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SOME DISTORTION THEOREMS FOR A CLASS
OF CONVEX FUNCTIONS

RICHARD FOURNIER

1. Introduction. Let 4 denote the class of analytic functions f in the
unit disc E = {z||z| < 1} with f(0) = f’(0) — 1 = 0. For a function
f(2) = z + X2, apzt in A, Ruscheweyh has defined [4] the §-neighbour-
hood of fas

Nof) = {g@) =z + gz byz*

3 kla—by | < 3}

This paper deals with the following subclasses of 4.

T={fed zjj;(’gz) —1‘< 1, z€E}
T = {fe 4 j,f(g) <1,zeE).

The functions in T(T) are convex (starlike) univalent functions. The
following result was proved in [1].

THEOREM A. Let g€ T. Then Ny(g) < T for § = 1/e. Moreover if for a
Sfunction ge T we have sup,cp|(zg'(2)/g(z)) — 1| = 1, then Ny(g) ¢ T
for any § > 0.

It follows clearly from Theorem A and the compacity of the class T that

ﬁlﬂ—ll:p<l

<1| g(z)

Izl
&€T
and therefore we have T = T.

In this paper we will be mainly concerned with the precise determina-
tion of p. Some new distortion theorems for the classes T and T will also
be obtained.

2. An estimate for p. It is easily seen from the definitions that
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[oe ae _ 2£'(2)
Z2w1(§) 4
feT<f(z) = ze OIT"", wi(z) = Z{ﬁ(g) - 1.
Here w(z), wy(z) are analytic functions in E of modulus bounded by 1.
By differentiation and substitution we find that T < T'is equivalent to the

fact that for any function w(z) with w(0) = 0 and |w(z)| < 1 in E the
differential equation

geTwg(x)=e

(1

@ W) = 2D 4w

admits a solution wy(z) again with w;(0) = 0 and [wy(2)| < 1 in E. Ex-
plicitly the solution of (2) is given by

©) T8 = L[ P ae,

We first show that |wy(z)| < 1 in E. If this was not the case there would
exist, according to Jack’s lemma [2], z; € E such that

1= = max,,—, |w andﬂvl’—(z—l)-:kZl.
le(zl)‘ 1z1=I 1I| l(z)l W1(Z1) =

But then it follows from (2) that

_ zwy(zy) _zwi(z)  wi(zy)
e = G i) = 2 2 e
wi(z) +(k+1)
BT

Since min -, (¢ + (kK + 1))/(¢ + 1)] = (k + 2)/2 we then obtain from
(4) that |w(z,)| = (k + 2)/2 = 3/2 which contradicts the assumption that
[w(z1)| < 1. Therefore [wy(z)] < 1 in E.

Using a similar technique we can obtain a better bound for |w(2)].
Let again |wy(z)| = max, =, Iw1(z)| < 1. According to Jack’s lemma
z;w1(21)/(wi(z1)) = k = 1 and it follows from (2) that

)

wi(z1)

) w(zy) _ ZIW{(ZI) 1 k

= +1=-—" " _ +1.
wi(zy) wi(zy) 1+ wi(zy) 1 + wy(zy)

Taking into account that min; <, Re(1/(1 + &) = 1/(1 + r) we obtain
from (5) that

wi(z;) 1 _ 2 4 |wi(z)|
Re( W 2 ot = T

and therefore
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wi(ze) 1 1+ [wi(z)l]| _ 1 + [wi(z1)l
wz) 2 2+ m@)l| + [wi(z9)l

from which it follows easily that

1 + |wi(zp)l -1+ /5
Iwi(z)| = Wwi(zi)land Iwi(z1)| < — s = .618.

Since |z] is arbitrary it follows that [wi(z)] < (=1 + 4/5)/2 for z in E
and we have proved

THEOREM 2. T = T. In factge T = |(z8'(z)/g(2)) — 1| < (= 1 + 4/ 5)/2,
zeE.

It may also be of some interest to remark that the evaluation of the
integral in (3) using the Schwarz lemma yields the estimates

& g(2)
g””“ 0l

e — |z] — 1 |z| |28'(2) |
< 2l andem_lf| ()IZGE

These estimates are sharp as seen from g(z) = ez — 1 forz < 0.

3. The exact value of p. In this section we prove some distortion theorems
for the classes T'and T and determine the exact value of p. We first need

-~ g(z) >> elzl — 1
LeMMA 3.1. LetgeT. Then for any z€ E, Re(zg’(z) Z e

Proor. It follows from (1) that

z G’Md
g(2) Ioejo ’ ud& | R
= _ u
zg'(2) selo? W au z )o° ¢

where w(0) = 0 and |w(z)| < 1 for z € E. We therefore have
1 _(tw(zr)
R(g§2)>=jR fieer
e 22'(2) ) e(e )dt

Using the estimate Re(e¥) = e valid for [u| < 1 and the Schwarz lemma
we obtain

Re( g(2) > j PW(Z’)" ldt = I e izl g — e*— 1 .
2g'(2) 0 |z|e'*!

This result is sharp and the inequality is strict unless g(z) = (e?z — 1)/
for some a with || = 1. Note that it follows from this lemma that

|28'(@) | . [zle™
(6) e |_ g = zeE.

We next prove


file:///zg/z

126 R. FOURNIER

LeMMA 3.2. Let w(z) be an analytic function with w(0) = 0 and |zw'(2)| <
1 for ze E. Let also r(0 < r < 1)and (0 £ 0 < 2x) be fixed and define
E,,={(r1, 000 <ry =r and 0, + Im(w(rie®)) = 6 + Im(w(re?))}.
Then ri-Re(w(rie®)) < r — Re(w(re®)) if (r, 01) € E, 5.

Proor. First of all we remark that the set E, 4 is not empty; define the
function f as f(z) = ze»®. It is clear from (1) that f belongs to T and is
therefore a starlike univalent function. This means, given r; with 0 <
ry < r, there exists one and only one @; such that arg(f(re®)) =
arg(f(re®)), which gives that (rq, 6;)€ E,, 4. In fact it is clear that E, 5is a
Jordan arc joining the origin and re®® which intersects each circle with
center at the origin and radius smaller than r exactly once.

Put then r*-Re(w(r*e®)) = max,, oycg, s r1-Re(w(rie®)). It follows
from a theorem of Kuhn and Tucker [3] that there exist real numbers A
and g such that

@) r¥-Re(r*e®w'(r*e)) — A Im(r*e?w'(r*e™)) — wr* =0
®) Im(r*e®w'(r*e®)) — A(1 + Re(r*ew'(r*e?))) = 0.

The theorem of Kuhn and Tucker says further that if 4 # O then r* = r.
From (8)we can isolate A and if we substitute the value of A in (7) we obtain
that

) r*— (1 —r*)Re(r*ew'(r*e™)) — [r*e®w'(r*e™)[2
1 + Re(r*e®w'(r*e™))

ur¥ = 0.

Now suppose that y = 0. It then follows from (9) that

1 — r*

1+ r*
5 .

2

r¥e®w' (re®) +

But from the hypothesis on w we have that

1 =r* <r,,g_*_l—r*=1+r*

r*eio"w’(r*eiﬂ') + > 5

at least in the case where zw'(z) == €7z for some real y. In that case it
must then follow that y4 # 0 and therefore r* = r. Since * is uniquely
determined by r* we must also have §* = 6 and the conclusion of Lemma
3.2 follows. The result for the case zw’(z) = €7z follows by continuity.

We then obtain as a result of Lemma 3.2.

COROLLARY 3.1. Let fe T and arg(f(u)) = arg(f(v)) for 0 < |u| < |v| <
1. Then |fOW)I/If@] £ (Ivle™)/(lule'™). This result is sharp as seen for
f2) = zezwithO <u<v <1

PrOOF. The proof is immediate from Lemma 3.2 since
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S|
J@w)

We now proceed to show a lemma similar to Lemma 3.2. This lemma
will have an interesting application to the class T'.

M eRe(w(V))-Re(w(u)) é levl—lul_
|u| ful

LEMMA 3.3. Let w(z) be an analytic function with w(0) = 0 and |zw'(z)| <
1forzeE. Letalsor(0 < r < 1)and 0 (0 = 0 < 2r) be fixed and define

E, 0={(r1, 0,)|0<r; < rand arg<“':’ﬂ1 ew<5’d$)) = arg (I:Mew(f) d&)}.

Then

Ineri— 1) — Re(ln( 5 ;“m' ew® d.s)) < In(er—1)— Re(ln( _[ ;”ﬁemo d$>>
if (ryy 0,) € E, 5.

Proor. Define the function g as g'(z) = e*® and g(0) = 0. This func-
tion belongs to the class T and in particular is a starlike univalent function.
It follows therefore that E, , is a Jordan arc joining the origin and re?®
intersecting each circle with center at the origin and radius smaller than
r exactly once. Put then

In(e” — 1) — Re(ln( _[ :’m w® ds))

riefd
= max [ln(e’1 -1 - Re(ln(j ! 1e“"f’d8>>:|.
(r1,0) EEpyg 0

As in the case of Lemma 3.2 there must exist real numbers A and y
such that

*

(10) S~ Re(®) - AIm(@) — w* =0,

(11 Im(§) — ARe(§) = 0

and if 4 # 0, then r* = r. Here & = (r*e?g'(r*e™))/(g(r*e™"))

Now suppose that ;4 = 0; to substitute 1 = Im(¢)/Re(&) in (10) will
mean that |¢[2 — (r*e™)/(e” — 1)Re{&} = 0, which is equivalent to
Re{l/¢} = (e” — 1)/(r*e™). In view of Lemma 3.1, this is impossible if
zw'(z) == e'1z for some real 7. In that case it must follow that x4 # 0 and
r*¥ = r. Also 6* = 0 and the conclusion of Lemma 3.3 is then shown.
The result for the case w(z) = efrz follows by continuity.

From Lemma 3.3 it is now easy to show (the proof is omitted).

COROLLARY 3.2. Let g € T and arg(g(n)) = arg(g(v)) for 0 < |u| < |v| <
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1. Then |g(v)/g@)| < ("' — 1)/(e"™ — 1). This result is sharp as seen for
g2)=e—-1with0<u<v<l.
We are now ready to show the main result of this paper.

THEOREM 3. Let geT. Then |(zg'(2)/g(2)) — 1| < (1 — (1 — |z])e'*")/
(e'*' — 1), z € E. This result is sharp as seen for g(z) = ez — 1 withz > 0.

PrOOF. It is readily seen from (1) that

g 288" (§) z '
w0 _swo-go )l O%_[EEroa [worodx
8(2) g(2) 8(2) g(2) 8(2)
where w(0) = 0 and |w(z)| < 1if z € E. In the last expression we perform
the change of variable v = g(&) to obtain
2@ (29 we ey
g(2) - 1= g(2)

And since we can integrate on the segment [0, g(z)] (because the function
g is starlike), we have

(12)

22() ‘ - ] _[ (1} w(g‘l(tg(z)))dt' < j:lg—l(tg(z))ldt-

8(2)
It follows from Corollary 3.2 that for ¢ > 0, we have
1 =' g(2) < eld — 1
I |1g(z) | T ele e — 1

i.e., |g7(#g(2))| = In(1 + #(e'¥ — 1)), and the substitution of the last
e~stimate in (12) yields the conclusion of Theorem 3. It also follows that
T cTandp=1/(e — 1).

4. Some distortion theorems for 7. The following inequalities were first
obtained by Singh [7]:
geT=1— e <|g(2) S e - 1
and e7 ' < |g'(2)| £ €, zeE

(13)

(14) feT =z ™ < |f(2)| < |zle™,  ze€E.

In this section we would like to point out some generalizations of these
inequalities.

Let S, designate the subset of A consisting of the starlike univalent
functions in E and let M be defined as

M= {feA|£—z&¢0foranygesoandzeE}.
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Here “*” denotes the Hadamard product of two functions in 4. A4 very
important subset of M is

_ _ 1 z . z
X= (D) = 135 (s #725) | R and x5 1),

Ruscheweyh and Singh have shown [5]
THEOREM B. Let fe M andg € T. Thenf+g € Sy and

(15) max,, .« |f*g(2)| £ 4/ 2 max 4 |zg'(2)|.

Furthermore they conjectured that factor 4/2 in(15)may be lowered to
1.

First we disprove the conjecture. Define the function gy as go(z) =
z(1 + cz)i. It is easy to check that for positive and small enough ¢ the
function g, is analytic in £ and belongs to the class 7. Moreover if |gy(x)| =
max,;—; |g(z)| and |u| = 1 some calculations will show that (uge(w))/
(go(w)) is not a real number. Therefore it follows that there must exist
to € R such that

ugo(w) |, . ’
’ 7. N + lt
| ugo(w) | 8o(v) 0
| go(t) | T+ity |
and this implies that
A — o’ ugo(u) +itogo(w)| 28'(2) + itogo(2)
g}g{‘ IZgO(z)I IugO(u)l < 1+ ito = Ilgii 1+it0 .

Since (zg¢(2) + itogo(2))/(1 + itg) = (1/(1 + ite))(z/(1 — 2)?) + ito(z/(1 — 2)))
* go(2) it follows that the conjecture cannot hold. Next we prove

THEOREM 4. Let f€ M and g € T. Then
(16) lzle™" < |f*g(2)| < |zle™!,  zeE.

ProoF. In view of Ruscheweyh’s Duality Theorem [6] it is enough to
prove Theorem 4 for fe X = M. Let g € T. Since, for any real ¢ and fixed
ze E, (zg'(z) + itg(z))/(1 + it) belongs to the disc of radius |(zg'(z) —
£2(2))/2| and center (zg'(z) + g(2))/2, we obtain

If*2(2)| < |zg'(2) + g(2)| ;— 2zg'(z) — g(2)|

= Ig(z)|< (o) 22| + o ! |>
< 18@1|(1 + 2 - 1]).
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Using then the result of Theorem 3 we obtain, for0 £ r < 1,

¢ max|g(2)],

max | f*g(z)| <
lzI=r |/+@) = e — 1 =

and the right hand side of (16) follows from (13).

To prove the left-hand side of (16), we remark that, for f(z) =
A/ + i) (z/(1 — 2)?) + it (z/(1 = 2))),

2g"(2) )
g'@)

e ¥ - |z]), =zeE

f+5@1 = €@ 57 5 + 1]z 1e@I(1-

an

Here we have used (13) and the definition of 7. Since we know from
Theorem B that f*g is univalent we can integrate (17) to obtain

fre@l 2 [ et - e = lzle

and this complete the proof of Theorem 4.

In view of (16) and (14) it is interesting to remark that, for fe€ M and
ge T it does not follow necessarily that f+g belongs to 7. Ruscheweyh
and Singh [5] have shown that for 4 € T it is true that 4’(z) is subordinated
to e#; this result is clearly equivalent to the fact that for A€ T we have
that (A(z))/z is subordinated to e=.

Choose f(z) = (1/(1 + it)) ((z/(1 — 2)2) + it(z/(1 — z))) in M and g(z) =
ez — 1in T. Then for the function h(z) = f(z)*g(z) we have

1 —e

1 +it
= e*

(18) h(z)
z 1+ it

Choose also & = i. It follows from elementary geometric consideration
that, for any real number ¢ different from 1, cef does not belong to
D, where D = {e?|z € E}. Also, since (1 — e7¢)/& is not a real number
and Re((1 — e=¢)/&) # 1, there must exist a real number #; such that

.1 — et
1 to——x—
(19) +lo

is real and different from 1.

[+ it

Clearly it follows from (18) and (19) that 4(&)/€ & D for our choice of ¢,
i.e., (A(z))/z is not subordinated to e? and f*g does not belong to 7.
Finally we would like to point out the following for the class T

(200 geT=e™ — e < |gu) — gW)|ifu, veE, |u| < |v|;
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geT = |gu) — g(v)| L e — e™ifu, veE, |ul < |v|
and arg(g(w)) = arg(g(v));
(22) geT =g — g0 = |g@w) — gO)|if u, ve E; and
geT = |zle™ + |2g'(2) — g(2)|
< lg@)| S lzle —|zg'(2) - g(2)l,  ze€E.
The estimate (20) can be obtained as an application of a standard tech-
nique and (21) is a consequence of Corollary 3.2. It is also easy to show

from (6) that (21) holds if we assume arg(u) = arg(v) instead gf arg(g(un))
= arg(g(v)). To obtain (22) it is enough to remark that, forge T,

y @'©)
= E P
The integration of (24) will then give (22). The left-hand side of (23) was

proved in [1] and the right-hand side is a consequence of the fact that, for
geT, wehave

@n

(23)

< 1 if & belongs to the range of g.

128'@—8)l=| | e @dg| < [ leorervar=1-1= e, zeE.

As a conclusion we would like to mention that many results from this
paper are also consequences of more general results established by Ru-
scheweyh and Singh [5]. For example they were able to show that, for g €
T, (zg'(2))/(g(z)) is subordinate to (ze?)/(e* — 1), but we were unable to
use that result to establish Theorem 3 directly.
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