DUALITY FOR INFINITE HERMITE SPLINE INTERPOLATION

T.N.T. GOODMAN

1. Introduction. Let $x=\left(x_{i}\right)_{-\infty}^{\infty}, \xi=\left(\xi_{i}\right)_{-\infty}^{\infty}$ be non-decreasing sequences in \mathbf{R} satisfying

$$
\begin{equation*}
\left|\left\{i \mid x_{i}=t\right\}\right|+\left|\left\{i \mid \xi_{i}=t\right\}\right| \leqq n+1 \tag{1}
\end{equation*}
$$

where $|S|$ denotes the number of elements in a set S.
For a positive integer n, we denote by (n, x, ξ) the problem of interpolatting data at x by spline functions of degree n with knots at ξ. To make this precise we define for each integer i,

$$
\begin{equation*}
\mu_{i}=\left|\left\{k<i \mid x_{k}=x_{i}\right\}\right|, \nu_{i}=\left|\left\{k<i \mid \xi_{k}=\xi_{i}\right\}\right| \tag{2}
\end{equation*}
$$

Then the space of spline functions of degree n with knots at ξ is defined to be

$$
\begin{aligned}
\zeta_{n}(\xi):=\{ & f:\left(\xi_{-\infty}, \xi_{\infty}\right) \rightarrow \mathbf{R} \mid \text { for any integer } i \text { with } \\
& \xi_{i}<\xi_{i+1}, f \text { coincides on }\left(\xi_{i}, \xi_{i+1}\right) \text { with a } \\
& \text { polynomial of degree } \leqq n \text { and } f^{(j)} \text { is continuous } \\
& \text { at } \left.\xi_{i}, 0 \leqq j \leqq n-\nu_{i}-1\right\},
\end{aligned}
$$

where $\xi_{ \pm \infty}=\lim _{i \rightarrow \pm \infty} \xi_{i}$.
We shall say (n, x, ξ) is solvable if for any bounded sequence $\left(y_{i}\right)_{-\infty}^{\infty}$ in \mathbf{R} there is a unique bounded spline f in $\zeta_{n}(\xi)$ satisfying

$$
\begin{equation*}
f^{\left(\mu_{i}\right)}\left(x_{i}\right)=y_{i}(i \in \mathbf{Z}) \tag{3}
\end{equation*}
$$

For this to make sense we must have $x_{i} \in\left(\xi_{-\infty}, \xi_{\infty}\right)(i \in \mathbf{Z})$.
We note that condition (1) ensures that we do not interpolate at a discontinuity. Defining

$$
\begin{equation*}
\Delta x_{i}=\min \left\{x_{j}-x_{i} \mid x_{j}>x_{i}\right\} \tag{4}
\end{equation*}
$$

we define the global mesh ratio of x as

$$
\begin{equation*}
\sup \left\{\Delta x_{i} / \Delta x_{j} \mid i, j \in \mathbf{Z}\right\} \tag{5}
\end{equation*}
$$

A similar definition holds for ξ. We shall prove the following.

Theorem. If the global mesh ratios of x and ξ are finite and if (n, x, ξ) is solvable, then (n, ξ, x) is solvable.

We remark that this result is known if x and ξ are periodic [4], and also for the corresponding problem when x and ξ are finite [5]. Indeed in both these cases the duality extends to more general Birkhoff spline interpolation. Finally we note that if n is odd and x is strictly increasing with finite global mesh ratio, then (n, x, x) is solvable [2].

2. Proof of the theorem.

Lemma 1. For any interval I, let $x(I)=\left|\left\{i \mid x_{i} \in I\right\}\right|$ and $\xi(I)=\left|\left\{i \mid \xi_{i} \in I\right\}\right|$. Then if (n, x, ξ) is solvable, $x(I)$ is finite if and only if $\xi(I)$ is finite, and if they are finite then $|x(I)-\xi(I)| \leqq n+1$.

Proof. Suppose (n, x, ξ) is solvable. Take I with $\xi(I)$ finite. Then for any bounded vector $\left\{y_{i} \mid x_{i} \in I\right\}$ there is a spline f in $\zeta_{n}(\xi) \mid I$ with $f^{\left(\mu_{i}\right)}\left(x_{i}\right)$ $=y_{i}$ whenever $x_{i} \in I$. But $\operatorname{dim} \zeta_{n}(\xi) \mid I \leqq \xi(I)+n+1$ and so $x(I)$ is finite with $x(I) \leqq \xi(I)+n+1$.

Next take I with $x(I)$ finite. Let ζ denote the space of splines in $\zeta_{n}(\xi)$ which vanish outside I. If $\operatorname{dim} \zeta>x(I)$, there would be a non-trivial element f of ζ with $f^{\left(\mu_{i}\right)}\left(x_{i}\right)=0$ for all x_{i} in I, and hence for all integers i. Since f is bounded this would contradict (n, x, ξ) being solvable. Thus $\operatorname{dim} \zeta \leqq x(I)$. But $\operatorname{dim} \zeta \geqq \xi(I)-n-1$ and so $\xi(I)$ is finite with $\xi(I)$ $\leqq x(I)+n+1$.

We now introduce the 'normalised B-splines' defined by

$$
\begin{equation*}
N\left(t \mid \xi_{i}, \ldots, \xi_{i+n+1}\right):=\left(\xi_{i+n+1}-\xi_{i}\right)\left[\xi_{i}, \ldots, \xi_{i+n+1}\right](.-t)_{+}^{n} \tag{6}
\end{equation*}
$$

where as usual $\left[\xi_{i}, \ldots, \xi_{i+n+1}\right] f$ denotes the divided difference of f at these points. We shall denote $N\left(. \mid \xi_{i}, \ldots, \xi_{i+n+1}\right)$ by N_{i}. It is well known that N_{i} is in $\zeta_{n}(\xi)$ and $N_{i}(t) \geqq 0$ for all t, with $N_{i}(t)>0$ if and only if $\xi_{i}<t<$ ξ_{i+n+1}. Moreover any spline f in $\zeta_{n}(\xi)$ can be expressed uniquely in the form

$$
\begin{equation*}
f(t)=\sum_{-\infty}^{\infty} \beta_{j} N_{j}(t) \tag{7}
\end{equation*}
$$

where the sum converges locally uniformly since locally it has only a finite number of non-zero terms, see [3]. Thus for any integer i,

$$
\begin{equation*}
f^{\left(\mu_{i}\right)}\left(x_{i}\right)=y_{i} \Leftrightarrow \sum_{j=-\infty}^{\infty} N_{j}^{\left(\mu_{i}\right)}\left(x_{i}\right) \beta_{j}=y_{i} \tag{8}
\end{equation*}
$$

It is shown in [1] that there is a positive constant C_{n}, independent of ξ, such that for any $\beta=\left(\beta_{i}\right)_{-\infty}^{\infty} \in \ell_{\infty}$,

$$
\begin{equation*}
C_{n}\|\beta\|_{\infty} \leqq\left\|\sum_{-\infty}^{\infty} \beta_{i} N_{i}\right\|_{\infty} \leqq\|\beta\|_{\infty} \tag{9}
\end{equation*}
$$

Thus f in $\zeta_{n}(\xi)$ is bounded if and only if the sequence β of its B-spline
coefficients is bounded and so by (8), (n, x, ξ) is solvable if and only if the matrix

$$
\begin{equation*}
N:=\left(N_{i j}\right)_{i, j=-\infty}^{\infty}, \quad N_{i j}:=N_{j}^{\left(\mu_{i}\right)}\left(x_{i}\right) \tag{10}
\end{equation*}
$$

represents a bijective map on ℓ_{∞}.
Lemma 2. If (n, x, ξ) is solvable, then there is an integer m such that for any $i, j, N_{i j} \neq 0$ only when $m-n \leqq i-j \leqq m+n$, i.e., all the non-zero elements of N are contained within $2 n+1$ consecutive diagonals.

Proof. Take any i, j, k, l with $i-j \leqq k-/$ and $N_{i j} \neq 0 \neq N_{k}$. Then $\xi_{j}<x_{i}<\xi_{j+n+1}, \xi_{,}<x_{k}<\xi_{\ell+n+1}$. First suppose $\xi_{j}<\xi_{\ell+n+1}$. Then applying Lemma 1 with $I=\left(\xi_{j}, \xi_{1+n+1}\right)$ gives $k-i+1 \leqq \ell+$ $n-j+n+1$ and so $k-\ell \leqq i-j+2 n$. Next suppose $\xi_{j} \geqq \xi_{<+n+1}$. Then Lemma 1 with $I=\left[\xi_{<+n+1}, \xi_{j}\right]$ gives $i-k-1 \geqq j-\ell-n-$ $(n+1)$ and so again $k-\ell \leqq i-j+2 n$. Thus in all cases $0 \leqq(k-\ell)$ $-(i-j) \leqq 2 n$ and the result follows.

Lemma 3. For any fin $\zeta_{n}(x)$, let

$$
\begin{equation*}
\gamma_{j}=\left((-1)^{\mu_{j}} / n!\right)\left\{f^{\left(n-\mu_{j}\right)}\left(x_{j}^{+}\right)-f^{\left(n-\mu_{j}\right)}\left(x_{j}^{-}\right)\right\} \quad(j \in \mathbf{Z}) . \tag{11}
\end{equation*}
$$

Then for any integer i,

$$
\begin{equation*}
\sum_{j=-\infty}^{\infty} N^{\left(\mu_{j}\right)}\left(x_{j} \mid \xi_{i}, \ldots, \xi_{i+n+1}\right) \gamma_{j}=\left(\xi_{i+n+1}-\xi_{i}\right)\left[\xi_{i}, \ldots, \xi_{i+n+1}\right] f . \tag{12}
\end{equation*}
$$

Proof. Take f in $\zeta_{n}(x), i$ in \mathbf{Z}, and choose any k, ι with $x_{k} \leqq \xi_{i}, \xi_{i+n+1} \leqq$ x_{i}. Then for some polynomial p of degree $\leqq n$,

$$
f(t)=p(t)+\sum_{j=k+1}^{<-1} \frac{n!}{\left(n-\mu_{j}\right)!}(-1)^{\mu_{j}} \gamma_{j}\left(t-x_{j}\right)_{+}^{n-\mu_{j}}, x_{k} \leqq t<x_{l}
$$

Thus, recalling (6),

$$
\begin{aligned}
& \left(\xi_{i+n+1}-\xi_{i}\right)\left[\xi_{i}, \ldots, \xi_{i+n+1}\right] f \\
& \quad=\sum_{j=k+1}^{-1} \frac{n!}{\left(n-\mu_{j}\right)!}(-1)^{\mu_{j}} \gamma_{j}\left(\xi_{i+n+1}-\xi_{i}\right) \times\left[\xi_{i}, \ldots, \xi_{i+n+1}\right]\left(.-x_{j}\right)_{+}^{n-\mu_{j}} \\
& \quad=\sum_{j=-\infty}^{\infty} \gamma_{j} N^{\left(\mu_{j}\right)}\left(x_{j} \mid \xi_{i}, \ldots, \xi_{i+n+1}\right) .
\end{aligned}
$$

Lemma 4. Take points $t_{0} \leqq t_{1} \leqq \cdots \leqq t_{n+1}$ with $t_{0}<t_{n+1}$. Suppose the distinct elements of $\left\{t_{0}, \ldots, t_{n+1}\right\}$ are z_{1}, \ldots, z_{m} with multiplicities $\alpha_{1}, \ldots, \alpha_{m}$ respectively, and write

$$
\begin{equation*}
\left[t_{0}, \ldots, t_{n+1}\right] f=\sum_{i=1}^{m} \sum_{j=0}^{\alpha_{i}-1} \lambda_{i j} f^{(j)}\left(z_{i}\right) \tag{13}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|\lambda_{i j}\right| \leqq\binom{ n-j}{n-\alpha_{i}+1} / j!M_{i}^{n+1-j} \tag{14}
\end{equation*}
$$

where $M_{i}=\min \left\{\left|z_{i}-z_{k}\right| \mid k=1, \ldots, m, k \neq i\right\}$.
Proof. We first show that

$$
\begin{equation*}
\lambda_{i j}=\phi_{i}^{\left(\alpha_{i}-1-j\right)}\left(z_{i}\right) / j!\left(\alpha_{i}-1-j\right)!, \tag{15}
\end{equation*}
$$

where $\phi_{i}(t):=\prod_{k \neq i}\left(t-z_{k}\right)^{-\alpha_{k}}$.
It is easily verified that for any sufficiently smooth function f, the poly nomial

$$
\begin{equation*}
p(t)=\sum_{i=1}^{m} \frac{1}{\phi_{i}(t)} \sum_{j=0}^{\alpha_{i}-1} \frac{\left(t-z_{i}\right)^{j}}{j!}\left[\frac{d^{j}}{d t^{j}}\left(f(t) \phi_{i}(t)\right)\right]_{t=z_{i}} \tag{16}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
p^{(j)}\left(z_{i}\right)=f^{(j)}\left(z_{i}\right), j=0, \ldots, \alpha_{i}-1, i=1, \ldots, m \tag{17}
\end{equation*}
$$

For $\nu=0, \ldots, n+1$, we put $f(t)=p_{\nu}(t):=t^{\nu}$ in (16). Then (17) tells us $p(t) \equiv p_{\nu}(t)$ and equating powers of t^{n+1} gives:

$$
\begin{aligned}
\delta_{\nu, n+1} & =\sum_{i=1}^{m} \frac{1}{\left(\alpha_{i}-1\right)!}\left[\frac{d^{\alpha_{i}-1}}{d t^{\alpha_{i}-1}}\left(p_{\nu}(t) \phi_{i}(t)\right)\right]_{t=z_{i}} \\
& =\sum_{i=1}^{m} \sum_{j=0}^{\alpha_{i}-1} \frac{\phi_{i}^{\left(\alpha_{i}-1-j\right)}\left(z_{i}\right)}{j!\left(\alpha_{i}-1-j\right)!} p_{\nu}^{(j)}\left(z_{i}\right) .
\end{aligned}
$$

Comparing with (13) then gives (15).
Now $\phi_{i}^{\prime}(t)=-\phi_{i}(t) \sum_{j \neq i} \alpha_{j}\left(t-z_{j}\right)^{-1}$, and so

$$
\phi_{i}^{\prime \prime}(t)=\phi_{i}(t) \sum_{j \neq i} \alpha_{j}\left(t-z_{j}\right)^{-1} \sum_{k \neq i}\left(\alpha_{k}+\delta_{k j}\right)\left(t-z_{k}\right)^{-1}
$$

Repeating this procedure we see that for $\nu=0,1,2, \ldots$,

$$
\left|\phi_{i}^{(\nu)}(t)\right| \leqq\left|\phi_{i}(t)\right| \frac{\left(n+\nu+1-\alpha_{i}\right)!}{\left(n+1-\alpha_{i}\right)!}\left\{\min _{k \neq i}\left|t-z_{k}\right|\right\}^{-\nu} .
$$

Substituting into (15) gives (14).
Proof of the theorem. We assume the global mesh ratios of x and ξ are finite and (n, x, ξ) is solvable. Without loss of generality we can number the indices of x and ξ so that, from Lemma $2, N_{i j} \neq 0$ only when $|i-j| \leqq n$. We have seen that the matrix N represents a bijection on ι_{∞}, which we denote by A. Since the global mesh ratio of ξ is finite, we see from (6) and Lemma 4 that $N_{i j}$ is uniformly bounded, and hence A is a bounded map. The Open Mapping Theorem then tells us that A^{-1} is also bounded. Now it is easily seen that N^{T}, the transpose of N, represents a bounded map B on ι_{1} whose adjoint is A. But it can be shown that if a bounded,
linear map on a Banach space has a boundedly invertible adjoint, then it must also be boundedly invertible. Hence B is boundedly invertible.

For any f in $\zeta_{n}(x)$ we define $\gamma(f):=\left(\gamma_{j}\right)_{-\infty}^{\infty}$ by (11), and $\eta(f):=\left(\eta_{j}\right)_{-\infty}^{\infty}$ by

$$
\begin{equation*}
\eta_{j}:=\left(\xi_{j+n+1}-\xi_{j}\right)\left[\xi_{j}, \ldots, \xi_{j+n+1}\right] f . \tag{18}
\end{equation*}
$$

Then Lemma 3 tells us

$$
\begin{equation*}
N^{T} r(f)=\eta(f) \tag{19}
\end{equation*}
$$

We shall first prove uniqueness for the problem (n, ξ, x); that is we take any bounded element f of $\zeta_{n}(x)$ satisfying $f^{\left(\nu_{i}\right)}\left(\xi_{i}\right)=0, i \in \mathbf{Z}$, and we shall show $f \equiv 0$. Now $N^{T} \gamma(f)=\eta(f)=0$. Since N^{T} represents a bounded and boundedly invertible map on ℓ_{1}, we can apply Theorem 3 of [2] to show that $\gamma(f)$ is either zero or increases exponentially in at least one direction. More precisely, if $\gamma(f) \neq 0$, then for some index μ and positive constants K, Λ, with $\Lambda>1$, we have either for all $i>\mu$ or else for all $i<\mu$:

$$
\sum_{2 n i<j \geqq 2 n(i+1)}\left|\gamma_{j}\right| \geqq K \Lambda^{|i-\mu|}
$$

For any integer i we write $\tilde{N}_{i}(t)=N\left(t \mid x_{i}, \ldots, x_{i+n+1}\right)$. Now for integers, i, j with $x_{i} \leqq x_{j} \leqq x_{i+n+1}$, we see from Lemma 4 that, since the global mesh ratio of x is finite, there is a constant K_{1}, independent of i and j, such that

$$
\begin{equation*}
\left|\tilde{N}_{i}^{\left(n-\mu_{j}\right)}\left(x_{j}^{+}\right)-\tilde{N}_{i}^{\left(n-\mu_{j}\right)}\left(x_{j}^{-}\right)\right| \leqq K_{1} . \tag{20}
\end{equation*}
$$

Letting $f=\sum_{-\infty}^{\infty} \beta_{i} \tilde{N}_{i}$, we then have for any integer j,

$$
\begin{aligned}
\left|\gamma_{j}\right| & =\left|\frac{1}{n!} \sum_{i=j-2 n-1}^{j+n} \beta_{i}\left\{\tilde{N}_{i}^{\left(n-\mu_{j}\right)}\left(x_{j}^{+}\right)-\tilde{N}_{i}^{\left(n-\mu_{j}\right)}\left(x_{j}^{-}\right)\right\}\right| \\
& \leqq \frac{K_{1}}{n!} \sum_{i=j-2 n-1}^{j+n}\left|\beta_{i}\right| .
\end{aligned}
$$

Since f is bounded, β_{i} is uniformly bounded and so $\gamma(f)$ cannot increase exponentially in either direction. Hence $\gamma(f)=0$. So f is a polynomial which vanishes infinitely often and so $f \equiv 0$.

We shall next construct the fundamental functions for the problem (n, ξ, x). Take any integer k and let $\eta=\eta\left(g_{k}\right)$, where g_{k} denotes any function satisfying $g_{k}^{\left(\nu_{i}\right)}\left(\xi_{i}\right)=\delta_{i k}, i \in \mathbf{Z}$. Choose L_{k} in $\zeta_{n}(x)$ with $\gamma\left(L_{k}\right)=$ $B^{-1} \eta$. By altering L_{k} by a polynomial of degree $\leqq n$ we may assume $L_{k}^{\left(\nu_{i}\right)}\left(\xi_{i}\right)=g_{k}^{\left(\nu_{i}\right)}\left(\xi_{i}\right), i=\ell, \ldots, l+n$, where $/$ is any integer with $\nu_{,}=0$. But by (19), $\eta\left(L_{k}\right)=N^{T} \gamma\left(L_{k}\right)=B_{\gamma}\left(L_{k}\right)=\eta=\eta\left(g_{k}\right)$ and so $\left[\xi_{i}, \ldots, \xi_{i+n+1}\right]\left(L_{k}-g_{k}\right)=0, i \in \mathbf{Z}$. Thus for any integer $i, L_{k}^{\left(\nu_{i}\right)}\left(\xi_{i}\right)=$ $g_{k}^{\left(\nu_{i}\right)}\left(\xi_{i}\right)=\delta_{i k}$.

Next we make estimates on $L_{k}(t)$. Suppose t is in $\left(\xi_{\ell-1}, \xi_{\ell}\right)$ for $\ell \geqq k$. Then by (12) with $\gamma\left(L_{k}\right)=\left(\gamma_{i}\right)_{-\infty}^{\infty}$,

$$
\begin{aligned}
\sum_{j=-\infty}^{\infty} N^{\left(\mu_{j}\right)} & \left(x_{j} \mid t, \xi_{九+n+1}, \ldots, \xi_{\iota+2 n+1}\right) \gamma_{j} \\
& =\left(\xi_{<+2 n+1}-t\right)\left[t, \xi_{<+n+1}, \ldots, \xi_{<+2 n+1}\right] L_{k} \\
& =-L_{k}(t)\left(t-\xi_{\ell+n+1}\right)^{-1} \cdots\left(t-\xi_{n+2 n+1}\right)^{-1}
\end{aligned}
$$

Recalling (6), Lemma 4 and that the global mesh ratio of ξ is bounded, we see there is a constant K_{2}, independent of k and ℓ, such that

$$
\begin{equation*}
\left|L_{k}(t)\right| \leqq K_{3} \sum_{j=\ell-n-1}^{\langle+2 n}\left|\gamma_{j}\right| \tag{21}
\end{equation*}
$$

By applying a similar argument for t in $\left(\xi_{/-1}, \xi_{\ell}\right), \ell \leqq k$, we see there is a constant K_{3} such that for any integers k and ℓ, and any t in $\left(\xi_{\iota-1}, \xi_{\ell}\right)$,

$$
\begin{equation*}
\left|L_{k}(t)\right| \leqq K_{3} \sum_{j=t-3 n-2}^{++2 n}\left|\gamma_{j}\right| \tag{22}
\end{equation*}
$$

Now Theorem 2 of [2] tells us that if the matrix which represents B^{-1} is denoted by $\left(b_{i j}\right)$, then there are positive constant K_{4}, λ, with $\lambda<1$, such that for all i, j,

$$
\begin{equation*}
\left|b_{i j}\right| \leqq K_{4} \lambda^{|i-j|} \tag{23}
\end{equation*}
$$

Since $\gamma\left(L_{k}\right)=B^{-1} \eta$ and $\eta=\eta\left(L_{k}\right)$, on recalling (18) we see for any integer i,

$$
\begin{equation*}
\gamma_{i}=\sum_{j=-\infty}^{\infty} b_{i j} \eta_{j}=\sum_{j=k-2 n-1}^{k+n} b_{i j}\left(\xi_{j+n+1}-\xi_{j}\right)\left[\xi_{j}, \ldots, \xi_{j+n+1}\right] L_{k} \tag{24}
\end{equation*}
$$

From (23), (24) and Lemma 4, noting that the global mesh ratio of ξ is bounded, there is a constant K_{5} such that for any integers i and k.

$$
\begin{equation*}
\left|\gamma_{i}\right| \leqq K_{5} \lambda^{i-k \mid} \tag{25}
\end{equation*}
$$

Combining (22) and (25) gives a constant K_{6} such that

$$
\begin{equation*}
\left|L_{k}(t)\right| \leqq K_{6} \lambda^{|/-k|}\left(t \in\left[\xi_{\iota-1}, \xi_{\ell}\right), k, \iota \in \mathbf{Z}\right) \tag{26}
\end{equation*}
$$

Finally we take any bounded sequence $\left(y_{i}\right)_{-\infty}^{\infty}$. By (26) the series $\sum_{-\infty}^{\infty} y_{i} L_{i}(t)$ converges uniformly on bounded sets to a bounded function f. Clearly f lies in $\zeta_{n}(x)$ and satisfies $f^{\left(\nu_{j}\right)}\left(\xi_{j}\right)=y_{j}, j \in \mathbf{Z}$. Thus (n, ξ, x) is solvable.

Remark. If x and ξ are strictly increasing, then the above proof can be easily modified to cover the possibility of x and ξ having infinite global mesh ratios, provided there are positive constants A, α such that

$$
\Delta x_{i} / \Delta x_{j} \leqq A|i-j|^{\alpha}, \Delta \xi_{i} / \Delta \xi_{j} \leqq A|i-j|^{\alpha}(i, j \in \mathbf{Z}, i \neq j)
$$

References

1. C. de Boor, The quasi-interpolant as a tool in elementary polynomial spline theory, in Approximation Theory (G.G. Lorentz, ed.), Academic Press, New York, 1973, 269-276.
2. -, Odd-degree spline interpolation at a biinfinite knot sequence, in Approximation Theory, Bonn 1976 (R. Schaback and K. Scherer eds.), Lecture Notes Math. 556, Springer, Heidelberg, 1976, 30-53.
3. H.B. Curry and I.J. Schoenberg, On Polya frequency functions IV. The fundamental spline functions and their limits, J. d'Analyse Math. 17 (1966), 71-107.
4. T.N.T. Goodman, Solvability of cardinal spline interpolation problems, to appear in Proc. Royal Soc. Edinburgh, 79A (1983).
5. K. Jetter, Birkhoff interpolation by splines, in Approximation Theory II (G.G. Lorentz, C.K. Chui, L.L. Schumaker, eds.), Academic Press, New York, 1976, 405-410.

Department of Mathematical Sciences, The University, Dundee DD1 4HN, Scotland

