamical properties, have been so thoroughly 
studied [7], [8]. See also May [13] and Rogers [16] for biological applica­
tions. 

A{n) is contained in the set of all n\ permutations of {1, 2, . . . , « } . It 
is easy to verify that the cardinality of J(n) is 2n~l — 2; essentially one 
constructs an element in J(n) by sticking in a new maximum value n 
to the immediate left or right of the old maximum value n — 1 belonging 
to an element in A(n — 1). An element / e J(n), like any permutation, 
decomposes into a finite number of cycles. Starting at 1, for example, 
there is some/:, 1 g k g n, with/*(l) = 1, producing a cycle of length 
k. 

If 4 is the number of cycles of period k which occur in a given fe J(n), 
then 1 • 4 -f 2/2 + • • • + n/n = n. An apparently difficult problem is 
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to compute the cycle classes in d(n). Define C(/l5 /2, . . . , /„) to be the 
number of elements in J(n) which have 4 1-cycles, 4 2-cycles, . . . , /n 

/7-cycles. For example the two elements in J(3) are (132) = (1) (32) and 
(231), and so C(l, 1, 0) = 1 and C(0, 0, 1) = 1. For any n the cycle enu­
merator functions C may be computed, however there is no known general 
formula. See Riordan [15] for the corresponding problem (solved) for 
the set of all permutations on n objects. 
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ADDED IN PROOF 

T.D. ROGERS AND A. WEISS 

The number of transitive cycles of J(n). The following results were proved after this 
review was written. 

THEOREM (Weiss [23]). The cardinality nn of the transitive cycles of A(n) is 

n/d-X 

„ ~ £ Kd)2 
Kn = n d\n 

d odd 

where /u(d) is the Mòbius function. 

Thus C(0,.. .,0, \)-%n when w^3. In addition, a remarkable fact is that smooth 
unimodal families of maps of the interval run though precisely these corrfbinatorial 
possiblities : 

THEOREM. The number of orientation-reversing cycles of the quadratic family x-+ 
ax{\ —x), AG [0, 1], 1 ^tf^4, of minimum period n, is %n\ further such cycles are born 
stable. 

Proofs will appear elsewhere; the second theorem exploits the invariant coordinate 
method of Milnor and Thurston (see [7]). We thank Leo Jonker for help with the 
stability result. 

A conjecture of Guckenheimer [8] states that the bifurcations of the quadratic family 
are the generic flips and folds. If true, then TC„ counts the number of bifurcations of this 
family. 




