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THE PEDERSEN IDEAL AND THE REPRESENTATION 
OF C*-ALGEBRAS 

C. W. BAKER 

ABSTRACT. Let A be a C*-algebra, Z the center of A, and K the 
Pedersen ideal of A. It is proved that if ZA is dense in A, then K is 
equal to (K f| Z)A. It is known from the Dauns-Hofmann repre
sentation theory that given a C*-algebra A, there exists a C*-bundle 
such that A is isometrically *-isomorphic to the ring of sections 
which vanish at infinity. This, together with the above characteriza
tion of the Pedersen ideal, is used to prove that if ZA is dense in A, 
then K is isometrically *-isomorphic to the ring of sections with 
compact support. Under the same assumption it is observed that 
M(A), the multiplier algebra of A, is isometrically *-isomorphic to 
the ring of bounded sections and that M(K), the multiplier algebra 
of Ä', is *-isomorphic to the ring of all sections. 

1. Introduction. Let A be a C*-algebra. If A is commutative, then 
A = QoOO, the continuous, complex-valued functions which vanish 
at infinity on a locally compact, Hausdorff space X. The algebra A contains 
the ideal CK(X), the functions with compact support. The multiplier 
algebra of A, M(A), is equal to Cb(X), the bounded, continuous functions 
on X and the multiplier algebra of C^X) is equal to C(X), the space of 
all continuous functions on X. The purpose of this note is to develop a 
non-commutative analogue of these relationships in terms of sections in 
a C*-bundle. This will be done by use of the Pedersen ideal. 

In order to develop an integration theory for arbitrary C*-algebras, 
G.K. Pedersen introduced in [11] an ideal which is generally accepted 
as the non-commutative analogue of CK(X). This ideal will be referred to 
as the Pedersen ideal. Extensive studies of the Pedersen ideal and its 
multiplier algebra have been made by Lazar and Taylor [8], [9], Pedersen 
and Petersen [13], Akemann, Pedersen, and Tomiyama [1]. 

This paper formed part of the author's dissertation at the University 
of Kentucky. I would like to take this opportunity to express my very 
deep appreciation to Professor John E. Mack for many helpful suggestions 
and encouragement concerning this work. 

The notation in this note is approximately that of [3]. The letter A will 
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denote a C*-algebra. The algebra A will not necessarily have an identity. 
The symbol Ä will signify the algebra A with an identity adjoined. If B 
is any C*-algebra contained in A, the Pedersen ideal of B will be denoted 
by K(B). When the algebra is understood, we will write K in place of 
K(B). The center of A will be given by Z. If B is any subset of A, the 
positive elements of B will be signified by B+. If B and C are subsets of A, 
by BC we will mean the set of all products be where b is an element of 
B and c is an element of C If B is a subalgebra of A, the multiplier algebra 
(double centralizer) of B will be given by M(B). For any unexplained nota
tion concerning bundless see [4], [5], or [10]. 

2. The Pedersen ideal of a C*-algebra. It will be proved that if ZA is 
dense in A, then K = (K [} Z)A. 

The Pedersen ideal of a C*-algebra A is the minimal dense, order re
lated, ideal in A. This definition is implicit in the statement of Theorem 
1.3 in [11]. It has since been shown [7] that the Pedersen ideal is the mini
mal dense ideal in A. In [12] Pedersen gives the following, often more 
useful, characterization of the ideal. Let the sets K\{A) and K\(A) be 
given by K\(A) = {aeA+: there is an element b in A+ such that ab = à] 
and K\(A) = {aeA+: there are elements aj in K\{A) (j = 1,2,. . . , n) 
with a ^ ZIfly}- Then K(A), the Pedersen ideal of A, is the linear span of 
K+(A). 

It is clear from this characterization that if A has an identity, then 
K(A) = A. 

If A is commutative, K(A) is isometrically *-isomorphic to Cj^X) where 
X is the space of maximal, modular ideals of A (see [11]). 

PROPOSITION 2.1. K(Z)A is an ideal 

PROOF. It suffices to show that K(Z)A is closed under addition. There is 
a locally compact, Hausdorff space X such that K(Z) is isometrically 
•-isomorphic to CK(X). Denote the mapping from K(Z) onto Cj&X) by 
k -• k. Let &!, k2 be in K(Z) and al5 a2in A. Then there exists A: in C^Jf) 
such that £ = 1 on the union of the supports of ki and k2. So k^a^ + A:2a2 

= k(kiai + A:2a2) and fc^ + k2a2 e K(Z)A. 

PROPOSITION 2.2. If ZA is dense in A, then K(Z)A is dense in A. 

PROOF. Let zeZ and a e A. Since K(Z) is dense in Z, there is a sequence 
[kj] in #(Z) such that ||jky - z\\ - 0. Then \\kfi - za\\ g ||Jky - z|| • IMI 
-» 0. So K(Z)A is dense in Z 4̂ and thus is dense in A. 

COROLLARY 2.3. If ZA is dense in A, then K(A) is contained in K(Z)A. 

PROOF. We have shown that K(Z)A is a dense ideal in A and K(A) is the 
minimal such ideal. 
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PROPOSITION 2.4. If A and B are C*-algebras and<j>: A -^ Bisa *-homo-
morphism from A into B, then <f>(K(A)) is contained in K{B). 

PROOF. Since ^ is a *-homomorphism, it preserves positive elements. 
Let a G K\(Ä). Then there exists b in A+ such that ab = a. Thus <f>(a)(f>(b) = 
<j>(ab) = <f>(a) and hence <j>(KX(A)) is contained in K\{B). K follows that 
<HK(A)) is contained in K(B). 

PROPOSITION 2.5. The set K(Z)A is contained in K(A). 

PROOF. In Proposition 2.4 let <j> be the inclusion map of Z into A and 
obtain that K(Z) is contained in K(A). Then observe that K(A) is an 
ideal in A. 

Combining Propositions 2.3 and 2.5 we have the following theorem. 

THEOREM 2.6. If ZA is dense in A, then K(A) = K(Z)A. 

Note that K(Z) c K(A) fi Z. If ZA is dense in A9 then equality holds 
here. To see this, let a e K(A) f| Z. By Theorem 2.6, a = ka± for some 
ax e A, k e AT(Z). Then since AT(Z)is isometrically *-isomorphic to C^Z), 
where Jf is a locally compact, Hausdorff space, there is an element k± in 
K(Z) such that kxk = A:. Then a = A**! = {kik)ax = /^(/rtfi) = Ä̂ a. Since 
ki 6 AT(Z) and a e Z, we have that a is in K(Z). Theorem 2.6 may be 
restated as follows. 

THEOREM 2.7. If ZA is dense in A, then AT = (AT f| Z)A. 

This section is concluded with several examples. 

EXAMPLE 2A. Let A be the C*-algebra of all compact operators on a 
Hilbert space H. Then the center of A is zero and K(A) is the algebra of all 
operators with finite rank. 

The next example is a non-commutative C*-algebra which satisfies the 
condition required in Theorem 2.7. 

EXAMPLE 2B. Let J b e a locally compact, Hausdorff space and A the 
algebra of all 2 x 2 matrices over the ring C^X). Then ZA is dense in^4. 

The following example shows that it is possible for the center of a C*-
algebra to be non-trivial and still be too small for our purpose. 

EXAMPLE 2C. Let B be the compact operators on the Hilbert space /2 

and let Bx be the subset of B consisting of the operators which are diagonal 
with respect to the usual basis for /2. Then define A as follows: 

A = { / e C([-1 , 1], B):f(x) 6 Bx if x ^ 0}. 

In this case Z = {fe A:f(x) = 0 if x < 0} and ZA = Z. 
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3. The Representation of C*-algebras. Let A be a C*-algebra with ZA 
dense in A. In this section a C*-bundle is constructed for which the base 
space will be the set of all maximal, modular ideals of the center of A 
with the hull-kernel topology and the stalks will be quotients of A. It 
will be proved that K, the Pedersen ideal of A, is isometrically ^isomor
phic to the ring of all sections with compact support; that M(A), the 
multiplier algebra of A9 is isometrically *-isomorphic to the ring of all 
bounded sections ; and that M(K), the multiplier algebra of K, is ^iso
morphic to the ring of all sections. 

The center of A, Z, is isometrically *-isomorphic to CJJC) where Xis a 
locally compact, Hausdorff space that is homeomorphic to the space of 
maximal, modular ideals of Z with the hull-kernel topology. Denote 
the mapping of Z onto CJ^Z) by z -* z. For each x in X denote the cor
responding maximal modular ideal in Z by Mx (Mx = {zeZ: z(x) = 0}). 
Let Ix = MXA. To see that Ix is an ideal in A, let Ox be the set of all z in Z 
such that z vanishes on a neighborhood of x. Then OxA = MXA and the 
proof that OxA is an ideal is similar to the proof that K(Z)A is an ideal in 
§1 (see Proposition 2.1). We claim that each of the ideals Ix is modular. 
For x in X let ex be an element of Z such that ëx(x) = 1. Then it is easily 
seen that ex + Ix is an identity for the algebra A/Ix. 

Finally let E = (J*{.x} x A/Ix. Define the map p: E-+X by 
p(x, a + Ix) = x for (x, a 4- Ix) in E. Let X x A have the product 
topology and let the map ^ from X x A onto E be given by <f>(x, a) = 
(x, a + Ix) for (x, a) e X x A. Give E the quotient topology with respect 
to (j). Observe that $ is an open map. For (x, a + Ix) in E define the norm 
of (x, a + Ix) by ||(x, a + Ix)\\ = ||<z + / J , the norm of a + /* as an 
element of the C*-algebra Ajlx. Then (E, p, X) is a C*-bundle. 

DEFINITION 3.1. Let (£, /?, ^ ) be a C*-bundle. A section is a continuous 
function a'.X-^E such that/? o a is the identity mapping on X. A section 
tf- is said to vanish at infinity provided the function from X into R given by 
x -* ||(j(x)|| vanishes at infinity. The algebra of all sections which vanish 
at infinity will be denoted by 2r

00. Similarly a section a is said to have 
compact support if the function x -> \o{x)\ has compact support. We 
will use 2K to signify the algebra of all sections which have compact 
support. 

We will require that the map E -* R given by the norm on each stalk 
of a bundle be only upper semi-continuous. Otherwise the definitions and 
terminology for bundles will be the same as in [5], For the remainder of 
this paper (E, P, X) will denote the specific bundle constructed above. 

The selection 1 defined by l(x) = (x9 ex + Ix) is a section and is the 
identity for 2. The subset {al(x): x G X, a e C} of E is homeomorphic to 
X x C. (The preceding set is also equal to <f>(X x Z), since <j>{x, z) = 
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z(x)l(x) for (x, z) in X x Z). If A is commutative E = {al(x): xsX, 
a € C} and hence E is homeomorphic to X x C. 

For am A let a be the selection given by â(x) = ^(x, a). The mapping 
a -* <3 will be called the Gelfand mapping. Observe that for a in A, the 
selection <z is easily seen to be a section. The following result is due to 
Dauns and Hofmann. 

THEOREM 3.2. [6]. The Gelfand mapping is an isometric ^-isomorphism of 
A onto 2^. 

To facilitate the following proofs we will characterize the Gelfand 
image of the center of A. As already remarked Z, the center of A, is 
isometrically *-isomorphic to Cœ(X). We have also noted that is contains 
a homeomorphic copy of X x C. If z is in Z, the Gelfand image of z will 
be the section z given by z(x) = </>(x, z) = z(x)l(x) for x in X. Note that 
z will have compact support as a section precisely when z has compact 
support as a complex valued function. 

If B is any normed *-algebra with an approximate identity, we will 
consider the elements of M(B), the multiplier algebra of B, to be two-
sided functions m on B which satisfy the condition that (am)b = a(mb) 
for all a, b in B. The elements of M(B) are actually two sided linear opera
tors on B and under the operation m*a = (a*m)*9 am* = (ma*)* a e B, 
meM(B), M(B) is a *-algebra. For m in M(B) define ||m|| by \\m\\ = 
s\xp{\\ma\\: aeB, \\a\\ ^ 1} = sup{\\am\\: aeB, \\a\\ ̂  1}. If ||m|| 
< oo, the multiplier m is said to be bounded. The bounded elements of 
M(B) with the norm given above form a Banach *-subalgebra of M(B) 
[8]. If B is a C*-algebra, then all elements of M(B) are bounded and 
M(B) is a C*-algebra. For a more detailed description of multiplier 
algebras see [8] or [2]. 

THEOREM 3.3. If ZA is dense in A, then K is isometrically *-isomorphic 
to2K. 

PROOF. Let a e K. By Theorem 2.7 we have K = (K f] Z)A. Thus a = ha 
for some /* in K f] Z and â = (AtfT = tó, where a denotes the image of 
a under the Gelfand mapping. Since h has compact support, it follows that 
hâ has compact support. Thus the Gelfand mapping takes K into 2K. 

Let a e 2K. Note that 2K c 2^ . By Theorem 3.2 there is an element 
a in A such that â = Ö\ There is an /z in Z such that A(X) = l(x) for each 
A: in the support of a and such that h has compact support. Note that h 
is in K. Then (ha)~(x) = h(x)â(x) = â(x) for je in X. Thus (/za)" = â. 
Since the Gelfand mapping is an isomorphism, ha = a and hence a is an 
element of K. Thus the Gelfand mapping when restricted to K is an 
isometric *-isomorphism of Adonto 2K. 
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The following lemma will be required. 

LEMMA 3.4. If D is a dense subset of A, x, y e A and dx = dy for all 
d in D, then x = y. 

PROOF. Let x, y e A and {dn} a sequence in D which converges to 
(x - y)*. Observe that {dn(x - y)} converges to (x — y)*(x — y), but 
d„{x — y) = 0 for each positive integer n. It follows that x = y. 

THEOREM 3.5. IfzeZf]Kand m e M(K), then zm = mz. 

PROOF. Let keK. Recall that K is dense in A. Then note that k(zm) = 
(kz)m = (zk)m = z(km) = (km)z = k(mz). Thus by Lemma 3.4, zm = mz. 

THEOREM 3.6. If ZA is dense in A, then M(K) is *-isomorphic to 2. 

PROOF. Let m e M(K), x G X. Then there is an element heK f\ Z such 
that h(t) .= 1(f) for each t in a neighborhood of x. Define the selection 
m: X -* E by m(x) = (mh)"(x) for each x in X where {mhY is the image 
of the element mh under the Gelfand mapping. 

To see that the definition of m is independent of the choice of A, let hi 
and h2 be in K f| Z such that h^x) = h2(x) = l(x). Then since hi — 
h2 e K, there is an element k in K such that &(/*! — h2) = hi — h2. Thus 

(mhi)~(x) — (mh2)~(x) = (m/*! — mh^{x) 

= ( « 0 ! - A2)r0c) = {m(k{hi - hWix) 

= ((mk) ih - hèYix) = (mknx) (Ai - Ä2H*) 

= (mknx) ( t o - to) = 0. 

The selection m is continuous since if h is in K f] Z such that h(t) = 1(0 
for all n n a neighborhood of x, then m(t) = (mh)~(t) for all t in the 
neighborhood. 

Thus :m -> m is a mapping from M(AT) into 2*. We will show that 
this mapping is a *-isomorphism. To see that the map is surjective, let 
a e 2 and define ma by maa = b where b = aâ, for ae K, and amff = c 
where c = âa, for a e ^ . Observe that aâ, âa e 2 ^ which is isometrically 
*-isomorphic to K. To see that ma is a multiplier of #, it suffices to show 
that a(mab) = (ama)b for a, b e K. Observe that (a(mab)y = â(maby = 
â{ab) = (ótf-)è = {amayh = {{ama)by. Since the Gelfand mapping is an 
isomorphism, a(mab) = (ama)b. Also observe that m^(x) = (mjtf(x) = 
(tf-A)(x) = <7(x)A(x) = (j(x)l(x) = tf-(x). Thus mff = a and the map \m-+m 
is surjective. 

To see that the map is injective, let keK, mh m2 e M(K), and x e X. 
Suppose rhi = m2. Then (mx/:)"(x) = m ^ x ^ x ) = m2(x)k(x) = {m2ky(x). 
Since x is an arbitrary element of X, (miky = (m2ky, and since the 
Gelfand mapping is an isomorphism m^k = m2k. Similarly kmi = /rm2. 
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Hence mi = m2 and the map m: -> m is injective. 
In order to complete the proof that the map :m -* m is a ^-isomorphism, 

the following equalities must be verified for mi, m2 e M(K), a e C: 

(mi + m2)" = mi + m2, 

(mim2T = mim2, 
and 

(ami) = ami, 
(mi*)~ = (mi)*. 

Let x e X and A e # fi Z w i t r ì the property that h(i) = 1(0 for all t in a 
neighborhood of x. Also assume that A ^ 0. Then 

(mi -f m2)~(x) = (mi 4- m2)A)"(x) = (miA + m2hT{x) 

= (miA)~(x) + (m2A)"(x) = mi(x) + m2(x). 

Thus, since x is an arbitrary element of X, (mi + m2)" = mi + m2. 
Next observe that 

(mim2r(x) = ((m1m2)hy(x) = ({mlm2)h
2y{x) 

= (mi(m2(A.A)))-(x) = (mi((m2A)A))^(x) 

= (rni{h{m2h))y(x) = ((wiA)(m2A)r(x) 

= (mxA)"(x) (m2A)"(x) =mi(x) m2(x) 

= (mim2)(x). 

Thus (mim2)^ = mim2. 
Next note that 

(ami)"(x) = ((ami)A)"(x) = (a(miA.)~(x) 

= a((miAr(x)) = a(mi(x)). 

Hence (ami)" = ami. 

Finally observe that 

(m?r(jc) = (mîA)^(jc) = ((A*mi)*r(x). 

Note that since A > 0, A = A*, and by Theorem 3.5, Amx = mxA, since A 
is in K n Z. Thus 

((A*mi)*H*) = ((miA)*)-(x) = ((miA)")*(x) 

= ((miA)^(x))* - (mi(x))* = (mi)*(*). 

Thus (m\Y =~(mi)*. This completes the proof that M{K) is *-isomorphic 
t o ^ . 

We know from [9] that the map from M(A) into M(K) given by: m -> 



706 C.W. BAKER 

m\K is an isometric *-isomorphism of M(A) onto the C*-algebra of 
bounded multipliers of K, denoted by Mb(K). Thus in order to prove 
that M(A) is isometrically ^isomorphic to 2b, it suffices to show that the 
mapping :m -+ m given in Theorem 3.6 maps Mb(K) onto 2b and that 
the mapping when restricted to Mb(K) is an isometry. 

THEOREM 3.7. If ZA is dense in A, then M(A) is isometrically *-isomorphic 
to 2b. 

PROOF. Recall that if m is a bounded multiplier of K, the norm of m is 
given by \\m\\ = sup{||wa|| : a eK, \\a\\ ̂  1} = sup{||aw||: aeK, 
||a|| g 1}. Let m 6 Mb(K). For each x in X choose hx in K f| Z such that 
hx(t) = 1(f) for each fin a neighborhood of x, and \\hx\\ = 1. Then 

sup{||m(jc)|| :xeX} = sup{||(/wAxr(*)ll :xeX} 

^ sup{||(mÄ,r II : x e X) = s u p f l M J : x e X} 

rgsup{||ma|| :aeK,\\a\\ g 1} = ||m||. 

Thus the mapping :m -+ m takes Mb{K) into 2b. 
Let a e 2^. By Theorem 3.6 there is an m in M(K) such that m = a. 

Then we have 

sup{||ma|| :aeK, \\a\\ ̂  1} 

= sup{||(/!i£r|| r ae t f , ||a|| g 1} 

= sup{||/ftó|| : f lÊ^ , Ml g 1} 

^sup{||/ft||.||«ll : Ö 6 X , ||a|| è 1} 

^ l|m||. 

Hence m is in Mb(K) and the mapping :m -+ m maps Mb(K) onto 2^. It 
also follows from the preceding calculations that the mapping :m -> m 
when restricted to Mb(K) is an isometry. 
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