A CHARACTERIZATION OF ORIENTED GRASSMANN MANIFOLDS

D. E. BLAIR AND A. J. LEDGER

Introduction. Let $G_{p,q}$ denote the oriented Grassmann manifold of pplanes in \mathbb{R}^{p+q} . Our purpose is to give a characterization of $G_{p,q}$ and its non-compact dual $G_{p,q}^*$ in terms of a parallel tensor field T satisfying certain algebraic conditions and its behaviour on geodesic spheres. When q = 1 our result contains that of L. Vanhecke and T. J. Willmore on spaces of constant curvature ([5]. [2]). For q = 2, a different characterization has been obtained by B. J. Papantoniou using the Hermitian structure which exists for that case [4].

In the course of our work we give (Proposition 3) an algebraic characterization of the tensor T on a vector space V^{pq} . Although every Riemannian manifold trivially carries a parallel tensor field satisfying the given conditions, namely T(X, Y, Z) = g(Y, Z)X, for $p, q \ge 2$, T plays a significant role in the geometry of the Grassmann manifolds, somewhat analogous to the underlying almost complex structure on a Kähler manifold. In [5] Vanhecke and Willmore have also characterized the complex space forms in terms of their Kähler structures and the shape of their geodesic spheres. They have similarly characterized the remaining rank 1 symmetric spaces.

Some Properties of $G_{p,q}$. We consider $G_{p,q}$ as the Riemannian symmetric space $SO(p + q)/(SO(p) \times SO(q))$. Then following Kobayashi and Nomizu [3 pp. 271-273], for example, we may identify the tangent space at a point $m \in G_{p,q}$ with the vector space of real $p \times q$ matrices. Moreover the inner product

(1)
$$g(X, X) = \operatorname{tr} X X^{t}$$

at m gives rise to an invariant metric g on $G_{p,q}$ with curvature tensor R at m given by

(2)
$$R(X, Y)Z = XY^{t}Z + ZY^{t}X - ZX^{t}Y - YX^{t}Z.$$

Similarly for the non-compact dual $G_{p,q}^*$ of $G_{p,q}$ the curvature at a point is given by the negative of this expression. Any other invariant metric

Copyright © 1984 Rocky Mountain Mathematics Consortium

Received by the editors on March 3, 1983.

 g_c on these spaces is obtained by choosing c > 0 and defining g_c at m by $g_c = cg$, i.e. each g_c is homothetic to g.

The tensor T of type (1, 3) at m defined by

$$(3) T(X, Y, Z) = XY^{t}Z$$

is invariant by $SO(p) \times SO(q)$ and hence extends to a parallel tensor field on $G_{p,q}$, also denoted by T. As a matter of notation we write

$$T_{XY}Z = T(X, Y, Z), T^{XY}Z = T(Z, X, Y), T^{X}_XY = T(X, Y, X).$$

and it is easy to check that the linear operators T_{XX} , T^{XX} and T_X^X are selfadjoint (see property P_1 below).

T has the following properties at m, and hence on $G_{p,q}$, which are immediate from (1) and (3):

 $\begin{array}{l} P_1: \ g(T(X, \ Y, \ Z), \ W) = \ g(T(Z, \ W, \ X), \ Y) = \ g(T(Y, \ X, \ W), \ Z), \\ P_2: \ T(T(X, \ Y, \ Z), \ U, \ V) = \ T(X, \ T(U, \ Z, \ Y), \ V) = \ T(X, \ Y, \ T(Z, \ U, \ V)), \\ P_3: \ g(T^{XX^r}X, \ X) = \ 1/p \ \mathrm{tr}(T^{XX^{r+1}}), \ g(T^r_{XX}X, \ X) = \ 1/q \ \mathrm{tr}(T^{r+1}_{XX}) \ \text{for all} \\ \ \mathrm{integers} \ r \ge 0, \end{array}$

 $P_4: \operatorname{tr} T_X^X = g(X, X).$

One proves by elementary matrix operations that if V is a unit vector at m then T(V, V, V) = V, if and only if, as a matrix V has rank 1 and moreover in this case there exist orthogonal matrices P and Q such that

(4)
$$PVQ = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & & \\ 0 & & & \end{pmatrix}$$

The map $X \rightarrow PXQ$ just corresponds to an orthonormal change of basis. For such a V it follows, either by direct computation or by using the canonical form (4), that the linear map of the tangent space at m

$$(5) X \to R(V, X)V$$

has the following (possibly zero) eigenvectors:

(i) T(V, X, V) and X - T(V, V, X) - T(X, V, V) + T(V, X, V) in the zero eigenspace

(ii) T(V, V, X) - T(V, X, V) and T(X, V, V) - T(V, X, V) in the -1 eigenspace.

We now obtain a property of geodesic spheres in Riemannian locally symmetric spaces. For any Riemannian locally symmetric space M of dimension ≥ 3 let S_s denote the geodesic sphere with centre $m \in M$ and radius s contained in a normal neighborhood U of m. Let γ be a geodesic from m contained in U and let V be a parallel vector field along γ such that for some $c \in \mathbf{R}$, $R(\dot{\tau}, V_m) \dot{\tau} = cV_m$. Then let X be the Jacobi field along γ with initial conditions $X_m = 0$, $(\nabla_{\dot{\tau}} X)_m = V_m$. Since $R(\dot{\tau}, \cdot)\dot{\tau}$ is parallel

574

along γ we have $R(\dot{\gamma}, V) \dot{\gamma} = cV$ and, since $\nabla_{\dot{\gamma}}^2 X = R(\dot{\gamma}, X) \dot{\gamma}$, we see that X = fV where

$$f(s) = \begin{cases} |c|^{-1/2} \sin(|c|^{1/2}s) & \text{if } c < 0\\ c^{-1/2} \sinh(c^{1/2}s) & \text{if } c > 0\\ s & \text{if } c = 0. \end{cases}$$

Since the Riemannian curvature at *m* is bounded, the eigenvalues *c* are bounded, say $|c| < k^2$, k > 0. Thus if we take *U* to be a geodesic ball of radius $<\pi/k$. then $f \neq 0$ on *U* except at *m*. Now let *N* denote the unit vector field on $U \setminus \{m\}$ of tangent vectors to geodesics from *m*. We know from [1] that $\nabla_X N = \nabla_N X$ for the Jacobi field *X* as above. Hence the Weingarten map A_N of the geodesic spheres S_s satisfies $A_N X = -\nabla_N X$. This has two consequences. Firstly,

(6)

$$R(N, X)N = [\nabla_N, \nabla_X]N - \nabla_{[N, X]}N$$

$$= -\nabla_N AX$$

$$= A^2 X - (\nabla_N A)X.$$

Since this equation is linear it is satisfied by all vector fields X along γ orthogonal to N. Secondly, we have X = fV, so that

(7)
$$A_N V = -\frac{f'}{f} V.$$

Thus we have proved the following consequence of (7).

PROPOSITION 1. Let m be a point in a Riemannian locally symmetric space of dimension ≥ 3 . then m has a normal neighborhood U such that for any geodesic γ from m, the parallel translate of an eigenspace of the linear map $X \rightarrow R(N, X)N$ at m is contained in an eigenspace of the Weingarten map A_N for each geodesic sphere in U about m.

We next apply this result to $G_{p,q}$. Let $m \in G_{p,q}$ and U a normal neighborhood of m as in Proposition 1. Let γ be a geodesic in U from m and X a parallel vector field along γ . Finally, let N be the unit vector field tangent to γ . We then have the identity $X = X_1 + X_2$ where

$$\begin{split} X_1 &= X - T_{NN}X - T^{NN}X + 2T_N^N X, \\ X_2 &= T_{NN}X + T^{NN}X - 2T_N^N X. \end{split}$$

Now suppose that T(N, N, N) = N and that X is orthogonal to N. Then from (i), (ii) following (5), X is the sum of two parallel eigenvector fields X_1 and X_2 of $R(N, \cdot)N$ along γ . Hence, as a consequence of Proposition 1, we see that at any point, other than m, on $\gamma A_N X = aX_1 + bX_2$ for some $a, b \in \mathbb{R}$. Equivalently

$$A_N X = aX + (a - b) (2T_N^N X - T_{NN} X - T^{NN} X).$$

Since this property holds at all points of $U \setminus \{m\}$ we have immediately the following result.

PROPOSITION 2. Let $m \in G_{p,q}$ and choose a normal neighborhood U of m as in Proposition 1. Then for any geodesic sphere S_s in U with centre m and for any unit normal N to S_s such that T(N, N, N) = N, the Weingarten map of S_s satisfies

(8)
$$A_N X = f(N) X + g(N) (2T_N^N X - T_{NN} X - T^{NN} X)$$

for some f(N), $g(N) \in \mathbf{R}$.

We remark that f(N) and g(N) could be determined for $G_{p,q}$ by the methods outlined earlier. However the above general form for $A_N X$ will be sufficient for our purposes.

A characterization of $\mathbf{G}_{p,q}$. We now state our main result.

THEOREM. Let M be a complete, simply connected Riemannian manifold of dimension $pq \ge 3$ with metric g. Let T be a parallel tensor field of type (1, 3) on M satisfying P_1 through P_4 . Suppose that for each $m \in M$ there exists a normal neighborhood U of m such that for each geodesic sphere S_s in U with centre m and each unit normal N to S_s with T(N, N, N) = N, the Weingarten map satisfies (8). Then M is homothetic to either the Euclidean space E^{pq} , $G_{p,q}$ or $G_{p,q}^{*}$.

Before proving the theorem we first consider the tensor field T and show how it can be described as in (3) at any point.

PROPOSITION 3. Let V be a real vector space of dimension pq with inner product \langle , \rangle and T a tensor of type (1, 3) on V satisfying P_1 through P_4 with \langle , \rangle replacing g. Then V is isomorphic to the vector space of all real $p \times q$ matrices and under the identification $T(X, Y, Z) = XY^tZ$ and $\langle X, X \rangle = \text{tr} XX^t$.

The proof of this proposition requires several lemmas. The first lemma is immediate from P_1, \ldots, P_4 and provides a useful duality between T_{XY} and T^{XY} .

LEMMA 1. Define a tensor S on V by S(X, Y, Z) = T(Z, Y, X) and write $S_{XY} = T^{YX}$, $S^{XY} = T_{YX}$, $S^X_X = T^X_X$. Then P_1 , P_2 and P_4 are satisfied when T is replaced by S, and P_3 is satisfied when T^{XX} and T_{XX} are replaced by S_{XX} and S^{XX} respectively. In particular any property of T_{XX} is also satisfied by T^{XX} provided p and q are interchanged.

LEMMA 2. For any $X \in V$ and non-negative integer r, $T_{XX}^r X = T^{XX'} X$. Moreover if $X \neq 0$ the T_{XX} , T^{XX} and T_X^X are nonzero self-adjoint endomorphisms of V with T_{XX} and T^{XX} positive semi-definite. In particular $T(X, X, X) \neq 0$.

PROOF. The first statement follows from P_2 by induction on r. Also the self-adjoint properties are clear from P_1 , and P_4 shows that T_X^X is non-zero. Now if $T_{XX} = 0$, then from P_2 we have for all $Y \in V$

$$T_X^{X^2}Y = T(X, T(X, Y, X), X) = T(T(X, X, Y), X, X) = 0$$

which is impossible since T_X^X is non-zero and self-adjoint. We now prove the positive semi-definiteness of T_{XX} . Let μ_1, \ldots, μ_r be the distinct eigenvalues of T_{XX} with multiplicity m_1, \ldots, m_r respectively, and let $X = X_1 + \cdots + X_r$ where X_1, \ldots, X_r are the projections of X onto the corresponding eigenspaces. Then by P_3

$$\sum_{\alpha=1}^{\prime} \mu_{\alpha}^{r}(m_{\alpha}\mu_{\alpha} - q\langle X_{\alpha}, X_{\alpha}\rangle) = 0$$

for r = 0, 1, 2, ... It follows that for each α , with $m_{\alpha} \neq 0, m_{\alpha}\mu_{\alpha} - q\langle X_{\alpha}, X_{\alpha} \rangle = 0$. Thus each $\mu_{\alpha} \ge 0$ as required. Lemma 1 gives the result for T^{XX} . Finally, by choosing r = 1 in P_3 , it is now clear that $T(X, X, X) \ne 0$.

LEMMA 3. For any $X \in V$ and r = 0, 1, 2, ...

$$T(T_{XX}^{r}X, T_{XX}^{r}X, T_{XX}^{r}X) = T_{XX}^{3r+1}X.$$

PROOF. We note that from P_3

$$T(Y, Z, T_{XX}U) = T(Y, T_{XX}Z, U)$$

and

$$T(T_{XX}U, Y, Z) = T_{XX}T(U, Y, Z).$$

The result follows by induction on r.

LEMMA 4. Suppose X is a unit vector in V such that $T(X, X, X) = \lambda X$. Then λ is the only non-zero eigenvalue of T_{XX} (resp. T^{XX}) and $\lambda = q/m$ (resp. p/n) where m (resp. n) is the multiplicity of λ as an eigenvalue of T_{XX} (resp. T^{XX}).

PROOF. Again we prove this only for T_{XX} , the result for T^{XX} following by Lemma 1. Suppose $T_{XX}Y = \mu Y$ where ||Y|| = 1. Then by P_2

$$\begin{split} \lambda \mu &= \lambda \langle Y, \, T(X, \, X, \, Y) \rangle \\ &= \langle Y, \, T(X, \, T(X, \, X, \, X), \, Y) \rangle \\ &= \langle Y, \, T(X, \, X, \, T(X, \, X, \, Y)) \rangle \\ &= \mu^2. \end{split}$$

Hence either $\mu = 0$ or λ . Now $\lambda = q/m$ by virtue of P_3 with r = 0.

Let X be a unit vector in V; by virtue of Lemma 2, $||T_{XX}^rX|| \neq 0$ and we set

$$Y_r = \frac{T_{XX}^r X}{\|T_{XX}^r X\|}$$

LEMMA 5. The sequence $\{Y_r\}$ converges to a unit vector Y and T(Y, Y, Y)= λY for some $\lambda \in \mathbf{R}$. Moreover $rkT_{YY} \leq rkT_{XX}$ and $rkT^{YY} \leq rkT^{XX}$.

PROOF. First note from P_2 that $\langle T_{XX}Y, Z \rangle = \langle T_{XX}Z, Y \rangle$ and hence, as a consequence of P_3 ,

$$||T_{XX}^r X||^2 = \frac{1}{q} \operatorname{tr}(T_{XX}^{2r+1}).$$

Now with the same notation as in the proof of Lemma 2, let μ_{θ} be the greatest eigenvalue of T_{XX} . Then

$$\frac{T_{XX}^{\prime}X_{\theta}}{\|T_{XX}^{\prime}X\|} = \mu_{\theta}^{\prime} \left(\frac{1}{q} \sum_{\alpha=1}^{\prime} m_{\alpha} \mu_{\alpha}^{2r+1}\right)^{-1/2} X_{\theta} = \left(\frac{q}{m_{\theta} \mu_{\theta}}\right)^{1/2} X_{\theta}$$

as $r \to \infty$. Also as T_{XX} has no negative eigenvalues, we have for any eigenvalue $\mu_{\beta} \neq \mu_{\theta}$

$$\frac{\|T_{XX}^{r}X_{\beta}\|}{\|T_{XX}^{r}X\|} = \mu_{\beta}^{r} \left(\frac{1}{q} \sum_{\alpha=1}^{r} m_{\alpha} \mu_{\alpha}^{2r+1}\right)^{-1/2} \|X_{\beta}\|$$
$$\leq \mu_{\beta}^{r} \left(\frac{m_{\theta}}{q} \mu_{\theta}^{2r+1}\right)^{-1/2} \|X_{\beta}\|$$
$$\to 0$$

as $r \to \infty$. Thus $Y = \lim_{r \to \infty} Y_r = (q/(m_{\theta}\mu_{\theta}))^{1/2} X_{\theta}$. Since each Y_r is a unit vector then so is Y.

Next we use Lemma 3 to obtain, after a similar calculation

$$T(Y_r, Y_r, Y_r) = \frac{T_{XX}^{3r+1}X}{\|T_{XX}^rX\|^3} \to \frac{q}{m_{\theta}} Y$$

and hence $T(Y, Y, Y) = (q/m_{\theta})Y$ as required. By Lemma 4, $rkT_{YY} = m_{\theta}$ so that $rkT_{YY} \leq rkT_{XX}$. Finally the corresponding result for T^{XX} follows from Lemma 1.

Note that Lemma 5 proves the existence of a unit vector X satisfying $T(X, X, X) = \lambda X$. As an easy consequence of Lemmas 4 and 5 we have the following.

LEMMA 6. $k = \max{\{\lambda | T(X, X, X) = \lambda X, \|X\| = 1\}}$ exists and is attained; moreover rkT_{UU} is the minimum over all unit vectors in V if and only if T(U, U, U) = kU.

578

Now choose a unit vector U as in Lemma 6 and set $V_1 = \text{im}T_{UU}$; V_1 is just the k-eigenspace of T_{UU} and $U \in V_1$.

LEMMA 7. If $X \in V_1$ and $Y, Z \in V$, then $T(X, Y, Z) \in V_1$.

PROOF. X = T(U, U, W) for some $W \in V$. Hence from P_2 , $T(X, Y, Z) = T(T(U, U, W), Y, Z) = T(U, U, T(W, Y, Z)) \in V_1$.

LEMMA 8. If $X \in V_1$ and $Y \in V_1^{\perp}$, then T(X, X, Y) = 0.

PROOF. By Lemma 7, $T(X, X, Y) \in V_1$, but for $Z \in V_1$, P_1 gives $\langle T(X, X, Y), Z \rangle = \langle T(X, X, Z), Y \rangle = 0$ and hence T(X, X, Y) = 0.

LEMMA 9. For each unit vector $X \in V_1$, $rkT_{XX} = rkT_{UU}$, $T_{XX} = kI$ on V_1 , $T_{XX} = 0$ on V_1^{\perp} and $\dim V_1 = q/k$.

PROOF. Write X = T(U, U, W). Now $\ker T_{UU} \subset \ker T_{XX}$ for if T(U, U, Y) = 0, then T(X, X, Y) = T(X, T(U, U, W), Y) = T(X, W, T(U, U, Y)) = 0. Thus $rkT_{UU} \ge rkT_{XX}$, but by Lemma 6 rkT_{UU} is the minimum over unit vectors in V_1 giving the equality. Furthermore by Lemma 8, $V_1 = \operatorname{im} T_{UU} = \operatorname{im} T_{XX}$. By Lemma 6, T(X, X, X) = kX and so by Lemma 4, $T_{XX} = kI$ on V_1 . Finally using P_3 we have $\dim V_1 = q/k$.

Next define $W_1 = imT^{UU}$ with U as in Lemma 6. Then by Lemma 1, Lemma 9 holds for W_1 with T_{XX} replaced by T^{XX} and q by p.

Now for any $X \in V_1 \cap W_1$ we have $T_{XX} = T^{XX} = k \langle X, X \rangle I$ on $V_1 \cap W_1$. Hence for all $X, Y \in V_1 \cap W_1$

$$T(X, Y, X) + T(Y, X, X) = 2k\langle X, Y \rangle X$$

and

$$T(Y, X, X) = k \langle X, X \rangle Y.$$

These two equations give $T_X^X Y$ on $V_1 \cap W_1$ as we now state.

LEMMA 10. For all X, $Y \in V_1 \cap W_1 T_X^X Y = 2k \langle X, Y \rangle X - k \langle X, X \rangle Y$.

On the other hand we have the following for $Y \in (V_1 \cap W_1)^{\perp}$.

LEMMA 11. If $X \in V_1 \cap W_1$ and $Y \in (V_1 \cap W_1)^{\perp}$ then $T_X^X Y = 0$.

PROOF. From P_2 we have $T_X^{X^2}Y = T_{XX}T^{XX}Y = T^{XX}T_{XX}Y$ and hence $T_X^{X^2}Y \in V_1 \cap W_1$. Now for $Z \in V_1 \cap W_1$,

$$\langle T_X^{X^2}Y, Z \rangle = \langle T(X, X, T(Y, X, X)), Z \rangle$$

= $\langle T(X, X, Z), T(Y, X, X) \rangle$
= $k \langle Z, T(Y, X, X) \rangle$
= $k \langle Y, T(Z, X, X) \rangle$
= $k^2 \langle Y, Z \rangle$
= 0.

Thus $T_X^{X^2} Y = 0$, but T_X^X is self-adjoint, hence $T_X^X Y = 0$.

LEMMA 12. $k = 1 = \dim V_1 \cap W_1$.

PROOF. Let $d = \dim V_1 \cap W_1$. Now by Lemmas 10 and 11, if X is a unit vector in $V_1 \cap W_1$, then T_X^X has eigenvalues k with multiplicity 1, -k with multiplicity d - 1, and 0. But by P_4 we have $1 = \operatorname{tr} T_X^X = (2 - d)k$. Now since d is a positive integer, k = 1 = d.

PROOF OF PROPOSITION 3. Choose a unit vector e_{11} in V such that $T(e_{11}, e_{11}, e_{11}) = e_{11}$ and define $V_1 = \operatorname{im} T_{e_{11}e_{11}}$, $W_1 = \operatorname{im} T^{e_{11}e_{11}}$ as before. Since k = 1 we know from Lemma 9 that dim $V_1 = q$ and dim $W_1 = p$. Now choose orthonormal bases $\{e_{11}, e_{12}, \ldots, e_{1q}\}$ for V_1 and $\{e_{11}, e_{21}, \ldots, e_{p1}\}$ for W_1 . Then define $e_{i\alpha} = T(e_{i1}, e_{11}, e_{1\alpha})$ for $i = 2, \ldots, p, \alpha = 2, \ldots, q$; note that in fact $e_{1\alpha}$ and e_{i1} also satisfy this relation. We wish to prove that $\{e_{i\alpha}\}$ is an orthonormal basis for V. First note that by Lemma 9, $T(e_{1\alpha}, e_{1\alpha}, e_{1\beta}) = e_{1\beta}$. On the other hand taking $e_{1\alpha}$ in the role of e_{11} , as we may do since $e_{1\alpha} \in V_1$ and so $T(e_{1\alpha}, e_{1\alpha}, e_{1\alpha}) = e_{1\alpha}$, the dual of Lemma 8 or 9 together with Lemma 11 gives $T(e_{i\beta}, e_{i\alpha}, e_{i\alpha}) = 0$ for $\beta \neq \alpha$. Thus we have

$$T(e_{1\alpha}, e_{1\beta}, e_{1\gamma}) = T(e_{1\alpha}, T(e_{1\beta}, e_{1\beta}, e_{1\beta}), e_{1\gamma})$$

= $T(T(e_{1\alpha}, e_{1\beta}, e_{1\beta}), e_{1\beta}, e_{1\gamma})$
= $\delta_{\alpha\beta}T(e_{1\beta}, e_{1\beta}, e_{1\gamma})$
= $\delta_{\alpha\beta}e_{1\gamma}$

Similarly
$$T(e_{i1}, e_{j1}, e_{k1}) = \delta_{jk}e_{i1}$$
. From these results
 $\langle e_{i\alpha}, e_{j\beta} \rangle = \langle T(e_{i1}, e_{11}, e_{1\alpha}), T(e_{j1}, e_{11}, e_{1\beta}) \rangle$
 $= \langle T(e_{11}, e_{i1}, T(e_{j1}, e_{11}, e_{1\beta})), e_{1\alpha} \rangle$
 $= \langle T(e_{11}, T(e_{11}, e_{j1}, e_{i1}), e_{1\beta}), e_{1\alpha} \rangle$
 $= \delta_{ij} \langle T(e_{11}, e_{11}, e_{1\beta}), e_{1\alpha} \rangle$
 $= \delta_{i} \delta_{\alpha\beta}$

Thus $\{e_{i\alpha}\}$ is orthonormal and by dimension a basis for V.

Now for any $X \in V$ write $X = x_{i\alpha}e_{i\alpha}$ where we have used the usual summation convention. Then for $Y = y_{i\alpha}e_{i\alpha}$, $Z = z_{i\alpha}e_{i\alpha}$ we have

$$T(X, Y, Z) = x_{i\alpha} y_{j\beta} z_{k\gamma} T(e_{i\alpha}, e_{j\beta}, e_{k\gamma}).$$

But we have

$$T(e_{i\alpha}, e_{j\beta}, e_{k\gamma}) = T(T(e_{i1}, e_{11}, e_{1\alpha}), T(e_{j1}, e_{11}, e_{1\beta}), T(e_{k1}, e_{11}, e_{1\gamma}))$$

$$= T(T(e_{i1}, e_{11}, e_{1\alpha}), T(e_{11}, e_{k1}, T(e_{j1}, e_{11}, e_{1\beta})), e_{1\gamma})$$

$$= T(T(e_{i1}, e_{11}, e_{1\alpha}), T(T(e_{11}, e_{k1}, e_{j1}), e_{11}, e_{1\beta}), e_{1\gamma})$$

$$= \delta_{jk}T(T(e_{i1}, e_{11}, e_{1\alpha}), e_{1\beta}, e_{1\gamma})$$

$$= \delta_{jk}T(e_{i1}, e_{11}, T(e_{1\alpha}, e_{1\beta}, e_{1\gamma}))$$

$$= \delta_{jk}\delta_{\alpha\beta}e_{i\gamma}.$$

Therefore $T(X, Y, Z) = x_{i\alpha}y_{j\alpha}z_{j\gamma}e_{i\gamma}$ Now identifying X with its $p \times q$ matrix of components $(x_{i\alpha})$ we have the desired formula $T(X, Y, Z) = XY^tZ$. Clearly $\langle X, X \rangle = \text{tr}XX^t$ and the proposition is proved.

Before giving the proof of the theorem we prove one more Lemma.

LEMMA 13. Let S be a tensor of type (1, 3) on the vector space of all $p \times q$ matrices with inner product \langle , \rangle as before satisfying the symmetries of the curvature tensor including the Bianchi identity. Suppose that S(N, X)N = 0 for every N of rank 1 and S(X, Y)T = 0. Then S = 0.

PROOF. First if M and N have rank 1, linearization of S(N, X)N = 0with rk(M + N) = 1 gives S(N, X)M + S(M, X)N = 0. Thus setting $S(X, Y, Z, W) = \langle S(X, Y)Z, W \rangle$ we have S(N, X, M, X) + S(M, X, N, X) = 0 from which S(N, X, M, X) = 0. Linearizing this last equation then gives

(9)
$$S(N, X, M, Y) + S(N, Y, M, X) = 0.$$

We will now show that S(X, Y)N = 0 which implies that S = 0 since any basis vector $e_{i\alpha}$ may be regarded as a rank 1 matrix. Refering to (4) we take N as e_{11} . Suppose that S(X, Y)N is given by the matrix $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ where A is 1 by 1 and D is (p - 1) by (q - 1). Then

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = S(X, Y) (T(N, N, N))$$

= $T(S(X, Y)N, N, N) + T(N, S(X, Y)N, N) + T(N, N, S(X, Y)N)$
= $\begin{pmatrix} A & 0 \\ C & 0 \end{pmatrix} + \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} A & B \\ 0 & 0 \end{pmatrix}$

from which we see that A = 0 and D = 0. Thus we need only consider the components of $S(X, Y)e_{11}$ where Y is a basis vector in the first row or column and we compute here only $S(X, Y, e_{11}, e_{1\alpha})$.

(10)

$$S(X, Y, e_{11}, e_{1\alpha}) = S(e_{11}, e_{1\alpha}, X, Y)$$

$$= -S(e_{11}, X, Y, e_{1\alpha}) - S(e_{11}, Y, e_{1\alpha}, X)$$

$$= 2S(e_{11}, X, e_{1\alpha}, Y)$$

by (9), but just as $S(X, Y)e_{11}$ has no (1,1) component as a matrix, $S(e_{11}, X)e_{1\alpha}$ has no (1, α) component and hence $S(X, Y, e_{11}, e_{1\alpha})$ vanishes for $Y = e_{k\gamma}$ with $k \neq 1$, $\gamma \neq \alpha$. If Y is $e_{1\gamma}$ or $e_{k\alpha}$ we may use (10) twice giving $S(X, Y, e_{11}, e_{1\alpha}) = 2S(e_{11}, X, e_{1\alpha}, Y) = 4S(e_{1\alpha}, e_{11}, Y, X)$ and hence $S(X, Y, e_{11}, e_{1\alpha}) = 0$.

- PROOF OF THE THEOREM. We first prove the theorem for the case when p and $q \ge 2$. Suppose N is a unit tangent vector at a point $m \in M$ satisfy-

ing T(N, N, N) = N. As a consequence of our work above there exists a vector X at m normal to N such that X and $2T_N^N X - T_{NN} X - T^{NN} X$ are linearly independent. Let N also denote the unit tangent field to the geodesic $\gamma = \exp sN$. Then along γ , T(N, N, N) = N. By extending X to a parallel vector field along γ we see that the functions f and g in (8) are smooth along γ . Next it follows from equation (6) that along $\gamma \setminus \{m\}$, R(N, X)N has the form

$$R(N, X)N = F(N)X + G(N)(2T_N^N X - T_{NN}X - T^{NN}X)$$

for any parallel vector field X orthogonal to N along γ . This is easily verified from the matrix representation which applies to all points of γ when parallel fields are used. In fact it can be seen that $F = f^2 - f'$ and $G = 2fg - g^2 - g'$ where the dash denotes differentiation along γ . It follows by continuity that at *m* for any unit vector *N* with T(N, N, N) = N and any vector X

(11)
$$R(N,X)N = F(N)(X - g(N,X)N) + G(N)(2T_N^N X - T_{NN}X - T^{NN}X)$$

F(N) and G(N) being the limits as $s \to 0$.

We now show that for all vectors N at m satisfying T(N, N, N) = N, F(N) = 0 and G(N) is independent of N. Taking N as e_{11} and $X = \begin{pmatrix} 0 & 0 \\ 0 & D \end{pmatrix}$ where D is (p - 1) by (q - 1) we have R(N, X)N = F(N)X. But T is parallel and so

$$F(N)X = R(N, X)N = R(N, X)(T(N, N, N))$$

= $T(R(N, X)N, N, N) + T(N, R(N, X)N, N) + T(N, N, R(N, X)N)$
= $F(N)(T^{NN}X + T_N^N X + T_{NN}X)$
= 0.

Again with N as above and X any other unit vector given by a rank 1 matrix we may write $X = \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}$ where $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Let $Z = \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix}$ where $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. Then from (11)

$$-G(N) (b^{2} + c^{2}) = g(R(N, X)N, X) = -G(X) (b^{2} + c^{2})$$

- G(Z) = g(R(N, Z)N, Z) = -G(N)
-G(Z) (a^{2} + d^{2}) = g(R(X, Z)X, Z) = -G(X) (a^{2} + d^{2}).

Since X is a unit vector $a^2 + b^2 + c^2 + d^2 = 1$ and hence these equations imply that G(X) = G(N). Thus G is some constant k on this set of vectors.

Now set S(X, Y)Z = R(X, Y)Z - k(T(X, Y, Z) + T(Z, Y, X) - T(Z, X, Y) - T(Y, X, Z,)) and apply Lemma 13. Then

$$R(X, Y)Z = k(T(X, Y, Z) + T(Z, Y, X) - T(Z, X, Y) - T(Y, X, Z)).$$

We can also now compute the Ricci operator giving

$$\sum R(X, e_{i\alpha})e_{i\alpha} = k(p + q - 2)X.$$

Thus M is an Einstein manifold and k is a constant on M. In particular we see that M is locally symmetric.

If k = 0, then *M* is locally flat. Conversely on any locally flat manifold we can define *T* by T(X, Y, Z) = g(Y, Z)X. Then P_1 throuugh P_4 are satisfied and (8) becomes $A_N X = -(1/s)X$. With *M* complete and simply connected, as in the statement of the theorem, *M* is globally isometric to Euclidean space E^{pq} .

We remark that T may not be unique; for example for any factorization n = pq we can regard E^n as the real p by q matrices and define $T(X, Y, Z) = XY^tZ$ so that P_1 through P_4 and (8) are satisfied.

Now suppose $k \neq 0$. It only remains to obtain equation (2) for a metric \bar{g} on M homothetic to g. Define $\bar{g} = |k|g$ and $\bar{T}(X, Y, Z) = |k|T(X, Y, Z)$ on M. Then P_1 through P_4 are satisfied for \bar{g} and \bar{T} , as is (8) with f and g divided by $|k|^{1/2}$ and N replaced by $\bar{N} = |k|^{-1/2}N$. Thus the conditions of the theorem still apply and since the curvature tensor is unchanged we have

$$R(X, Y)Z = \frac{k}{|k|} (\bar{T}(X, Y, Z) + \bar{T}(Z, Y, X) - \bar{T}(Z, X, Y) - \bar{T}(Y, X, Z))$$

for all vector fields X, Y, Z on M. Now assume k > 0. We know that M is a Riemannian locally symmetric space and it follows immediately from Proposition 3 and equation (2) that if m_1 and m_2 are points in $G_{p,q}$ and M respectively, then there is an isomorphism between their tangent spaces which preserves inner products and curvature tensors at m_1 , m_2 . Hence $G_{p,q}$ and M are locally isometric. Again with M complete and simply connected, M is globally isometric to $G_{p,q}$. When k < 0 we have the corresponding result for the non-compact dual $G_{p,q}^*$ and the proof is complete for $p, q \ge 2$.

When p or q is equal to 1 we have for a unit vector N and any vector X orthogonal to N at a point $m \in M$ that $2T_N^N X - T_{NN}X - T^{NN}X = -X$. Thus (8) takes the form $A_N X = f(N)X$. Proceeding as before we have that (11) has the form R(N, X)N = F(N) (X - g(N, X)N) where N is a unit vector and X is an arbitrary vector. Taking X as a unit vector we have

$$F(N)(1 - g(N, X)^2) = g(R(N, X)N, X) = F(X) (1 - g(X, N)^2)$$

from which F is constant on unit vectors and hence M has constant curvature. Now $G_{p,1}$ (resp. $G_{p,1}^*$) has arbitrary positive (resp. negative) constant curvature depending on its chosen metric. Thus we obtain theorems 1 and 2 of [5] as a special case. We remark that again the tensor T is given by T(X, Y, Z) = g(Y, Z)X, cf. (3) with q = 1.

References

1. W. Ambrose, *The index theorem in Riemannian geometry*, Ann. of Math., 73 (1961), 49-86.

2. B. -Y Chen and L. Vanhecke, Differential geometry of geodesic spheres, J. Reine und Angew, Math., 325 (1981), 28-67.

3. S. Kobayashi and K. Nomizu, *Foundations of Differential Geometry*, Vol. II, Interscience Publ., New York-London 1969.

4. B.J. Papantoniou, Jacobi fields, geodesic spheres and a fundamental tensor field characterizing the symmetric space $SO(p + 2)/SO(p) \times SO(2)$, to appear.

5. L. Vanhecke and T.J. Willmore, *Jacobi fields and geodesic spheres*, Proc. Royal Soc. Edinburgh, **82A** (1979) 233–240.

DEPARTMENT OF MATHEMATICS MICHIGAN STATE UNIVERSITY EAST LANSING, MI 48824 DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF LIVERPOOL, LIVERPOOL, L69 3BX, ENGLAND