LARGE HIGHLY POWERFUL NUMBERS ARE CUBEFUL

C.B. LACAMPAGNE* AND J.L. SELFRIDGE

Let the **prodex** of n be the product of the exponents of the primes when n is written in standard form. M. V. Subbarao has called a number highly powerful if its prodex is larger than that of any smaller number. Assume that $n = \prod_{i=1}^k p_i^E$ is highly powerful. Then it is clear that p_i is the ith prime, the exponents $E = E(p_i)$ are nonincreasing, $E(p_k) \ge 2$ and $E(p_{k-1})$ ≥ 3 (since $p_{k-1}^4 < p_{k-1}^2 p_k^2$). The theorem of the title asserts that if $p_k > N$, then $E(p_k) \ge 3$. Further, we have developed an algorithm which finds all highly powerful numbers having $E(p_k) \neq 3$. The nineteen highly powerful numbers with $E(p_k) = 2$ are listed in Table 1.

Table 1 THE 19 HIGHLY POWERFUL NUMBERS WHICH ARE NOT **CUBEFUL**

22	283452	211365574113133172
2432	27355372	$2^{10}3^{7}5^{5}7^{4}11^{3}13^{3}17^{2}$
2532	27345472	$2^{11}3^{7}5^{5}7^{4}11^{3}13^{3}17^{2}$
273352	28355372	$2^{11}3^{7}5^{5}7^{4}11^{3}13^{3}17^{3}19^{2}$
263452	28345472	$2^{11}3^{8}5^{5}7^{4}11^{3}13^{3}17^{3}19^{2}$
253552	29365473112	
273452	$2^{11}3^{7}5^{4}7^{3}11^{3}13^{2}$	

REFERENCES

C.B. Lacampagne and J.L. Selfridge, Large Highly Powerful Numbers are Cubuful, Proc. Amer. Math. Soc. 91 (1984), 173-181.

UNIVERSITY OF MICHIGAN, FLINT, MICHIGAN.

