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A CHARACTERIZATION OF ORIENTED GRASSMANN
MANIFOLDS

D. E. BLAIR AND A. J. LEDGER

Introduction. Let G, , denote the oriented Grassmann manifold of p-
planes in R?+e. Our purpose is to give a characterization of G, , and
its non-compact dual G}, , in terms of a parallel tensor field T satisfying
certain algebraic conditions and its behaviour on geodesic spheres. When
g = 1 our result contains that of L. Vanhecke and T. J. Willmore on
spaces of constant curvature ([5]. [2]). For ¢ = 2, a different character-
ization has been obtained by B. J. Papantoniou using the Hermitian
structure which exists for that case [4].

In the course of our work we give (Proposition 3) an algebraic char-
acterization of the tensor T on a vector space V'#. Although every Rie-
mannian manifold trivially carries a parallel tensor field satisfying the
given conditions, namely 7(X, Y, Z) = g(¥, Z2)X, for p, ¢ = 2, T plays
a significant role in the geometry of the Grassmann manifolds, somewhat
analogous to the underlying almost complex structure on a Kéhler mani-
fold. In [5] Vanhecke and Willmore have also characterized the complex
space forms in terms of their Kéhler structures and the shape of their
geodesic spheres. They have similarly characterized the remaining rank
1 symmetric spaces.

Some Properties of G,,. We consider G,, as the Riemannian sym-
metric space SO(p + q)/(SO(p) x SO(q)). Then following Kobayashi
and Nomizu [3 pp. 271-273], for example, we may identify the tangent
space at a point m € G, , with the vector space of real p x g matrices.
Moreover the inner product

0)) g(X, X) = tr XX

at m gives rise to an invariant metric g on G, , with curvature tensor R
at m given by

) R(X, Y)Z = XY'Z + ZY'X — ZX'Y — YX!Z.

Similarly for the non-compact dual G}, of G, , the curvature at a point
is given by the negative of this expression. Any other invariant metric
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g. on these spaces is obtained by choosing ¢ > 0 and defining g, at m by
g. = cg, i.e. each g, is homothetic to g.
The tensor T of type (1, 3) at m defined by

3) T(X, Y, Z) = XY'Z

is invariant by SO(p) x SO(q) and hence extends to a parallel tensor
field on G, ,, also denoted by 7. As a matter of notation we write

TwZ = T(X, Y, Z), TXYZ = T(Z, X, Y), T¥Y = T(X, Y, X).

and it is easy to check that the linear operators Ty, TXX and T are self-
adjoint (see property P; below).

T has the following properties at m, and hence on G, , which are
immediate from (1) and (3):
P: g(T(X, Y, 2), W) = g(T(Z, W, X), Y) = g(T(Y, X, W), Z),
P, T(T(X, Y,2), U, V)=TX,T(U, Z, Y), V)=T(X, Y, T(Z, U, V)),
Py: g(TXX'X, X) = 1/pte(TXX™), g(TixX, X) = l/gtr(T%R) for all

integers r = 0,

Py trT¥ = g(X, X).

One proves by elementary matrix operations that if ¥ is a unit vector
at mthen T (V, V, V) = V, if and only if, as a matrix ¥ has rank 1 and
moreover in this case there exist orthogonal matrices P and Q such that

0
4) PYQ =|(. O
0
The map X — PXQ just corresponds to an orthonormal change of basis.
For such a Vit follows, either by direct computation or by using the can-

onical form (4), that the linear map of the tangent space at m
®) X > RV, X)V

has the following (possibly zero) eigenvectors:

DTV, X,V)and X — T(V,V,X) — T(X, V, V) + T(V, X, V) in the
Zero eigenspace

i) TW, V,X)—T(V, X, V)and T(X, V, V) — T(V, X, V) in the —1
eigenspace.

We now obtain a property of geodesic spheres in Riemannian locally
symmetric spaces. For any Riemannian locally symmetric space M of
dimension =3 let S, denote the geodesic sphere with centre m € M and
radius s contained in a normal neighborhood U of m. Let y be a geodesic
from m contained in U and let ¥ be a parallel vector field along y such that
for some c € R, R(7, V,)) T = cV,,. Then let X be the Jacobi field along 7
with initial conditions X,, = 0, (V;X),, = V,,. Since R(7, -)T is parallel
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along 7 we have R(7, V)7 = cV and, since VX = R(, X)T, we see that
X = fV where

I|C‘|‘1/2 sin(|c|V2s) if ¢ < O
S(s) ={c 12 sinh(cV%s) if ¢ > 0
s ifc=0.

Since the Riemannian curvature at m is bounded, the eigenvalues ¢ are
bounded, say |c|] < k2, k > 0. Thus if we take U to be a geodesic ball of
radius <z/k. then f # 0 on U except at m. Now let N denote the unit
vector field on U\{m} of tangent vectors to geodesics from m. We know
from [1] that VxN = VyX for the Jacobi field X as above. Hence the
Weingarten map Ay of the geodesic spheres S, satisfies AyX = — VyX.
This has two consequences. Firstly,

R(N, X)N = [Vy, VxIN — Vg, 1N
(6) = —VyAX
= A2X — (VyA)X.

Since this equation is linear it is satisfied by all vector fields X along r
orthogonal to N. Secondly, we have X = fV, so that

(7 AV = — fT v,

Thus we have proved the following consequence of (7).

PROPOSITION 1. Let m be a point in a Riemannian locally symmetric space
of dimension =3. then m has a normal neighborhood U such that for any
geodesic y from m, the parallel translate of an eigenspace of the linear map
X — R(N, X)N at m is contained in an eigenspace of the Weingarten map
Ay for each geodesic sphere in U about m.

We next apply this result to G, ,. Let me G, and U a normal neigh-
borhood of m as in Proposition 1. Let y be a geodesic in U from m and X
a parallel vector field along 7. Finally, let NV be the unit vector field tangent
to 7. We then have the-identity X = X; + X, where

Xl = X - TNNX - TNNX + 2T%X,
Xz = TNNX + TNNX - 2T%X

Now suppose that T(N, N, N) = N and that X is orthogonal to N. Then
from (i), (ii) following (5), X is the sum of two parallel eigenvector fields
X7 and X, of R(N, -)N along y. Hence, as a consequence of Proposition 1,
we see that at any point, other than m, on y AyX = aX; + bX, for some
a, b € R. Equivalently
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AyX = aX + (@ — b) QTYX — TyyX — TNNX).

Since this property holds at all points of U\{m} we have immediately the
following result.

PROPOSITION 2. Let m € G, , and choose a normal neighborhood U of m
as in Proposition 1. Then for any geodesic sphere S in U with centre m
and for any unit normal N to S, such that T(N, N, N) = N, the Weingarten
map of S, satisfies

(3 AnX = fIN)X + g(N)QTYX — TyyX — TVNX)
for some f(N), g(N) e R.

We remark that f(N) and g(N) could be determined for G, , by the
methods outlined earlier. However the above general form for 4yX will
be sufficient for our purposes.

A characterization of G, ,, We now state our main result.

THEOREM. Let M be a complete, simply connected Riemannian manifold
of dimension pq = 3 with metric g. Let T be a parallel tensor field of type
(1, 3) on M satisfying P, through P, Suppose that for each m € M there
exists a normal neighborhood U of m such that for each geodesic sphere
S, in U with centre m and each unit normal N to S; with T(N, N, N) = N,
the Weingarten map satisfies (8). Then M is homothetic to either the Eu-
clidean space Em, G, , or G}, .

Before proving the theorem we first consider the tensor field 7 and
show how it can be described as in (3) at any point.

PROPOSITION 3. Let V be a real vector space of dimension pq with inner
product {,) and T a tensor of type (1, 3) on V satisfying P, through P,
with {, ) replacing g. Then V is isomorphic to the vector space of all real
p X q matrices and under the identification T(X, Y, Z) = XY'Z and
X, X) = trXXe

The proof of this proposition requires several lemmas. The first lemma

is immediate from P, ..., Py and provides a useful duality between Ty
and TXY,

LEMMA 1. Define a tensor S on V by S(X, Y, Z) = T(Z, Y, X) and write
Syy = TYX, SXY = Tyy, S¥ = T%. Then Py, P, and P, are satisfied when
T is replaced by S, and P is satisfied when TXX and T xx are replaced by
Sxx and SXX respectively. In particular any property of T xx is also satisfied
by TXX provided p and q are interchanged.

LEMMA 2. For any X € V and non-negative integer r, TjxX = TXX'X.
Moreover if X # 0 the Txx, TXX and T¥ are nonzero self-adjoint endo-
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morphisms of V with Txyx and TXX positive semi-definite. In particular
T(X, X, X) # 0.

PRrOOF. The first statement follows from P, by induction on r. Also the
self-adjoint properties are clear from P;, and P, shows that T is non-
zero. Now if Tyy = O, then from P, we have forall Ye V

T¥Y = T(X, T(X, Y, X), X) = T(T(X, X, ¥), X, X) = 0

which is impossible since T# is non-zero and self-adjoint. We now prove
the positive semi-definiteness of T'yx. Let gy, ..., u, be the distinct eigen-
values of Tyx with multiplicity my, ..., m, respectively, and let X = X; +

- 4+ X, where X3, ..., X, are the projections of X onto the corres-
ponding eigenspaces. Then by P,

r'd
3 ilmaps = 4o X23) = 0

forr =0, 1,2, .... It follows that for each a, with m, # 0, myu, —
q{Xy Xy> = 0. Thus each y, = 0 as required. Lemma 1 gives the result
for TXX, Finally, by choosing r = 1 in P, it is now clear that 7(X, X, X)
# 0.

LeMMA 3. Forany Xe Vandr =0, 1,2, ...
T(TixX, TkxX, TixX) = TEX.
PROOF. We note that from P,

T(Y’ Z7 TXXU) = T(Y, TXXZv U)
and

T(TxxU, Y, Z) = TxxT(U, Y, Z).
The result follows by induction on r.

LEMMA 4. Suppose X is a unit vector in V such that T(X, X, X) = iX.
Then A is the only non-zero eigenvalue of Txx (resp. TXX) and A = q/m
(resp. p/n) where m (resp. n) is the multiplicity of A as an eigenvalue of
Txx (resp. TXX),

PROOF. Again we prove this only for Ty, the result for 7%¥X following
by Lemma 1. Suppose T'xxY = pY where Y| = 1. Then by P,

Au =AY, T(X, X, Y)>
=Y, T(X, T(X, X, X), Y))
=Y, T(X, X, T(X, X, Y)))
= #2'
Hence either ¢ = 0 or 2. Now A = g/m by virtue of P5 with r = 0.
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Let X be a unit vector in ¥; by virtue of Lemma 2, | T¢xX| # 0 and
we set
TixX

Y, = —1xx4
T I Tgx Xl

LEMMA 5. The sequence {Y,} converges to a unit vector Y and T(Y, Y, Y)
= AY for some A € R. Moreover rkTyy < rkTxy andrkTYY < rkTXX,

PRrOOF. First note from P, that (TxxY, Z)> = (TxxZ, Y) and hence,
as a consequence of Pg,

| TxX | = (T35,

Now with the same notation as in the proof of Lemma 2, let y, be the

greatest eigenvalue of Tyy.
Then

T4x X, < 1 a . +1>—1/2 < q >1/2
_oXxxee _ AL r X, = X,
[Tl — Mg & et 0= o) 0

as r —» oo0. Also as Ty has no negative eigenvalues, we have for any
eigenvalue yg #

IThxXal (1 & gur\L2
T = (ke Sma) 10

—-1/2
< (7 ) 1
-0

asr— 0. Thus Y =lim,_., Y, = (q/(mpus))'? X,. Since each Y, is a unit
vector then sois Y.
Next we use Lemma 3 to obtain, after a similar calculation

T3r+1X q
T(Y, Y, Y)=--Xx4& _, 4y

( )= T Xl® ™
and hence T(Y, Y, Y) = (q/my)Y as required. By Lemma 4, rkTyy = m,
so that rkTyy < rkTyy. Finally the corresponding result for TXX follows

from Lemma 1.

Note that Lemma 5 proves the existence of a unit vector X satisfying
T(X, X, X) = AX. As an easy consequence of Lemmas 4 and 5 we have the
following.

LeMMA 6. k = max{A|T(X, X, X) = AX, | X| = 1} exists and is at-
tained; moreover rkTy,; is the minimum over all unit vectors in V if and
only if T(U, U, U) = kU.
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Now choose a unit vector U as in Lemma 6 and set V; = imTyy; V3
is just the k-eigenspace of Ty and U e V. '

LeMMA 7. If Xe Viand Y, Ze V, then T(X, Y, Z)€ V;.

ProOOF. X = T(U, U, W) for some We V. Hence from Py, T(X, Y, Z) =
(T\{U, U W), Y,Z)=T(U,UTW,Y,Z)eV,.

LEMMA 8. If Xe Viand Ye VL, then T(X, X, Y) = 0.

Proor. By Lemma 7, T(X, X, Y)e V;, but for ZeV;, P; gives
(T(X, X, Y), Z) = (T(X, X, Z), Y> = 0 and hence T(X, X, Y) = 0.

LEMMA 9. For each unit vector X€Vy, rkTyy = rkTyy, Txx = kI
on Vi, Txx = 0on Vi and dimV, = q/k.

ProoOr. Write X = T(U, U, W). Now kerTy, < kerTxy for if
T(U, U, Y)=0, then T(X, X, Y) = T(X, T(U, U, W), Y) = T(X, W,
T(U, U, Y))=0. Thus rkTyy = rkTxy, but by Lemma 6 rkTy, is the
minimum over unit vectors in V; giving the equality. Furthermore by
Lemma 8, V', = imTy, = imTxy By Lemma 6, T(X, X, X) = kX and so
by Lemma 4, Ty = kIon V. Finally using P3; we have dimV; = g/k.

Next define W, = im7VV with U as in Lemma 6. Then by Lemma 1,
Lemma 9 holds for W, with Txx replaced by 7XX and ¢q by p.

Now for any Xe V; ) W; we have Tyy = TXX = k(X, X)>I on
Vi Wi. Henceforall X, Ye V, | W;

TX, Y, X) + T(Y, X, X) = 2k{X, Y)X
and
T(Y, X, X) = k{X, X)Y.
These two equations give T Y on V; (1 W, as we now state.
LEmMA 10. For all X, Ye Vi | W T§Y = 2k{X, Y)X — k({X, X)Y.
On the other hand we have the following for Y e (V; 1 Wy)*.
LeMMA 1. If XeV{ (\ Wiand Ye(V, () W' then TEY = 0.

PRrOOF. From P, we have T§'Y = TyxTXXY = TXXTy,Y and hence
T¥YeV, ) Wy NowforZeV, | W,

(TFY, Z) = (T(X, X, T(Y, X, X)), Z)
=<T(X, X, Z), T(Y, X, X))
= k{Z, T(Y, X, X))
= k{Y, T(Z, X, X))
= kXY, Z)
= 0.



580 D. E. BLAIR AND A. J. LEDGER

Thus T§#* Y = 0, but T¥ is self-adjoint, hence T¢Y = 0.
LEmMMA 12. k = 1 = dimV; N Wi

PrOOF. Let d = dim¥; | W,. Now by Lemmas 10 and 11, if X is
a unit vector in ¥; [} W3, then T has eigenvalues £ with multiplicity I,
—k with multiplicity d — 1, and 0. But by P, we have 1 = trT§ =
(2 — d)k. Now since d is a positive integer, k = 1 = d.

PROOF OF PROPOSITION 3. Choose a unit vector e; in ¥ such that T'(ey;,
eq1, €11) = ey and define ¥, = imT,, , Wi = imTen as before. Since
k = 1 we know from Lemma 9 that dim V; = g and dim W; = p. Now
choose orthonormal bases {ey;, ez, . . ., ey,} for V; and {eyy, ez, .. ., ey}
for W,. Then define e;,, = T(e;1, €11, e) fori =2, ...,p,a =2, ...,
g; note that in fact e;, and e;; also satisfy this relation. We wish to prove
that {e,,} is an orthonormal basis for V. First note that by Lemma 9,
T(e14> €14» €15) = €15 On the other hand taking e;, in the role of ey;, as we
may do since e;, € V1 and s0 T(e1,, €14, €14) = €14, the dual of Lemma 8
or 9 together with Lemma 11 gives T(e;4, €4, €;0) = Ofor 8 # a. Thus
we have

T(elw €16 elr) = T(elaa T(elﬂ’ €16 elﬁ), elr)
T(T(elaa elﬁa elﬂ)’ elﬁ’ elr)
dupT (€14, €15, €17)
= 0qp€1r
Similarly T'(e,y, €;;, €,1) = 0;,€;1. From these results
{€ins €jgy = {T(e;1, €11, €10)> T(ej1, €11, €15))
= (T(en, €;1, T(ej1, €11, €1p))s €14
= <T(ell, T(elb €1, ez’l), elﬁ)7 ela)
= 0,;{T(e11, €11, €1p), €10
= 5,','5“,9.
Thus {e,,} is orthonormal and by dimension a basis for V.

Now for any X € V write X = x;,e;, where we have used the usual
summation convention. Then for Y = y,.e;,, Z = z;,e;, we have

T(X, Y’ Z) = xiayfﬂzkrT(eiw eiﬁ’ ekr)'

But we have

T(eiqs €jp, 1) = T(T(e;1, €115 €1a)> T(ej1, €11, €15), T(esy, €11, €1,))
= T(T(eil’ €11, ela)’ T(elb €1, T(efl’ €11, elﬁ))’ elr)
= T(T(e;1, €11, €14)s T(T(en1, €415 €j1), €11, €1p), €17)
= ikT(T(eil’ €11, ela)’ €18 elr)
= 0 T(e;1, €11, T(e1a, €15 €17))
= 5,~k5ape,~r.
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Therefore T(X, Y, Z) = X;4¥;4Zjre;; Now identifying X with its p x ¢
matrix of components (x;,) we have the desired formula T(X, Y, Z) =
XYtZ. Clearly (X, X) = trXX* and the proposition is proved.

Before giving the proof of the theorem we prove one more Lemma.

LEMMA 13. Let S be a tensor of type (1, 3) on the vector space of all
P X q matrices with inner product {,) as before satisfying the symmetries
of the curvature tensor including the Bianchi identity. Suppose that
S(N, X)N = O for every N of rank 1 and S(X, Y)T = 0. Then S = 0.

ProoF. First if M and N have rank 1, linearization of S(N, X)N =0
with rk(M + N) = 1 gives S(N, X)M + S(M, X)N = 0. Thus setting
S(X, Y,Z, W)= {(SX, Y)Z, W) we have SV, X, M, X) + S(M, X,
N, X) = 0 from which S(N, X, M, X) = 0. Linearizing this last equation
then gives

©) S(N, X, M, Y) + S(N, Y, M, X) = 0.

We will now show that S(X, Y)N = 0 which implies that S = 0 since
any basis vector e;, may be regarded as a rank 1 matrix. Refering to (4)
we take N as e;;. Suppose that S(X, Y)N is given by the matrix (&)
where Ais 1 by 1 and Dis(p — 1) by (¢ — 1). Then

<A B

& B) = SCL V) (TW, N, N))

= T(S(X,Y)N,N,N) + T(N, S(X, Y)N,N) + T(N, N, S(X, Y)N)
A0 A0 A B
=(¢ 0)*+( 0+ o)
from which we see that 4 = 0 and D = 0. Thus we need only consider
the components of S(X, Y)e;; where Y is a basis vector in the firsr row or
column and we compute here only S(X, Y, ey, ey,).
S(X, Y, ey, e10) = S(enn, €100 X, Y)
(10) = _S(ella X, %, ela) - S(ell’ Ya €1as X)
= 25(eyy, X, €1as Y)
by (9), but just as S(X, Y)e;; has no (1,1) component as a matrix, S(ey;,
X)e;, has no (1, @) component and hence S(X, Y, 11, e1,) vanishes for ¥ =
ey With k # 1, y # a. If Y is e}, or e, we may use (10) twice giving

S(X, Y, ei1, €1a) = 2S(e11, X, €1 ¥Y) = 4S(e14, €13, ¥, X) and hence
S(X, Y, €11, ela) = 0.

- PROOF OF THE THEOREM. We first prove the theorem for the case when
pand g = 2. Suppose N is a unit tangent vector at a point m € M satisfy-
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ing T(N, N, N) = N. As a consequence of our work above there exists
a vector X at m normal to N such that X and 2T{X — TyyX — TNNX
are linearly independent. Let N also denote the unit tangent field to the
geodesic y = expsN. Then along 7, T(N, N, N) = N. By extending X
to a parallel vector field along y we see that the functions f'and g in (8) are
smooth along 7. Next it follows from equation (6) that along 7\{m},
R(N, X)N has the form

R(N, X)N = F(N)X + G(N)QTYX — TyyX — TN X)

for any parallel vector field X orthogonal to N along 7. This is easily veri-
fied from the matrix representation which applies to all points of
when parallel fields are used. In fact it can be seen that F = f2 — f’ and
G = 2fg — g% — g’ where the dash denotes differentiation along 7.
It follows by continuity that at m for any unit vector N with T(N, N, N) =
N and any vector X

(11) RN, X)N = F(N)(X — g(N, X)N) + G(N)QTNX — TyyX — TVNX)

F(N) and G(N) being the limits as s — 0.

We now show that for all vectors N at m satisfying T(N, N, N) = N,
F(N) = 0 and G(N) is independent of N. Taking N as e;; and X = ({ 9)
where D is (p — 1) by (g — 1) we have R(N, X)N = F(N)X. But T is
parallel and so
F(N)X = R(N, X)N = R(N, X)(T(N, N, N))

= T(R(N,X)N,N,N) + T(N,R(N,X)N,N) + T(N, N, R(N, X)N)
= F(N)(TVNX + T\)VX + TynX)
=0.
Again with N as above and X any other unit vector given by a rank 1
matrix we may write X = () where 4 = (¢ 4). Let Z = (§ 3) where
*B = (0 ). Then from (11)
—G(N) (B2 + ¢®) = g(R(N, X)N, X) = —G(X) (b + c?)
— G(Z) = g(R(N, Z)N, Z) = —G(N)
—G(Z) (@® + d?) = g(R(X, Z)X, Z) = —G(X) (a® + d?).
Since X is a unit vector a2 + b2 + ¢ + d? = 1 and hence these equations
imply that G(X) = G(N). Thus G is some constant k on this set of vectors.

Now set S(X, Y)Z = R(X, Y)Z — k(T(X, Y,Z)+ T(Z, Y, X) —
T(Z, X, Y) — T(Y, X, Z,)) and apply Lemma 13. Then

RX,Y)Z = KT(X,Y,Z) + T(Z,Y,X) — T(Z,X,Y) — T(Y, X, Z)).

We can also now compute the Ricci operator giving



ORIENTED GRASSMANN MANIFOLDS 583

E R(X5 eia)eia = k(p + q— 2)X

Thus M is an Einstein manifold and & is a constant on M. In particular
we see that M is locally symmetric.

If k = 0, then M is locally flat. Conversely on any locally flat manifold
we can define T by T(X, Y, Z) = g(Y, Z)X. Then P, throuugh P, are
satisfied and (8) becomes AyX = —(1/s)X. With M complete and simply
connected, as in the statement of the theorem, M is globally isometric to
Euclidean space E#4.

We remark that 7" may not be unique; for example for any factorization
n = pq we can regard E” as the real p by ¢ matrices and define 7(X, Y, Z)
= XY!Z so that P, through P, and (8) are satisfied.

Now suppose k # 0. It only remains to obtain equation (2) for a
metric g on M homothetic to g. Define g = |k|g and T(X, Y, Z) =
|k|T(X, Y, Z) on M. Then P, through P, are satisfied for g and T, as is
(8) with f and g divided by |k[2 and N replaced by N = [k|~1/2N. Thus
the conditions of the theorem still apply and since the curvature tensor is
unchanged we have

k_
Ikl
for all vector fields X, Y, Z on M. Now assume k > 0. We know that M
is a Riemannian locally symmetric space and it follows immediately from
Proposition 3 and equation (2) that if m,; and m, are points in G, , and
M respectively, then there is an isomorphism between their tangent
spaces which preserves inner products and curvature tensors at my, ms.
Hence G, , and M are locally isometric. Again with M complete and
simply connected, M is globally isometric to G, , When k < 0 we have
the corresponding result for the non-compact dual G}, and the proof is

complete for p, g = 2.

When p or q is equal to 1 we have for a unit vector N and any vector X
orthogonal to N at a point m € M that 2THX — TyyX — TVVX = —X.
Thus (8) takes the form AyX = f(N)X. Proceeding as before we have
that (11) has the form R(N, X)N = F(N) (X — g(N, X)N) where N is a
unit vector and X is an arbitrary vector. Taking X as a unit vector we have

F(N)(1 — g(N, X)) = g(R(N, X)N, X) = F(X) (1 — g(X, N)?

from which F is constant on unit vectors and hence M has constant cur-
vature. Now G, ; (resp. G} ,) has arbitrary positive (resp. negative) con-
stant curvature depending on its chosen metric. Thus we obtain theorems
1 and 2 of [5] as a special case. We remark that again the tensor 7'is given
by T(X, Y, Z) = g(Y, Z)X, cf. (3) withq = 1.

R(X, Y)Z = (T(X, Y, Z)+T(Z, Y, X) - T(Z X, Y) — T(Y, X, Z))
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