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1. Introduction. The function Tk(n) representing the number of ways of 
expressing n as a product of A: factors (the order of the factors being taken 
into account) has been studied since the time of Dirichlet. In contrast to 
this well-established function, the corresponding sum function a(n, &), 
which we define as the sum of the divisors corresponding to such factor
izations of«, does not seem to have appeared in the literature. Indeed the 
only reference the authors can submit is their preliminary report [9]. 

We here formally define the divisor sum function ar(n, k) for the rth 
powers of these divisors and obtain some identities (including two of a 
well-known Ramanujan type), and as an application obtain an asymptotic 
estimate for 2 n ^ aa(n, 3)ab(n, 3) which may be new. We extend the 
definition of ar{n, k) to the case when k is complex and obtain some 
asymptotic estimates for its summatory function. Towards the end, we 
introduce the notation of A>ply perfect numbers and raise some open 
problems. 

2. Preliminaries. Let 

Tk(n) = 2 1 
d\dz • • • dk=n 

for k a positive integer, so that r*(«) denotes the number of ways of ex
pressing « as a product of k factors, the order of the factors being taken 
into account. In particular, let 

r(n) = T2(n) = £ 1 . 
d\dz=n 

It is clear that if Z^s) stands for the Riemann zeta function, we have 

W = f ; ^ 4 ^ = <7 + iUa> 1. 

zk(n) is multiplicative in «, and if 

n = p%i pp . . . pfr 

Received by the editors in revised form August 30,1983. 
Copyright © 1985 Rocky Mountain Mathematics Consortium 

399 



400 V. C. HARRIS AND M/ V. SUBBARAO 

where the /?'s are distinct primes, then [19] 

*>(«) 
_ (k + mx - 1)! {k + mr-\)\ 

m^ik - 1)! mr\(k - 1)! ~ 

Though the function rÄ(«) has been studied since the time of Dirichlet, 
some authors, for example Beumer [1] do not seem to realize this fact. 
If * denotes the Dirichlet product of two arithmetic functions f(n) and 
g(n) defined by 

(f*g)(n)= L f(dùg{d2) 
d\do—n 

then defining i0(n) = 1, « = 1, 2, 3, . . . we have 

.*(«) = L i • *«(£), 
so that 

TM) = (/'o * i0 * • • • * /o) («) 

to /: factors. 

It is obvious that for all integers k ^ 2, r*(tf) = 0(/?£), e > 0. Define 

Tk(x) = 2 TÄ(/I). 

When /: = 2, we write T(x) for r2(x). It is well known [19, Chapter 12] 
that 

Tk(x) = x P^iOog *) 4- âk(x). 

where JP/è_1(log x) is a polynomial in log * of degree k — 1 with constant 
coefficients. The exact order of the error function Ak(x) is still unknown. 
If we define ak to be the least number such that for every positive e we have 

Jk(x) = 0(xa*+£) 

and if this is to be true for every e > 0, then Kolesnik [13] showed (what 
is probably the best result for k = 2 so far) that a2 ^ 35/108. 

Probably, the best Q+ and ö_ results for Q2(x) so far are due respectively 
to Hafner [7], Corradi and Kâtai [4], namely 

Mx) = Q+{(* log *)1/4(log log x)(3+2iog2)/4 . exp (-cVlog(loglogJc))} 

and 

Mx) = ß_{x1/4 exp c (log log Jc)1/4(log log log Jt)~3/4}. 

Hafner gave more general Q+ results in [7]. 
There is a good deal of literature concerning dk(x), into which we shall 

not go. We content ourselves by mentioning the conjecture [19], p. 270] 



ON THE DIVISOR SUM FUNCTION 401 

that ak = (* - l)/2Ar, /c = 2, 3, . . . , it is known [19], p. 273] that a* è 
(A: - 1/2* for* = 2, 3, . . . . 

Significant results involving extension of the definition of zk(n) for real 
and complex values of k have been obtained by Oppenheim [14] in 1926 
and by Iseki [11] and A. Selberg [16] in 1954. Since Selberg's results go 
beyond those of Iseki and since we use them later in our paper, we shall 
quote his main results below. 

Define zz(n) for any complex z by the generating function 

(2.1) L ^ = « j ) , R e o l , 

and set 

(2.2) Tz(x) = 2 zz(n). 

Then Selberg proved the following: 

THEOREM A. 

(2.3) Tz{x) = x(l0ß(^
Z~1 + 0[x(\og J)-*] 

uniformly for \z\ ^ A, x ^ 2, the constant in O depending only on A. 

Selberg also proved: 

THEOREM B. Let 

(2.4) f(s,z) = 2 ^ M - f o r ^ > 1 
n=\ n 

(so thatf(s, z) is defined for a > \); let 

g Mü)l (log 2«)*+3 
»=i n 

be uniformly bounded for \z\ ^ B. Further, put 

(2.5) {as)}*f(s,z) = f : ^ - , a > l . 

Then we have 

(2.6) A,(x) = L a2(«) = = % # 41og JC)«-I + 0{*(log x)*"2}, 

uniformly for \z\ ^ B, x ^ 2. 

3. The function ö>(n, k). First we define this functions when k is a posi
tive integer and later consider for complex k. Consider a factorization of 
n as a product of k factors : 
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(3.1) n = dxd2 - • • dk. 

We define 

(3.2) ar(n,k) = 2 d{, k = 1,2, . . . 
d\d2--'dk=n 

Additionally we define 

1, n = 1 
(3.3) ar(n,0) . . 

[0, otherwise 
In (3.2), d{ occurs as many times as there are (k — 1) fold factorizations of 
n\dx. Hence 

<rr(n,k)= 2 d{z(^-,k- l) 
(3.4) dlln V x ) 

-E'-fr-*-1)-
Let us define ir(n) = nr for all n. Recall that z(n, k) = /0 * /0 * • « • * i0(n), 
to fc factors. Hence 

(3.5) ar{n, k) = ir * iQ * i0 * • • • * /0(«), ((/c — 1) factors /0). 

We have immediately 

(3.6) ar(n, k + 1) = £ * r (4 *), 

Since the generating function for ir(n) is 

2 AM = as _ r), Re(^ _ r) > 1, 
7 1 = 1 " 

we have 

(3<7) g *,(*, k) = a s _ rKk-i(s)9 R e ( j _ , ) > ! , * ( j ) > i. 
«=1 «s 

Using the product formulation of £, we get, after a routine computation, 
that 

(3.8) 

+ (2 V'""2' + " • ' + f 4"/~ 2 ) ' ' = °-
When z is complex, we define or(n, z) by utilizing (3.4) thus: 

(3.9) <7r(/i, z) = 2 </'7(/i/rf, z - 1). 
d\n 

This is equivalent to defining or(n, z) by the generating function 
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(3.10) £; ^ A = Z*-i(sK(s - r). 

4. Identities. Several arithmetical identities involving or{n, k) arise from 
manipulations of the generating function. We state three of these here 
without proof: 

(4.1) 2 Gr{d, k) G{~, k)=^dr T(d, 2) r f 4 , 2k -2 
din \ « / din \u 

E JÀd)Gr(~, k) = Zdr T(d, 2)z(",k-2 
. din \a J d\n \d 

-Udrai» k- 1 
din \u 

(4.3) E ffrU,k)\!f\ = ±j' E z(/,k-l) 

The last identity can also be obtained on utilizing an identity given by 
Buschman [2]. 

5. An extension of an indentity of Ramanujan. Ramanujan gave his 
now-famous identity ([15], equation 15) 

r < n ^ gjjn)ab{n) _ Ç(J)Ç(J - aX(s - bX(s - a - b) 
P } h n* W.s-a-b) 

provided the real parts of s, s — a, s — b, s — a — b, 2s — a — b are all 
> 1. This has been generalized by many authors and in several directions. 
However, a similar identity involving 

y^ Qg(n, k)gb(ny k) 
-'H ns 

n-\ '* 

has not been considered before. Such an identity for any general value of 
k will be very complicated. However, we give below identities for the 
special cases k = 3, 4 and then give three applications. 

THEOREM 5.2. For the real parts of s, s — a, s — b, s — a — b, all > 1, 

Ä aa(n, 3)ab(n9 3) 

= C3(*K2(* - ams - bK(s-a-b) n F(p-°) 
p prime 

where 

F{x) = 1 + x - {2pb + 2pa + Apa+b)x2 

+ (4pa+b + 2pa+2b + 2p2a+b)x3 - p2a+2bx* - p2a+2bx5. 

PROOF. From the definitions, we have 
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S ^ ' ^ - J L a-/~)(i-,)» 7 prime 

and 

£ ab(n, 3)x»-i = ff 
aprirne (1 ~ PbX){\ - A")2 ' 

Following the technique in Subbarao [17], we get 

S aa(/i, 3)<7Ä(/i, 3)*»-i 
n=l 

1 ì 

- n 
P prime 

1 9° t2' i ' (i - P * 0 ( I -W \ 

(5-3) , a i U 2 • 1 • 
1 

J . Ì J L ( i - / > * f X i - 0 2 

+ 11 ar1 i (t - /><**) I / = *_ 

= n / P2"X2 

Jpii'meUl - *>«+**)( 1 - r-V)2(^ - l)2*2 

3/ \ (1 - / ^ ) 0 - OHt - pax) jt = x. 

This, simplified, with p~s replacing x, establishes the result given in the 
theorem. 

THEOREM 5.4. For real parts of ' s, s — a, s — b, s — a — b, all > 1, we 
have 

E g a ( * ' 4 y " , 4 ) = C5(*)C3(* - °K3(s - bK(s -a-b) Ff Ap~') 
n=\ " P prime 

where 

f(x) = 1 + 4x 4- (1 - 9pb - 9pa - 9pa+b)x2 

+ (-3pb + 3/?2* - 3pû + 18/?«+* + 9/?*+2* + 3̂ 2« + 9p2fl+*)JC3 

+ (3p2b + 9pa+b - 3pa+3b + 3p2a - 9p2a+2b - 3p3a+b)x* 

- j - ( — 9pa+2b _ 3nfl+3* _ <) p2a+b _ \%p2a+2b _|_ 3^2a+36 

_ 3^3«+* + 3^3^+20)^5 

+ (9/?2a+2£ _|_ 9p2a+3b _j_ ()p3a+2b _ «3a+3*W6 

4/?3O+3£JÇ7 7?3c+3£-£8 

PROOF. TO obtain the result of the theorem we again use the same 
technique as in the proceding theorem. We here compute 



n , 
p prime L 

ON THE DIVISOR SUM FUNCTION 

TEJE} 
t = pax 

405 

"ci - pbm - o3 

+ 
(J -PH)(\ - 0 3 

2! [dt2 (t - pax) J / = xj 

We omit the details of the computations as they are too long for insertion. 

6. Applications of the identities (5.1) and (5.2). The identity (5.1) was 
utilized by Ramanujan and later by Wilson [22] and others to estimate 
sums such as 2„<^ a2(n) and £„<;* T(n)aa(n). In a like manner, we can 
utilize the identities (5.2) and (5.4) to obtain estimates for 

S *a(n, k) ab(n, k), k = 3, 4. 

Here we consider only the simplest cases, namely a = b = 0. The case 
a > 0, b < 0 is considered later in (7.3). We need the following: 

LEMMA 6.1. Let 

n-l n 

where an = 0(n£)for every positive e. Let 

m = zfc(s)g(s) 
where k is a positive integer and g(s) is regular and bounded in the half plane 
o è tfofao < 0- Then 

I>« g(D 
n^X (k - 1)! 

x(log x)k~l, (x -> oo). 

This follows from a result of Van der Corput [20] or even as a special 
case of Theorem B of Selberg given in (2.4). 

With the help of this lemma and the identities (5.2) and (5.4), we obtain 
by standard arguments the following: 

THEOREM 6.2. 

x \ogsx 

where 

THEOREM 6.3. 

p prime 
1 - 4 - 1 + ^ - + ^ 
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2 TÌ(n) ~ -r£- x log15* 
n^x 1 -> Ï 

where 

l W , 1 
"•-.JLO-TK'-ÉX' + W 

REMARKS 6.4. The results (6.2) and (6.3) may not be new. (6.2) is cer
tainly known. In fact, it was derived earlier by several authors, for ex
ample, Vinogradov [21] in 1938, Van der Corput [20] in 1939, and Tit-
chmarsh [18] in 1942. In this connection it is interesting to recall the 
observation of Titchmarsh that he also calculated £„<;* z\{n) by the circle 
method by forming the appropriate generating function, then replacing it 
by its dominant part on each Farey are and integrating around a circle 
without estimating the error terms. What he got for £^=i zl(n)e~2nô was 
(11A^.2\$)log8(1/5)whereas, from Theorem6.2, it shouldbeiAJl-8 \§) 
log8 (i/o). (Use partial summation to the result of Theorem 6.2.) Thus 
what he had was 255/256th of the correct value. In his words [18] p. 130 
"it seems curious that the results should be so nearly right without being 
right!" 

7. Some asymptotic estimates. For z complex we already defined ar(n, z) 
in (3.9) and (3.10). 

THEOREM 7.1. For x ^ 2, r > 0, we have uniformly for \z\ ^ B, (B 
arbitrary but positive and fini te) 

2 a.r(n, z + 1) = C ( r + 1} x(logx)2-1 + 0{x(log *)«-2}. 

PROOF. We apply Theorem 2.4 of Selberg, setting bn(z) = n~r(r > 0), 
so that the function/(s, z) = E^Li«_s_r is defined for Re s > 1. 

The conditions of Theorem 2.4 are satisfied for r > 0. Utilizing (3.10), 
(2.5) and (2.6), we get the stated result. 

In the next theorem we confine ourself to real values of r (though it 
can be extended to r complex). 

THEOREM 7.2. Let r ^ 0 andk ^ 2. Then 

n^x r 4- 1 {0(x(\og x)k l) if r = 1. 

PROOF. 
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t^x n^x dò—n dô^x 
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d&x d&x/ô 

Ï^WT^T) 
r+1 

r + 1 ^#- + ^ 2 - ^ i(fl 

Xr+1 - r ,_ 1 (g) / „ ^ (8) 

oL + 0(x 
ô&x 

tk-m\ 
Òr J' 

Now, we can see by induction on s, (or as a corollary of theorem 7.3) that 
fors ^ 1, 

Ts(x) = S Ts(n) = 0(x(iog x)^), x ^ 2. 
n^x 

(For another proof see Lemma 12, Cohen [3]). Hence by partial summa
tion we get 

y 7s(») _ Ts([x] + 1) __ y r xx / 1 1 
é ì Ai^i (M + l)r+i é i * w V n'+i (n + iy+i 

= 0(x"i(log x)*-1) + <9(;c-'(log x)*-1) = 0(x-i(log x)5-1). 

Note that the constant implied by the O term may depend on r and s. 
Also 

Z1^L=0(l)ifr> 1 

while if r = 1 we get 

V Ts(§) = Q{ *( log -*)5"1 
= flJ^V^5*V + fX ^QPg 0 5 " 1 

Ä 

= 0(log *)'. 

Hence for k ä 2 and r ^ 1 we have 
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2 ar(n, k) = - iÇL- Ç*-i(r + 1) + 0(jc'+i;c-Klog x)^) 
n^x r 4- 1 

(0(xr) ifr > 1 
+ lO(jc(logJc)*-i) ifr = 1 

*'+1
 c*-i ( r + D + \°^r0°8*>*-*> i f ^ > 1 

A* 4- 1 * lO(x(log x)*-1) if r = 1 ' 

where the constants in the O-terms depend on k (and r if r > 1). 

THEOREM 7.3. Let G(s) be given by 

G(s)= H F(p~°) 
P prime 

where F(p~s) is defined in the statement of theorem (5.2). IfG(s) is analytic 
for Re s > a 4- b 4- 1, where a and b are positive, then 

(7.4) S «ja(/i, 3)ab(n, 3) ~ Cx^ -H-l 

where C - G(a + b 4- l)Ç3(tf 4- è 4- \)Q{a 4- 1)Ç2(6 + 1). 

In particular, the result holds for a = b = 1. The proof of this which 
uses standard contour integration methods is omitted. Note that the 
series 

oo 

2 aa(n, 3)ab(n, 3)/ns 

n-\ 

converges absolutely for Re s > a 4- b 4- 1. The order of the error term 
involved in (7.4) will be considered in a separate paper. 

8. A limiting value. 

THEOREM 8.1 

an(n + b9k+l)\ eb 

aH(n9 k + 1) J 

PROOF. From (8) with t replacing p~r we get 

*,(/>', fc + 1) _ ! . * , >k(k + l)2 . k(k + l)..>(k + a-2) , 
r* ï + kt + -T71-t + (a _ 1}! t 

k(k 4- 1) • - - (k + a - 1) 
+ A! 

From this we get at once 

1 < ^r(P",k+i) 1 
/7rc (1 - /?~r)* 

Hence if « = n^ii* />a, we have 
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(8.2) i < **»> k + l ) < _ - ! < c*W. 
v } nr [JO - P~r)k 

p\n 

This gives 

1+ ! )>•"<' t^UM'^w-
By setting r = n we get 

Noting that lim„_>00 £(«) = 1 and lim^ooO 4- (b/n))n = eb we get the result 

h ^ v on(n + &, k 4- 1) ^ . 
<?* < hm wV /—r ' J < eb. 

n-+oo <jn(n, k 4- 1) 
Hence 

liman(n + bk+l) ^eK 

n-^oo (Tn(n, k 4- 1) 

9. k-ply perfect and k-ply multiperfect numbers. The authors' interest in 
perfect numbers prompted them to extend the same as follows : 

Let us say that an integer n is &-ply multiperfect if 

(9.1) a(n,k) = 0 (mod ri) 

for a given k ^ 2; i.e., <j(«, k) = Xn for some integer A > 1. If X = k, 
the number will simply be called &-ply perfect. The usual perfect numbers 
are thus 2-ply perfect. 

Some examples of k-ply perfect numbers are the following: 

e7(4, 4) = 16; *(10, 4) = 40; (7(14, 6) = 84; 

a(lS9 8) = 120; (7(105, 3) = 315; (7(5487, 29) = 29.5487. 

Proceeding as in Erdös [6] one is able to prove that the density of 
k-ply multiperfect numbers is zero. 

As problems presenting themselves we mention. 
(9.2) Is there any simple formula for k-p\y perfect numbers? 
(9.3) Are there infinitely many k-ply perfect numbers for any integer 

k > 2? 
(9.4) Are there infinitely many A>ply multiperfect numbers? 

10. The unitary analog. We recall that 

af(ri) = J] d{ = the sum of r-th powers of the unitary divisors of«. 
d\d2—n 

(dhd2)=l 

Let n = pa?pa£ . . . p%v where pl9..., pv are distinct primes. The number of 
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unitary divisros of n is z*{n) = 2ù)in) where œ{n) is the number of distinct 
prime divisors of n. Now a*{ri) can be generalized to the k-p\y case by de
fining 

(10.1) <r*(n,k)= 2 d{. 
d\d2---dk=n 

(di,dj)=l,i^j, 
(i,j=l,2,...,k) 

Write a*{n, k) = a*{n, k) and z*{n9 k) = z*(n) = a%{n9 k). Clearly, 

(10.2) zf{n) = k°>™ 

(10.3) (j*(/i, k) = IT (Pfl + * - 0 

These definitions can be extended to the case when k is a complex 
number, say z. Thus 

(10.4) r*(/i) = z"(*> 

(10.5) <j*(/i, z) = n ( r + z - 1). 
pß\\n 

Obviously cr* («, z) is a polynomial in z of degree a>{n). 
Now the sum £„£* zw(w) has been estimated by Delange [4] as 

2 z"(»> = x(log x)2~!F(z) + 0(jc(log x)2~2) 

where x > 0, z is an arbitrary complex number and large, and F is the 
entire function 

f« = wJL('-i)'(1 + 7^T> 
The 0-term is uniform in z for \z\ < B, B any finite number. Using this 
one can obtain an asymptotic estimate for £ w ^ a*{n9 k) but we shall 
not go into details. 

We say that n is unitary perfect if a*{ri) = In. So far only five such in
tegers are known: 6, 60, 90, 87360 and a 24-digit number 218 • 3 • 54 • 
7 - 11 - 13 - 19 • 37 - 79 - 109 - 157 • 313. It is trivial to show that there 
are no odd unitary perfect numbers. Whether the number of these num
bers is finite or infinite is not inown. 

A unitary multiperfect number n is one which, by definition, satisfies 
a*{ri) = kn for some integer k > 2. This is the same as asking if there 
exist a finite number of primes pl9 .. ., pV9 and positive integers aÌ9 . . ., av 

such that 

fi('+*) 
is an integer > 2. In 1974 the authors in [10] raised the problem of the 



ON THE DIVISOR SUM FUNCTION 411 

existence of such numbers. They showed, apart from some theoretical 
results, that if there is such an integer n, it must be very very large, [9] 
and even. 

Recently Hagis [9] continued our work and, in a recent paper, proved 
that if there is such an integer, it must be > 10102 and must have > 44 
distinct odd prime factors. 

We shall not go into the question of Ar-ply unitary perfect numbers. 

1. Some more open questions. Among the open problems that may be 
of interest we mention the following: 

(11.1) to improve the order of the error term in theorem 7.2; and 
(11.2) to obtain estimates for £ ^ ^ ( « , k), at least in some simple 

cases: when k = 3, t — 2 (Formulas (3.4) and (3.6) should come in handy 
for this purpose). For t = k = 2, Ramanujan gave an estimate [15, 
eq. 19]. Theorem 7.3 is a result in this direction. However it is only a 
first attempt, and the true order of the error term is open. 

We thank Professors K. Ramchandra and V.V. Rao for going through 
the manuscript and making a useful suggestion. 
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