A CHARACTERIZATION OF ORIENTED GRASSMANN MANIFOLDS

D. E. BLAIR AND A. J. LEDGER

Introduction. Let $G_{p, q}$ denote the oriented Grassmann manifold of p planes in \mathbf{R}^{p+q}. Our purpose is to give a characterization of $G_{p, q}$ and its non-compact dual $G_{p, q}^{*}$ in terms of a parallel tensor field T satisfying certain algebraic conditions and its behaviour on geodesic spheres. When $q=1$ our result contains that of L. Vanhecke and T. J. Willmore on spaces of constant curvature ([5]. [2]). For $q=2$, a different characterization has been obtained by B. J. Papantoniou using the Hermitian structure which exists for that case [4].

In the course of our work we give (Proposition 3) an algebraic characterization of the tensor T on a vector space $V^{p q}$. Although every Riemannian manifold trivially carries a parallel tensor field satisfying the given conditions, namely $T(X, Y, Z)=g(Y, Z) X$, for $p, q \geqq 2, T$ plays a significant role in the geometry of the Grassmann manifolds, somewhat analogous to the underlying almost complex structure on a Kähler manifold. In [5] Vanhecke and Willmore have also characterized the complex space forms in terms of their Kähler structures and the shape of their geodesic spheres. They have similarly characterized the remaining rank 1 symmetric spaces.

Some Properties of $\mathbf{G}_{p, q^{*}}$ We consider $G_{p, q}$ as the Riemannian symmetric space $S O(p+q) /(S O(p) \times S O(q))$. Then following Kobayashi and Nomizu [3 pp. 271-273], for example, we may identify the tangent space at a point $m \in G_{p, q}$ with the vector space of real $p \times q$ matrices. Moreover the inner product

$$
\begin{equation*}
g(X, X)=\operatorname{tr} X X^{t} \tag{1}
\end{equation*}
$$

at m gives rise to an invariant metric g on $G_{p, q}$ with curvature tensor R at m given by

$$
\begin{equation*}
R(X, Y) Z=X Y^{t} Z+Z Y^{t} X-Z X^{t} Y-Y X^{t} Z \tag{2}
\end{equation*}
$$

Similarly for the non-compact dual $G_{p, q}^{*}$ of $G_{p, q}$ the curvature at a point is given by the negative of this expression. Any other invariant metric
g_{c} on these spaces is obtained by choosing $c>0$ and defining g_{c} at m by $g_{c}=c g$, i.e. each g_{c} is homothetic to g.

The tensor T of type $(1,3)$ at m defined by

$$
\begin{equation*}
T(X, Y, Z)=X Y^{t} Z \tag{3}
\end{equation*}
$$

is invariant by $S O(p) \times S O(q)$ and hence extends to a parallel tensor field on $G_{p, q}$, also denoted by T. As a matter of notation we write

$$
T_{X Y} Z=T(X, Y, Z), T^{X Y} Z=T(Z, X, Y), T_{X}^{X} Y=T(X, Y, X)
$$

and it is easy to check that the linear operators $T_{X X}, T^{X X}$ and T_{X}^{X} are selfadjoint (see property P_{1} below).
T has the following properties at m, and hence on $G_{p, q}$, which are immediate from (1) and (3):
$P_{1}: g(T(X, Y, Z), W)=g(T(Z, W, X), Y)=g(T(Y, X, W), Z)$,
$P_{2}: T(T(X, Y, Z), U, V)=T(X, T(U, Z, Y), V)=T(X, Y, T(Z, U, V))$, $P_{3}: g\left(T^{X X^{r}} X, X\right)=1 / p \operatorname{tr}\left(T^{X X^{r+1}}\right), g\left(T_{X X}^{r} X, X\right)=1 / q \operatorname{tr}\left(T_{X X}^{r+1}\right)$ for all integers $r \geqq 0$,
$P_{4}: \operatorname{tr} T_{X}^{X}=g(X, X)$.
One proves by elementary matrix operations that if V is a unit vector at m then $T(V, V, V)=V$, if and only if, as a matrix V has rank 1 and moreover in this case there exist orthogonal matrices P and Q such that

$$
P V Q=\left(\begin{array}{cccc}
1 & 0 & \cdots & \cdots \tag{4}\\
0 & & & 0 \\
\vdots & \bigcirc & & \\
0 & &
\end{array}\right)
$$

The map $X \rightarrow P X Q$ just corresponds to an orthonormal change of basis. For such a V it follows, either by direct computation or by using the canonical form (4), that the linear map of the tangent space at m

$$
\begin{equation*}
X \rightarrow R(V, X) V \tag{5}
\end{equation*}
$$

has the following (possibly zero) eigenvectors:
(i) $T(V, X, V)$ and $X-T(V, V, X)-T(X, V, V)+T(V, X, V)$ in the zero eigenspace
(ii) $T(V, V, X)-T(V, X, V)$ and $T(X, V, V)-T(V, X, V)$ in the -1 eigenspace.

We now obtain a property of geodesic spheres in Riemannian locally symmetric spaces. For any Riemannian locally symmetric space M of dimension $\geqq 3$ let S_{s} denote the geodesic sphere with centre $m \in M$ and radius s contained in a normal neighborhood U of m. Let γ be a geodesic from m contained in U and let V be a parallel vector field along γ such that for some $c \in \mathbf{R}, R\left(\dot{\gamma}, V_{m}\right) \dot{\gamma}=c V_{m}$. Then let X be the Jacobi field along γ with initial conditions $X_{m}=0,\left(\nabla_{\dot{\gamma}} X\right)_{m}=V_{m}$. Since $R(\dot{\gamma}, \cdot) \dot{\gamma}$ is parallel
along γ we have $R(\dot{\gamma}, V) \dot{\gamma}=c V$ and, since $\nabla_{\dot{\gamma}}^{2} X=R(\dot{\gamma}, X) \dot{\gamma}$, we see that $X=f V$ where

$$
f(s)= \begin{cases}|c|^{-1 / 2} \sin \left(|c|^{1 / 2} s\right) & \text { if } c<0 \\ c^{-1 / 2} \sinh \left(c^{1 / 2} s\right) & \text { if } c>0 \\ s & \text { if } c=0\end{cases}
$$

Since the Riemannian curvature at m is bounded, the eigenvalues c are bounded, say $|c|<k^{2}, k>0$. Thus if we take U to be a geodesic ball of radius $<\pi / k$. then $f \neq 0$ on U except at m. Now let N denote the unit vector field on $U \backslash\{m\}$ of tangent vectors to geodesics from m. We know from [1] that $\nabla_{X} N=\nabla_{N} X$ for the Jacobi field X as above. Hence the Weingarten map A_{N} of the geodesic spheres S_{s} satisfies $A_{N} X=-\nabla_{N} X$. This has two consequences. Firstly,

$$
\begin{align*}
R(N, X) N & =\left[\nabla_{N}, \nabla_{X}\right] N-\nabla_{[N, X]} N \\
& =-\nabla_{N} A X \tag{6}\\
& =A^{2} X-\left(\nabla_{N} A\right) X .
\end{align*}
$$

Since this equation is linear it is satisfied by all vector fields X along γ orthogonal to N. Secondly, we have $X=f V$, so that

$$
\begin{equation*}
A_{N} V=-\frac{f^{\prime}}{f} V \tag{7}
\end{equation*}
$$

Thus we have proved the following consequence of (7).
Proposition 1. Let m be a point in a Riemannian locally symmetric space of dimension $\geqq 3$. then m has a normal neighborhood U such that for any geodesic γ from m, the parallel translate of an eigenspace of the linear map $X \rightarrow R(N, X) N$ at m is contained in an eigenspace of the Weingarten map A_{N} for each geodesic sphere in U about m.

We next apply this result to $G_{p, q}$. Let $m \in G_{p, q}$ and U a normal neighborhood of m as in Proposition 1. Let γ be a geodesic in U from m and X a parallel vector field along γ. Finally, let N be the unit vector field tangent to γ. We then have the identity $X=X_{1}+X_{2}$ where

$$
\begin{aligned}
X_{1} & =X-T_{N N} X-T^{N N} X+2 T_{N}^{N} X, \\
X_{2} & =T_{N N} X+T^{N N} X-2 T_{N}^{N} X .
\end{aligned}
$$

Now suppose that $T(N, N, N)=N$ and that X is orthogonal to N. Then from (i), (ii) following (5), X is the sum of two parallel eigenvector fields X_{1} and X_{2} of $R(N, \cdot) N$ along γ. Hence, as a consequence of Proposition 1, we see that at any point, other than m, on $\gamma A_{N} X=a X_{1}+b X_{2}$ for some $a, b \in \mathbf{R}$. Equivalently

$$
A_{N} X=a X+(a-b)\left(2 T_{N}^{N} X-T_{N N} X-T^{N N} X\right)
$$

Since this property holds at all points of $U \backslash\{m\}$ we have immediately the following result.

Proposition 2. Let $m \in G_{p, q}$ and choose a normal neighborhood U of m as in Proposition 1. Then for any geodesic sphere S_{s} in U with centre m and for any unit normal N to S_{s} such that $T(N, N, N)=N$, the Weingarten map of S_{s} satisfies

$$
\begin{equation*}
A_{N} X=f(N) X+g(N)\left(2 T_{N}^{N} X-T_{N N} X-T^{N N} X\right) \tag{8}
\end{equation*}
$$

for some $f(N), g(N) \in \mathbf{R}$.
We remark that $f(N)$ and $g(N)$ could be determined for $G_{p, q}$ by the methods outlined earlier. However the above general form for $A_{N} X$ will be sufficient for our purposes.

A characterization of $\mathbf{G}_{p, q^{*}}$. We now state our main result.
Theorem. Let M be a complete, simply connected Riemannian manifold of dimension $p q \geqq 3$ with metric g. Let T be a parallel tensor field of type $(1,3)$ on M satisfying P_{1} through P_{4}. Suppose that for each $m \in M$ there exists a normal neighborhood U of m such that for each geodesic sphere S_{s} in U with centre m and each unit normal N to S_{s} with $T(N, N, N)=N$, the Weingarten map satisfies (8). Then M is homothetic to either the Euclidean space $E^{p q}, G_{p, q}$ or $G_{p, q}^{*}$.

Before proving the theorem we first consider the tensor field T and show how it can be described as in (3) at any point.

Proposition 3. Let V be a real vector space of dimension $p q$ with inner product \langle,$\rangle and T$ a tensor of type $(1,3)$ on V satisfying P_{1} through P_{4} with \langle,$\rangle replacing g$. Then V is isomorphic to the vector space of all real $p \times q$ matrices and under the identification $T(X, Y, Z)=X Y^{t} Z$ and $\langle X, X\rangle=\operatorname{tr} X X^{t}$.

The proof of this proposition requires several lemmas. The first lemma is immediate from P_{1}, \ldots, P_{4} and provides a useful duality between $T_{X Y}$ and $T^{X Y}$.

Lemma 1. Define a tensor S on V by $S(X, Y, Z)=T(Z, Y, X)$ and write $S_{X Y}=T^{Y X}, S^{X Y}=T_{Y X}, S_{X}^{X}=T_{X}^{X}$. Then P_{1}, P_{2} and P_{4} are satisfied when T is replaced by S, and P_{3} is satisfied when $T^{X X}$ and $T_{X X}$ are replaced by $S_{X X}$ and $S^{X X}$ respectively. In particular any property of $T_{X X}$ is also satisfied by $T^{X X}$ provided p and q are interchanged.

Lemma 2. For any $X \in V$ and non-negative integer $r, T_{X X}^{r} X=T^{X X^{r}} X$. Moreover if $X \neq 0$ the $T_{X X}, T^{X X}$ and T_{X}^{X} are nonzero self-adjoint endo-
morphisms of V with $T_{X X}$ and $T^{X X}$ positive semi-definite. In particular $T(X, X, X) \neq 0$.

Proof. The first statement follows from P_{2} by induction on r. Also the self-adjoint properties are clear from P_{1}, and P_{4} shows that T_{X}^{X} is nonzero. Now if $T_{X X}=0$, then from P_{2} we have for all $Y \in V$

$$
T_{X}^{X^{2}} Y=T(X, T(X, Y, X), X)=T(T(X, X, Y), X, X)=0
$$

which is impossible since T_{X}^{X} is non-zero and self-adjoint. We now prove the positive semi-definiteness of $T_{X X}$. Let μ_{1}, \ldots, μ, be the distinct eigenvalues of $T_{X X}$ with multiplicity m_{1}, \ldots, m, respectively, and let $X=X_{1}+$ $\cdots+X$, where X_{1}, \ldots, X, are the projections of X onto the corresponding eigenspaces. Then by P_{3}

$$
\sum_{\alpha=1}^{\prime} \mu_{\alpha}^{r}\left(m_{\alpha} \mu_{\alpha}-q\left\langle X_{\alpha}, X_{\alpha}\right\rangle\right)=0
$$

for $r=0,1,2, \ldots$ It follows that for each α, with $m_{\alpha} \neq 0, m_{\alpha} \mu_{\alpha}-$ $q\left\langle X_{\alpha}, X_{\alpha}\right\rangle=0$. Thus each $\mu_{\alpha} \geqq 0$ as required. Lemma 1 gives the result for $T^{X X}$. Finally, by choosing $r=1$ in P_{3}, it is now clear that $T(X, X, X)$ $\neq 0$.

Lemma 3. For any $X \in V$ and $r=0,1,2, \ldots$

$$
T\left(T_{X X}^{r} X, T_{X X}^{r} X, T_{X X}^{r} X\right)=T_{X X}^{3 r+1} X .
$$

Proof. We note that from P_{3}

$$
T\left(Y, Z, T_{X X} U\right)=T\left(Y, T_{X X} Z, U\right)
$$

and

$$
T\left(T_{X X} U, Y, Z\right)=T_{X X} T(U, Y, Z)
$$

The result follows by induction on r.
Lemma 4. Suppose X is a unit vector in V such that $T(X, X, X)=\lambda X$. Then λ is the only non-zero eigenvalue of $T_{X X}$ (resp. $\left.T^{X X}\right)$ and $\lambda=q / m$ (resp. p/n) where m (resp. n) is the multiplicity of λ as an eigenvalue of $T_{X X}\left(\right.$ resp. $\left.T^{X X}\right)$.

Proof. Again we prove this only for $T_{X X}$, the result for $T^{X X}$ following by Lemma 1. Suppose $T_{X X} Y=\mu Y$ where $\|Y\|=1$. Then by P_{2}

$$
\begin{aligned}
\lambda \mu & =\lambda\langle Y, T(X, X, Y)\rangle \\
& =\langle Y, T(X, T(X, X, X), Y)\rangle \\
& =\langle Y, T(X, X, T(X, X, Y))\rangle \\
& =\mu^{2} .
\end{aligned}
$$

Hence either $\mu=0$ or λ. Now $\lambda=q / m$ by virtue of P_{3} with $r=0$.

Let X be a unit vector in V; by virtue of Lemma $2,\left\|T_{X X}^{r} X\right\| \neq 0$ and we set

$$
Y_{r}=\frac{T_{X X}^{r} X}{\left\|T_{X X}^{r} X\right\|}
$$

Lemma 5. The sequence $\left\{Y_{r}\right\}$ converges to a unit vector Y and $T(Y, Y, Y)$ $=\lambda Y$ for some $\lambda \in \mathbf{R}$. Moreover $r k T_{Y Y} \leqq r k T_{X X}$ and $r k T^{Y Y} \leqq r k T^{X X}$.

Proof. First note from P_{2} that $\left\langle T_{X X} Y, Z\right\rangle=\left\langle T_{X X} Z, Y\right\rangle$ and hence, as a consequence of P_{3},

$$
\left\|T_{X X}^{r} X\right\|^{2}=\frac{1}{q} \operatorname{tr}\left(T_{X X}^{2 r+1}\right)
$$

Now with the same notation as in the proof of Lemma 2, let μ_{θ} be the greatest eigenvalue of $T_{X X}$.
Then

$$
\frac{T_{X X}^{r} X_{\theta}}{\left\|T_{X X}^{r} X\right\|}=\mu_{\theta}^{r}\left(\frac{1}{q} \sum_{\alpha=1}^{\dot{S}} m_{\alpha} \mu_{\alpha}^{2 r+1}\right)^{-1 / 2} X_{\theta}=\left(\frac{q}{m_{\theta} \mu_{\theta}}\right)^{1 / 2} X_{\theta}
$$

as $r \rightarrow \infty$. Also as $T_{X X}$ has no negative eigenvalues, we have for any eigenvalue $\mu_{\beta} \neq \mu_{\theta}$

$$
\begin{aligned}
\frac{\left\|T_{X X}^{r} X_{\beta}\right\|}{\left\|T_{X X}^{r} X\right\|} & =\mu_{\beta}^{r}\left(\frac{1}{q} \sum_{\alpha=1}^{r} m_{\alpha} \mu_{\alpha}^{2 r+1}\right)^{-1 / 2}\left\|X_{\beta}\right\| \\
& \leqq \mu_{\beta}^{r}\left(\frac{m_{\theta}}{q} \mu_{\theta}^{2 r+1}\right)^{-1 / 2}\left\|X_{\beta}\right\| \\
& \rightarrow 0
\end{aligned}
$$

as $r \rightarrow \infty$. Thus $Y=\lim _{r \rightarrow \infty} Y_{r}=\left(q /\left(m_{\theta} \mu_{\theta}\right)\right)^{1 / 2} X_{\theta}$. Since each Y_{r} is a unit vector then so is Y.

Next we use Lemma 3 to obtain, after a similar calculation

$$
T\left(Y_{r}, Y_{r}, Y_{r}\right)=\frac{T_{X X}^{3 r+1} X}{\left\|T_{X X}^{r} X\right\|^{3}} \rightarrow \frac{q}{m_{\theta}} Y
$$

and hence $T(Y, Y, Y)=\left(q / m_{\theta}\right) Y$ as required. By Lemma 4, $r k T_{Y Y}=m_{\theta}$ so that $r k T_{Y Y} \leqq r k T_{X X}$. Finally the corresponding result for $T^{X X}$ follows from Lemma 1.

Note that Lemma 5 proves the existence of a unit vector X satisfying $T(X, X, X)=\lambda X$. As an easy consequence of Lemmas 4 and 5 we have the following.

Lemma 6. $k=\max \{\lambda \mid T(X, X, X)=\lambda X,\|X\|=1\}$ exists and is attained; moreover $r k T_{U U}$ is the minimum over all unit vectors in V if and only if $T(U, U, U)=k U$.

Now choose a unit vector U as in Lemma 6 and set $V_{1}=\operatorname{im} T_{U U} ; V_{1}$ is just the k-eigenspace of $T_{U U}$ and $U \in V_{1}$.

Lemma 7. If $X \in V_{1}$ and $Y, Z \in V$, then $T(X, Y, Z) \in V_{1}$.
Proof. $X=T(U, U, W)$ for some $W \in V$. Hence from $P_{2}, T(X, Y, Z)=$ $T(T(U, U, W), Y, Z)=T(U, U, T(W, Y, Z)) \in V_{1}$.

Lemma 8. If $X \in V_{1}$ and $Y \in V_{1}^{\perp}$, then $T(X, X, Y)=0$.
Proof. By Lemma 7, $T(X, X, Y) \in V_{1}$, but for $Z \in V_{1}, P_{1}$ gives $\langle T(X, X, Y), Z\rangle=\langle T(X, X, Z), Y\rangle=0$ and hence $T(X, X, Y)=0$.
Lemma 9. For each unit vector $X \in V_{1}, r k T_{X X}=r k T_{U U}, T_{X X}=k I$ on $V_{1}, T_{X X}=0$ on V_{1}^{\perp} and $\operatorname{dim} V_{1}=q / k$.
Proof. Write $X=T(U, U, W)$. Now $\operatorname{ker} T_{U U} \subset \operatorname{ker} T_{X X}$ for if $T(U, U, Y)=0$, then $T(X, X, Y)=T(X, T(U, U, W), Y)=T(X, W$, $T(U, U, Y))=0$. Thus $r k T_{U U} \geqq r k T_{X X}$, but by Lemma $6 r k T_{U U}$ is the minimum over unit vectors in V_{1} giving the equality. Furthermore by Lemma 8, $V_{1}=\operatorname{im} T_{U U}=\operatorname{im} T_{X X}$. By Lemma 6, $T(X, X, X)=k X$ and so by Lemma 4, $T_{X X}=k I$ on V_{1}. Finally using P_{3} we have $\operatorname{dim} V_{1}=q / k$.

Next define $W_{1}=\operatorname{im} T^{U U}$ with U as in Lemma 6. Then by Lemma 1, Lemma 9 holds for W_{1} with $T_{X X}$ replaced by $T^{X X}$ and q by p.
Now for any $X \in V_{1} \cap W_{1}$ we have $T_{X X}=T^{X X}=k\langle X, X\rangle I$ on $V_{1} \cap W_{1}$. Hence for all $X, Y \in V_{1} \cap W_{1}$

$$
T(X, Y, X)+T(Y, X, X)=2 k\langle X, Y\rangle X
$$

and

$$
T(Y, X, X)=k\langle X, X\rangle Y .
$$

These two equations give $T_{X}^{X} Y$ on $V_{1} \cap W_{1}$ as we now state.
Lemma 10. For all $X, Y \in V_{1} \cap W_{1} T_{X}^{X} Y=2 k\langle X, Y\rangle X-k\langle X, X\rangle Y$.
On the other hand we have the following for $Y \in\left(V_{1} \cap W_{1}\right)^{\perp}$.
Lemma 11. If $X \in V_{1} \cap W_{1}$ and $Y \in\left(V_{1} \cap W_{1}\right)^{\perp}$ then $T_{X}^{X} Y=0$.
Proof. From P_{2} we have $T_{X}^{X^{2}} Y=T_{X X} T^{X X} Y=T^{X X} T_{X X} Y$ and hence $T_{X}^{X^{2}} Y \in V_{1} \cap W_{1}$. Now for $Z \in V_{1} \cap W_{1}$,

$$
\begin{aligned}
\left\langle T_{X}^{X^{2}} Y, Z\right\rangle & =\langle T(X, X, T(Y, X, X)), Z\rangle \\
& =\langle T(X, X, Z), T(Y, X, X)\rangle \\
& =k\langle Z, T(Y, X, X)\rangle \\
& =k\langle Y, T(Z, X, X)\rangle \\
& =k^{2}\langle Y, Z\rangle \\
& =0
\end{aligned}
$$

Thus $T_{X}^{X}{ }^{2} Y=0$, but T_{X}^{X} is self-adjoint, hence $T_{X}^{X} Y=0$.
Lemma 12. $k=1=\operatorname{dim} V_{1} \cap W_{1}$.
Proof. Let $d=\operatorname{dim} V_{1} \cap W_{1}$. Now by Lemmas 10 and 11 , if X is a unit vector in $V_{1} \cap W_{1}$, then T_{X}^{X} has eigenvalues k with multiplicity 1 , $-k$ with multiplicity $d-1$, and 0 . But by P_{4} we have $1=\operatorname{tr} T_{X}^{X}=$ $(2-d) k$. Now since d is a positive integer, $k=1=d$.

Proof of proposition 3. Choose a unit vector e_{11} in V such that $T\left(e_{11}\right.$, $\left.e_{11}, e_{11}\right)=e_{11}$ and define $V_{1}=\operatorname{im} T_{e_{11 e_{11}}}, W_{1}=\operatorname{im} T^{e_{11} e_{11}}$ as before. Since $k=1$ we know from Lemma 9 that $\operatorname{dim} V_{1}=q$ and $\operatorname{dim} W_{1}=p$. Now choose orthonormal bases $\left\{e_{11}, e_{12}, \ldots, e_{1 q}\right\}$ for V_{1} and $\left\{e_{11}, e_{21}, \ldots, e_{p 1}\right\}$ for W_{1}. Then define $e_{i \alpha}=T\left(e_{i 1}, e_{11}, e_{1 \alpha}\right)$ for $i=2, \ldots, p, \alpha=2, \ldots$, q; note that in fact $e_{1 \alpha}$ and $e_{i 1}$ also satisfy this relation. We wish to prove that $\left\{e_{i \alpha}\right\}$ is an orthonormal basis for V. First note that by Lemma 9, $T\left(e_{1 \alpha}, e_{1 \alpha}, e_{1 \beta}\right)=e_{1 \beta}$. On the other hand taking $e_{1 \alpha}$ in the role of e_{11}, as we may do since $e_{1 \alpha} \in V_{1}$ and so $T\left(e_{1 \alpha}, e_{1 \alpha}, e_{1 \alpha}\right)=e_{1 \alpha}$, the dual of Lemma 8 or 9 together with Lemma 11 gives $T\left(e_{i \beta}, e_{i \alpha}, e_{i \alpha}\right)=0$ for $\beta \neq \alpha$. Thus we have

$$
\begin{aligned}
T\left(e_{1 \alpha}, e_{1 \beta}, e_{1 \gamma}\right) & =T\left(e_{1 \alpha}, T\left(e_{1 \beta}, e_{1 \beta}, e_{1 \beta}\right), e_{1 \gamma}\right) \\
& =T\left(T\left(e_{1 \alpha}, e_{1 \beta}, e_{1 \beta}\right), e_{1 \beta}, e_{1 \gamma}\right) \\
& =\delta_{\alpha \beta} T\left(e_{1 \beta}, e_{1 \beta}, e_{1 \gamma}\right) \\
& =\delta_{\alpha \beta} e_{1 \gamma}
\end{aligned}
$$

Similarly $T\left(e_{i 1}, e_{j 1}, e_{k 1}\right)=\delta_{j k} e_{i 1}$. From these results

$$
\begin{aligned}
\left\langle e_{i \alpha}, e_{j \beta}\right\rangle & =\left\langle T\left(e_{i 1}, e_{11}, e_{1 \alpha}\right), T\left(e_{j 1}, e_{11}, e_{1 \beta}\right)\right\rangle \\
& =\left\langle T\left(e_{11}, e_{i 1}, T\left(e_{j 1}, e_{11}, e_{1 \beta}\right)\right), e_{1 \alpha}\right\rangle \\
& =\left\langle T\left(e_{11}, T\left(e_{11}, e_{j 1}, e_{i 1}\right), e_{1 \beta}\right), e_{1 \alpha}\right\rangle \\
& =\delta_{i j}\left\langle T\left(e_{11}, e_{11}, e_{1 \beta}\right), e_{1 \alpha}\right\rangle \\
& =\delta_{i j} \delta_{\alpha \beta} .
\end{aligned}
$$

Thus $\left\{e_{i \alpha}\right\}$ is orthonormal and by dimension a basis for V.
Now for any $X \in V$ write $X=x_{i \alpha} e_{i \alpha}$ where we have used the usual summation convention. Then for $Y=y_{i \alpha} e_{i \alpha}, Z=z_{i \alpha} e_{i \alpha}$ we have

$$
T(X, Y, Z)=x_{i \alpha} y_{j \beta} z_{k \gamma} T\left(e_{i \alpha}, e_{j \beta}, e_{k \gamma}\right)
$$

But we have

$$
\begin{aligned}
T\left(e_{i \alpha}, e_{j \beta}, e_{k r}\right) & =T\left(T\left(e_{i 1}, e_{11}, e_{1 \alpha}\right), T\left(e_{j 1}, e_{11}, e_{1 \beta}\right), T\left(e_{k 1}, e_{11}, e_{1 \gamma}\right)\right) \\
& =T\left(T\left(e_{i 1}, e_{11}, e_{1 \alpha}\right), T\left(e_{11}, e_{k 1}, T\left(e_{j 1}, e_{11}, e_{1 \beta}\right)\right), e_{1 \gamma}\right) \\
& =T\left(T\left(e_{i 1}, e_{11}, e_{1 \alpha}\right), T\left(T\left(e_{11}, e_{k 1}, e_{j 1}\right), e_{11}, e_{1 \beta}\right), e_{1 \gamma}\right) \\
& =\delta_{j k} T\left(T\left(e_{i 1}, e_{11}, e_{1 \alpha}\right), e_{1 \beta}, e_{1 \gamma}\right) \\
& =\delta_{j k} T\left(e_{i 1}, e_{11}, T\left(e_{1 \alpha}, e_{1 \beta}, e_{1 \gamma}\right)\right) \\
& =\delta_{j k} \delta_{\alpha \beta} e_{i r} .
\end{aligned}
$$

Therefore $T(X, Y, Z)=x_{i \alpha} y_{j \alpha} z_{j r} e_{i \gamma}$ Now identifying X with its $p \times q$ matrix of components $\left(x_{i \alpha}\right)$ we have the desired formula $T(X, Y, Z)=$ $X Y^{t} Z$. Clearly $\langle X, X\rangle=\operatorname{tr} X X^{t}$ and the proposition is proved.

Before giving the proof of the theorem we prove one more Lemma.
Lemma 13. Let S be a tensor of type $(1,3)$ on the vector space of all $p \times q$ matrices with inner product \langle,$\rangle as before satisfying the symmetries$ of the curvature tensor including the Bianchi identity. Suppose that $S(N, X) N=0$ for every N of rank 1 and $S(X, Y) T=0$. Then $S=0$.

Proof. First if M and N have rank 1, linearization of $S(N, X) N=0$ with $r k(M+N)=1$ gives $S(N, X) M+S(M, X) N=0$. Thus setting $S(X, Y, Z, W)=\langle S(X, Y) Z, W\rangle$ we have $S(N, X, M, X)+S(M, X$, $N, X)=0$ from which $S(N, X, M, X)=0$. Linearizing this last equation then gives

$$
\begin{equation*}
S(N, X, M, Y)+S(N, Y, M, X)=0 \tag{9}
\end{equation*}
$$

We will now show that $S(X, Y) N=0$ which implies that $S=0$ since any basis vector $e_{i \alpha}$ may be regarded as a rank 1 matrix. Refering to (4) we take N as e_{11}. Suppose that $S(X, Y) N$ is given by the matrix (${ }_{C}^{A}{ }_{D}^{B}$) where A is 1 by 1 and D is $(p-1)$ by $(q-1)$. Then

$$
\begin{aligned}
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) & =S(X, Y)(T(N, N, N)) \\
& =T(S(X, Y) N, N, N)+T(N, S(X, Y) N, N)+T(N, N, S(X, Y) N) \\
& =\left(\begin{array}{ll}
A & 0 \\
C & 0
\end{array}\right)+\left(\begin{array}{ll}
A & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
A & B \\
0 & 0
\end{array}\right)
\end{aligned}
$$

from which we see that $A=0$ and $D=0$. Thus we need only consider the components of $S(X, Y) e_{11}$ where Y is a basis vector in the firsr row or column and we compute here only $S\left(X, Y, e_{11}, e_{1 \alpha}\right)$.

$$
\begin{align*}
S\left(X, Y, e_{11}, e_{1 \alpha}\right) & =S\left(e_{11}, e_{1 \alpha}, X, Y\right) \\
& =-S\left(e_{11}, X, Y, e_{1 \alpha}\right)-S\left(e_{11}, Y, e_{1 \alpha}, X\right) \tag{10}\\
& =2 S\left(e_{11}, X, e_{1 \alpha}, Y\right)
\end{align*}
$$

by (9), but just as $S(X, Y) e_{11}$ has no (1,1) component as a matrix, $S\left(e_{11}\right.$, $X) e_{1 \alpha}$ has no $(1, \alpha)$ component and hence $S\left(X, Y, e_{11}, e_{1 \alpha}\right)$ vanishes for $Y=$ $e_{k \gamma}$ with $k \neq 1, \gamma \neq \alpha$. If Y is $e_{1 \gamma}$ or $e_{k \alpha}$ we may use (10) twice giving $S\left(X, Y, e_{11}, e_{1 \alpha}\right)=2 S\left(e_{11}, X, e_{1 \alpha}, Y\right)=4 S\left(e_{1 \alpha}, e_{11}, Y, X\right)$ and hence $S\left(X, Y, e_{11}, e_{1 \alpha}\right)=0$.

- Proof of the theorem. We first prove the theorem for the case when p and $q \geqq 2$. Suppose N is a unit tangent vector at a point $m \in M$ satisfy-
ing $T(N, N, N)=N$. As a consequence of our work above there exists a vector X at m normal to N such that X and $2 T_{N}^{N} X-T_{N N} X-T^{N N} X$ are linearly independent. Let N also denote the unit tangent field to the geodesic $\gamma=\exp s N$. Then along $\gamma, T(N, N, N)=N$. By extending X to a parallel vector field along γ we see that the functions f and g in (8) are smooth along γ. Next it follows from equation (6) that along $\gamma \backslash\{m\}$, $R(N, X) N$ has the form

$$
R(N, X) N=F(N) X+G(N)\left(2 T_{N}^{N} X-T_{N N} X-T^{N N} X\right)
$$

for any parallel vector field X orthogonal to N along γ. This is easily verified from the matrix representation which applies to all points of γ when parallel fields are used. In fact it can be seen that $F=f^{2}-f^{\prime}$ and $G=2 f g-g^{2}-g^{\prime}$ where the dash denotes differentiation along γ. It follows by continuity that at m for any unit vector N with $T(N, N, N)=$ N and any vector X

$$
\begin{equation*}
R(N, X) N=F(N)(X-g(N, X) N)+G(N)\left(2 T_{N}^{N} X-T_{N N} X-T^{N N} X\right) \tag{11}
\end{equation*}
$$

$F(N)$ and $G(N)$ being the limits as $s \rightarrow 0$.
We now show that for all vectors N at m satisfying $T(N, N, N)=N$, $F(N)=0$ and $G(N)$ is independent of N. Taking N as e_{11} and $X=\left(\begin{array}{cc}0 & 0 \\ 0 & D\end{array}\right)$ where D is $(p-1)$ by $(q-1)$ we have $R(N, X) N=F(N) X$. But T is parallel and so

$$
\begin{aligned}
F(N) X & =R(N, X) N=R(N, X)(T(N, N, N)) \\
& =T(R(N, X) N, N, N)+T(N, R(N, X) N, N)+T(N, N, R(N, X) N) \\
& =F(N)\left(T^{N N} X+T_{N}^{N} X+T_{N N} X\right) \\
& =0
\end{aligned}
$$

Again with N as above and X any other unit vector given by a rank 1 matrix we may write $X=\left(\begin{array}{cc}A & 0 \\ 0 & 0\end{array}\right)$ where $A=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$. Let $Z=\left(\begin{array}{ll}B & 0 \\ 0 & 0\end{array}\right)$ where $B=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$. Then from (11)

$$
\left.\begin{array}{rl}
-G(N)\left(b^{2}+c^{2}\right) & =g(R(N, X) N, X) \\
-G(Z) & =-G(R(N, Z) N, Z) \\
-G\left(b^{2}+c^{2}\right) \\
-G(Z)\left(a^{2}+d^{2}\right) & =g(R(X, Z) X, Z)
\end{array}\right)=-G(X)\left(a^{2}+d^{2}\right) . ~ \$
$$

Since X is a unit vector $a^{2}+b^{2}+c^{2}+d^{2}=1$ and hence these equations imply that $G(X)=G(N)$. Thus G is some constant k on this set of vectors.

Now set $S(X, Y) Z=R(X, Y) Z-k(T(X, Y, Z)+T(Z, Y, X)-$ $T(Z, X, Y)-T(Y, X, Z)$,$) and apply Lemma 13. Then$
$R(X, Y) Z=k(T(X, Y, Z)+T(Z, Y, X)-T(Z, X, Y)-T(Y, X, Z))$.
We can also now compute the Ricci operator giving

$$
\sum R\left(X, e_{i \alpha}\right) e_{i \alpha}=k(p+q-2) X
$$

Thus M is an Einstein manifold and k is a constant on M. In particular we see that M is locally symmetric.

If $k=0$, then M is locally flat. Conversely on any locally flat manifold we can define T by $T(X, Y, Z)=g(Y, Z) X$. Then P_{1} throuugh P_{4} are satisfied and (8) becomes $A_{N} X=-(1 / s) X$. With M complete and simply connected, as in the statement of the theorem, M is globally isometric to Euclidean space $E^{p q}$.

We remark that T may not be unique; for example for any factorization $n=p q$ we can regard E^{n} as the real p by q matrices and define $T(X, Y, Z)$ $=X Y^{t} Z$ so that P_{1} through P_{4} and (8) are satisfied.

Now suppose $k \neq 0$. It only remains to obtain equation (2) for a metric \bar{g} on M homothetic to g. Define $\bar{g}=|k| g$ and $\bar{T}(X, Y, Z)=$ $|k| T(X, Y, Z)$ on M. Then P_{1} through P_{4} are satisfied for \bar{g} and \bar{T}, as is (8) with f and g divided by $|k|^{1 / 2}$ and N replaced by $\bar{N}=|k|^{-1 / 2} N$. Thus the conditions of the theorem still apply and since the curvature tensor is unchanged we have

$$
R(X, Y) Z=\frac{k}{|k|}(\bar{T}(X, Y, Z)+\bar{T}(Z, Y, X)-\bar{T}(Z, X, Y)-\bar{T}(Y, X, Z))
$$

for all vector fields X, Y, Z on M. Now assume $k>0$. We know that M is a Riemannian locally symmetric space and it follows immediately from Proposition 3 and equation (2) that if m_{1} and m_{2} are points in $G_{p, q}$ and M respectively, then there is an isomorphism between their tangent spaces which preserves inner products and curvature tensors at m_{1}, m_{2}. Hence $G_{p, q}$ and M are locally isometric. Again with M complete and simply connected, M is globally isometric to $G_{p, q}$. When $k<0$ we have the corresponding result for the non-compact dual $G_{p, q}^{*}$ and the proof is complete for $p, q \geqq 2$.

When p or q is equal to 1 we have for a unit vector N and any vector X orthogonal to N at a point $m \in M$ that $2 T_{N}^{N} X-T_{N N} X-T^{N N} X=-X$. Thus (8) takes the form $A_{N} X=f(N) X$. Proceeding as before we have that (11) has the form $R(N, X) N=F(N)(X-g(N, X) N)$ where N is a unit vector and X is an arbitrary vector. Taking X as a unit vector we have

$$
F(N)\left(1-g(N, X)^{2}\right)=g(R(N, X) N, X)=F(X)\left(1-g(X, N)^{2}\right.
$$

from which F is constant on unit vectors and hence M has constant curvature. Now $G_{p, 1}$ (resp. $G_{p, 1}^{*}$) has arbitrary positive (resp. negative) constant curvature depending on its chosen metric. Thus we obtain theorems 1 and 2 of [5] as a special case. We remark that again the tensor T is given by $T(X, Y, Z)=g(Y, Z) X$, cf. (3) with $q=1$.

References

1. W. Ambrose, The index theorem in Riemannian geometry, Ann. of Math., 73 (1961), 49-86.
2. B. -Y Chen and L. Vanhecke, Differential geometry of geodesic spheres, J. Reine und Angew, Math., 325 (1981), 28-67.
3. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II, Interscience Publ., New York-London 1969.
4. B.J. Papantoniou, Jacobi fields, geodesic spheres and a fundamental tensor field characterizing the symmetric space $S O(p+2) / S O(p) \times S O(2)$, to appear.
5. L. Vanhecke and T.J. Willmore, Jacobi fields and geodesic spheres, Proc. Royal Soc. Edinburgh, 82A (1979) 233-240.

Department of Mathematics Michigan State University East Lansing, MI 48824 Department of Pure Mathematics, University of Liverpool, Liverpool, L69 3BX, England

