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ON CONTINUED FRACTIONS CORRESPONDING TO 
ASYMPTOTIC SERIES 

BURNETT MEYER 

ABSTRACT. Let {/„} be a sequence of complex-valued functions of 
a complex variable, each holomorphic at a point z0 and meromor­
phic in a domain D containing z0. Let {/„} correspond to a formal 
power series or to a formal Laurent series at z0. [3, 148] Let a set 
S <=• D and let z0 be a limit point of S. Conditions are given for the 
functions/« which insure that the corresponding series is the asymp­
totic expansion asz->z 0 , z e 5 , of the limit of a subsequence of 
{/„}. Applications are made to regular C-fractions, to general In­
fractions, and to /-fractions. 

DEFINITION. Let {/„} be a sequence of complex-valued functions of a 
complex variable, each holomorphic at a point z0. Let L = TiT=ock(z — zo)k 

be a formal power series, and let Gm(z) = J^f^c^z — z0)
k. The sequence 

{/„} is said to correspond to L at z0, with order of correspondence yw, 
if there exists a sequence {v„} of positive integers such that vn -• oo and 

/.(*) - <Vx(2) = o((z - z0y«), 
aS Z -> ZQ. 

DEFINITION. Let {/„} be a sequence of complex-valued functions of a 
complex variable, each holomorphic at oo. Let L = Tit=^kz~k be a formal 
Laurent series, and let Gm(z) = T.f^c^. The sequence {/„} is said to 
correspond to L at oo, with order of correspondence yw, if there exists a 
sequence {vn} of negative integers such that vn -* — oo and 

/,(z) - G,n+1(z) = 0(z*) 

as z -* oo. 
A continued fraction with nth approximant fn(z) is said to correspond 

to a formal power series or to a formal Laurent series if {/„} corresponds 
to the series. 

THEOREM 1. Let {fn} be a sequence of functions, holomorphic at z0 and 
meromorphic in a domain D, with z0 G D. Let z0 be a limit point of a set 
S a D. Let {fn} correspond to a formal power series L = ^f=oCk(z — z0)

k 
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at z = z0, with order of correspondence greater than or equal to n 4- 1. 
If there exists a function f defined on S, and positive constants kn{n = 
1, 2, . . . ) such that 

(1) W) - AW ^ kn\f„(z) - /„_x(z)| 
for z G S and n = 1, 2, . . . , then L is the asymptotic expansion off as 

z - • z0, z e S. 

PROOF. Since the order of correspondence is not less than « 4 - 1 , 

fn(z) - /w_i(z) = r„(z - zQY + - - • 

for |z — z0| sufficiently small. Substituting in (1), we obtain 

\f(z) - fn(z)\ ^ kn\Tn(z - z0y + • • • I S kn\Tn\ \z - z0\« + • • • , 
for |z - z0| sufficiently small and z e S. Let Gw(z) = T,k=ock(z - zo)k> 
and let the Taylor series expansion of/w(z) = ££Lo#iw)(z ~" zo)k- Then 

\f(z) - Gn^(z)\ - \cn(z - z0Y\ 

^ \f(z) - Gn(z)\ ^ \f(z) -fn(z)\ + \fn(z) - Gn(z)\ 

^ K\ïn\\z - toi" + • • • + LkLn±Mn)\ \Z ~ ztf>. 

Therefore, 

f(z) - Gn_x(z) = 0((z - z0)
w) as z -> z0, z 6 5, 

for n = 1, 2, . . . , 

and the theorem is proved. [1, 355]. 

Theorem 1 remains true if the right side of (1) is replaced by kn\fn+i(z) — 
fn(z)\ ; in fact, the proof is easier. We have chosen the present form be­
cause it is more easily applied to specific continued fractions. 

There is a somewhat similar theorem for z0 = oo. 

THEOREM 2. Let {fn} be a sequence of functions, holomorphic at oo and 
meromorphic in a domain D with oo e D. Let oo be a limit point of a set 
S c= D. Let {fn} correspond to the formal Laurent series L* = I]£Loc*z~* 
at z = oo with order of correspondence less than or equal to —n. If there 
exist a function f defined on S, and positive constants kn (n = 1, 2, . . . ) 
such that condition (1) holds for z e S and n = 1, 2, . . . , then L* is the 
asymptotic expansion of fas z -• co, z e S. 

The proof is omitted, since it is similar to the proof of Theorem 1. 
Theorems 1 and 2 provide a method of studying a problem about which 

surprisingly little is known. Given a formal power series in z~l (or in z) 
and a continued fraction to which the series corresponds at z = oo 
(z = 0), suppose that the continued fraction converges to a holomorphic 
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function f(z) in a region D with z = oo (z = 0) on its boundary. Is the 
series the asymptotic expansion of f(z) at z = oo (z = 0) with respect to 
Dl Previous results were obtained using the theory of moments. Theorems 
1 and 2 give a different approach to the problem and extend these previous 
results. Also our proofs are somewhat simpler. See [3, 331] for a more 
detailed discussion. 

THEOREM 3. Let {/„} be a sequence of functions, each holomorphic at 
z0 and meromorphic in a domain containing z0. Let 

(2) \fm+n(z) - f.(z)\ ^ c\fn(z) - f^z)\, 

for m, n = 1, 2, . . . , z e S, where c is a positive constant independent of 
m9 n, and z e S. Let a subsequence {fnk(z)} converge to f(z) for z e S. Then 
condition (1) is satisfied. 

PROOF. Let m -* oo in (2) in such a way that/w+w(z) is always an element 
of the subsequence {fnk(z)}. 

In 1971, Jones and Thron, in a paper [2] on truncation errors of con­
tinued fractions, showed that the approximants of a number of different 
kinds of continued fractions satisfy condition (2). Such sequences are 
called simple sequences. If the continued fraction converges, then the 
right side of (2) gives an upper bound to the truncation error. 

We shall give three applications of Theorems 1-3. The notation K™=l{anj 
bn) is used to denote the continued fraction ^ + ^ + g + . . . The even 
part of a continued fraction is said to converge if the sequence of 
approximants {f2n} converges. Convergence of the odd part is similarly 
defined. 

Regular C-fractions. A continued fraction of the form K(anz/\), an ^ 0 
for all n, is called a regular C-fraction. 

By an equivalence transformation [3, 31] any regular C-fraction can 
be put in the form K(z/bn\ with bn ^ 0 for all n. The bn's may be obtained 
recursively by bx = aï1, bn = a~xb~\ for n = 2, 3, . . . . In the following 
theorem, conditions are given in terms of the bn, rather than the an, be­
cause of the greater simplicity. 

THEOREM 4. Let Ex = {z: |arg z\ <; a}, E2 = {z: |arg z\ ^ ß}9 and 

S = {z: |arg z\ ^ 7-}, where a, ß and y are non-negative numbers satisfying 
the following conditions', a + 7* < TT/2, ß < 7u/2, and 2/3 + 7* < %. Let 
K(z/bn), bn # Ofor all n, be a continued fraction with b2n e El9 andb2n-\ e E2 

for n = l, 2, . . . . The even and odd parts of the continued fraction converge 
in S to functions f and g respectively. Then the formal power series to which 
the continued fraction corresponds at the origin is the asymptotic expansion 
off and also of g, as z -• 0, z e S. 
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PROOF. The continued fraction K(z/bn) is equivalent to the continued 
fraction 

1 J_ 1 J_ 
bxz~l + b2 + btf-1 + bA + • -. . 

By the Van Vleck criterion [3, 88], the even and odd parts converge to 
finite values, since b2n e El9 b2n_x e E2 and z e 5. The nth approximant of 
K(z/bn) is equal to the nth approximant of an equivalent regular C-fraction. 
Therefore, K(z/bn) corresponds to a formal power series at the origin, 
with order of correspondence n + 1 [3, 222]. 

It remains to show that the approximants from a simple sequence in S 
To do this we use a special case of Corollary 2.2 [2, 699] 

Let K(ajbn) be a continued fraction with nth approximant fn If arg 
an = 7* for all n and if there is a constant d such that 0 < 6 < % and such 
that for all n ^ 1, 

(3) 0 g arg{£„ exp[i(0 - r)/2]} £ 0, 

then for all positive integers m and « 

\fn+m - / J ^ |/Ä - / ^ l , if 0 < e ^ x/2, and 

£ sec(0 - xß)\fn - /w_x|, if %\2 < e < n. 

For K(z/bn), condition (3) is equivalent to |2arg bn — arg z\ ^ 0. But, 
if z e 5, 0 ^ [2 arg £„ — arg z| ^ 2a: + 7* or 2/3 + 7- according as « is 
even or odd. We may take 0 = max(2a: + 7% 2/3 + f). Thus, condition (2) 
is satisfied. 

A regular C-fraction is called on S-fraction if a„ > 0 for all n. Theorem 
4 applies to S-fractions, but it is possible, using similar methods, to 
obtain this result, with a "larger" set S = {z: |argz| ti %}. Of course, 
one can replace z by 1/z and obtain as asymptotic expansion as z -• 00. 
This form of the theorem is given in [1, 565] with the set S as the positive 
real axis. The method of proof in [1] is different from that given here. 

General T-fractions. A continued fraction of the form K(z/(en + dnz)), 
en 7* 0, dn ¥" 0, is called a general T-fraction. 

THEOREM 5. Let Ex = {z: |arg z\ ^ a}9 E2 = {z: |arg z\ g ß}, and 

5 = {z: |arg z\ ^ 7-}, where a, /3, and y are non-negative numbers satisfying 
the following conditions: a + 7- < 7u/2, 2a + 3y < %, and ß ^ a + 7*. 
G/ve« a general T-fraction with dn e E\ and en e E2for all n, the even and odd 
parts of the T-fraction converge to functions f and g, respectively, which are 
holomorphic in S. The formal power series to which the T-fraction cor­
responds at the origin is the asymptotic expansion off, and also of g, as 
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z - * 0 , z e 5 . The formal Laurent series to which the T-fraction corresponds 
at oo is the asymptotic expansion off and also ofg,asz~* oo, z e S. 

PROOF. The fact that the even and odd parts of the T-fraction converge 
to holomorphic functions in S follows from Theorem 4.64 [3, 143]. By 
Theorem 7.17 [3, 259] the T-fraction corresponds to a formal power 
series at the origin with order of correspondence «4-1 and also to a 
formal Laurent series at oo with order of correspondence — «. 

For the general T-fraction, condition (3) is equivalent to 

|2 arg(ew + dnz) - arg z\ ^ 0. 

We have |arg dnz\ ^ a + f. Since the sum of two complex numbers which 
lie in a convex angular opening also lies in that angular opening, |arg(ew + 
dnz)\ ^ a + r- Thus, 

|2 arg(eM + dnz) - arg z\ g 2a + 3T*. 

We may take 0 = 2a + 3^, and condition (2) is satisfied. 

In 1980 Jones, Thron, and Waadeland [4, 519] proved the above result 
for T-fractions with dn > 0 and en > 0, the set S being {z: |arg z\ g 
a < %}. This proof used integral representations of the approximants. 
Theorems 1-3 can be used to give a simpler proof. 

J-fractions. A continued fraction of the form 

L_ 4 cl 
di + z — d2 + z — dz + z — • • • , 

where the c„'s and dn's are complex numbers, is called a /-fraction. 

THEOREM 6. A J-fraction, with cn real, Im(dw) ^ 0, and\Rc(dn)\ <; M 
for some M > 0, converges to a holomorphic function f in {z: Im(z) > 0}, 
provided \cn\ ^ N for some N > 0 and I m ^ ) > 0. The formal Laurent 
series ££Li akz~k to which such a continued fraction corresponds at z = 00 
is the asymptotic expansion of f as z -» 00, ze S, where S = {z: %\A g 
arg(z - Mi) ^ 3TÜ/4}. 

PROOF. The continued fraction is a positive definite /-fraction; hence, 
it converges to a holomorphic function in {z: Im(z) > 0}. [3, 138]. The 
/-fraction corresponds to a formal Laurent series at z = 00, with order 
of correspondence —2« — 1. [3, 250]. 

It remains to show that the approximants from a simple sequence in S. 
Let St = {z: 0 < arg z g TC/2}, S2 = {z: %\\ ^ arg(z + M) g TZT/2}, 

S3 = {z: %\2 ^ arg z < TC}9 and S4 = {z: %\2 g arg(z - M) g 3^/4}. 
By [2, 704-705], relation (2) holds with c = 1 for all z e Si fl S2

 a n d a l s ° 
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for all z 6 S3 fi S4. Thus, (2) holds with c = 1 for all z e S = (Sx f] S2) (J 
($3 fi S4). But S is the set {z: x/4 ^ arg(z - Mi) g 37zr/4}. 

Previous theorems concerning /-fractions corresponding to asymptotic 
series were proved using integral representations and were for real / -
fractions (i.e., for /-fractions with cn real and dn real). See [3, 342]. 

The author is indebted to Professor Arne Magnus for an improvement 
in Theorem 1. 
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