ON ROTA'S MODELS FOR LINEAR OPERATORS

B.S. YADAV AND RANJANA BANSAL*

Abstract

In this note Rota type models for linear operators in terms of weighted shifts are obtained.

The role of shift operators in the structure theory of Hilbert space operators is well known. It was first pointed out by Rota [6] that they can be regarded as 'universal' operators, see also de Branges and Rovnyak [1] and Foias [2]. The object of this note is to obtain Rota type theorems for weighted shift operators and to generalize some of the known results in this direction. For a beautiful and almost exhaustive account of the literature on weighted shifts through 1973, we refer to Shields [7]. However, the aspect of their study which forms the subject of this note has not been touched there. A model for quasinilpotent operators in terms of weighted shifts has been obtained by Foias, and Pearcy [3].

Let H be an infinite-dimensional, separable complex Hilbert space with an orthonormal basis $\left\{e_{n}\right\}_{n=0}^{\infty}$. We shall denote by $B(H)$ the algebra of all bounded operators on H. Let $\alpha=\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ be a bounded sequence of complex numbers. The operator S_{α} on H defined by

$$
S_{\alpha} e_{0}=0 \text { and } S_{\alpha} e_{n}=\alpha_{n} e_{n-1} \text { for } n \geqq 1
$$

is called the backward weighted shift with the weight sequence α. If $\alpha_{n}=1$ for all n, then S_{α} is simply called the backward shift which we shall denote by S. We may and shall take α to be a bounded sequence of positive real numbers [4], [5]. If $/^{2}(H)$ denotes the Hilbert space of all square-summable sequences $x=\left\{x_{0}, x_{1}, \ldots, x_{n}, \ldots\right\}$ of vectors x_{n} 's in H, then S_{α} on $\ell^{2}(H)$ appears as

$$
S_{\alpha}(x)=\left\{\alpha_{1} x_{1}, \alpha_{2} x_{2}, \ldots, \alpha_{n+1} x_{n+1}, \ldots\right\}
$$

We write $\beta_{n}=\alpha_{1} \alpha_{2} \ldots \alpha_{n}$ for $n \geqq 1$ and $\beta_{0}=1$. We shall denote by $r(T)$ the spectral radius of an operator T in $B(H)$. A subspace M of H is

[^0]invariant under an operator T if $T M \cong M$. By a part of T we shall mean the restriction $\left.T\right|_{M}$ of T to its invariant subspace $M . T$ is said to be power bounded if there exists a real number $\delta>0$ such that $\left\|T^{n}\right\| \leqq \delta$ for all $n \geqq 0$.

Theorem 1. If T is in $B(H)$ and $\alpha=\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ is a bounded sequence of positive real numbers such that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \beta_{n}^{-2}\left\|T^{n}\right\|^{2}<\infty \tag{1}
\end{equation*}
$$

then T is similar to a part of S_{α} on $l^{2}(H)$.
Proof. Define $A: H \rightarrow \ell^{2}(H)$ by

$$
A x=\left\{\beta_{0}^{-1} x, \beta_{1}^{-1} T x, \beta_{2}^{-1} T^{2} x, \ldots, \beta_{n}^{-1} T^{n} x, \ldots\right\}
$$

It is easy to see that A is one-to-one and linear. A is also bounded, for it follows from (1) that

$$
\begin{aligned}
\|A x\|^{2} & =\sum_{n=0}^{\infty}\left\|\beta_{n}^{-1} T^{n} x\right\|^{2} \\
& \leqq\left(\sum_{n=0}^{\infty} \beta_{n}^{-2}\left\|T^{n}\right\|^{2}\right)\|x\|^{2} \\
& <\infty
\end{aligned}
$$

Since

$$
\|A x\|^{2}=\sum_{n=0}^{\infty}\left\|\beta_{n}^{-1} T^{n} x\right\|^{2} \geqq\|x\|^{2}
$$

for each x in H, A is bounded below, and hence its range M is a closed subspace of $\iota^{2}(H)$.
Now

$$
\begin{aligned}
\left(S_{\alpha} A\right)(x) & =S_{\alpha}\left\{\beta_{0}^{-1} x, \beta_{1}^{-1} T x, \beta_{2}^{-1} T^{2} x, \ldots, \beta_{n}^{-1} T^{n} x, \ldots\right\} \\
& =\left\{\alpha_{1}\left(\beta_{1}^{-1} T x\right), \alpha_{2}\left(\beta_{2}^{-1} T^{2} x\right), \alpha_{3}\left(\beta_{3}^{-1} T^{3} x\right), \ldots, \alpha_{n+1}\left(\beta_{n+1}^{-1} T^{n+1} x\right), \ldots\right\} \\
& =\left\{\beta_{0}^{-1}(T x), \beta_{1}^{-1} T(T x), \beta_{2}^{-1} T^{2}(T x), \ldots, \beta_{n}^{-1} T^{n}(T x), \ldots\right\} \\
& =A(T x) \\
& =(A T) x
\end{aligned}
$$

for each x in H. Thus $S_{\alpha} A=A T$. This implies that M is an invariant subspace of S_{α} and T is similar to $\left.S_{\alpha}\right|_{M}$.

Corollary 1.1. (Rota's Theorem). If an operator $T \in B(H)$ has spectral radius $r(T)$ less than 1 , then T is similar to a part of S.

Proof. In this case it suffices to observe that

$$
\lim _{n \rightarrow \infty}\left(\left\|T^{n}\right\|^{2}\right)^{1 / n}=r(T)^{2}<1
$$

and hence (1) follows for $\alpha_{n}=1$ for all n.
Corollary 1.2. If T is a power bounded operator in $B(H)$, then T is similar to a part of S_{α} with $\sum_{n=0}^{\infty} \beta_{n}^{-2}<\infty$.

Proof. Let $\delta>0$ be such that $\left\|T^{n}\right\| \leqq \delta$ for all $n \geqq 0$.
Then

$$
\sum_{n=0}^{\infty} \beta_{n}^{-2}\left\|T^{n}\right\|^{2} \leqq \delta^{2}\left(\sum_{n=0}^{\infty} \beta_{n}^{-2}\right)<\infty
$$

Theorem 2. For every T in $B(H)$, there exists an S_{α} with $r\left(S_{\alpha}\right) \leqq r(T)$ such that T is similar to a part of S_{α}.

Proof. If T is not nilpotent, then choose

$$
\alpha_{n}=(n+1)\left\|T^{n}\right\| /\left(n\left\|T^{n-1}\right\|\right)
$$

for all $n \geqq 1$. Clearly $\beta_{n}^{-2}\left\|T^{n}\right\|^{2}=(n+1)^{-2}$ for all n, and therefore Theorem 1 shows that T is similar to a part of S_{α}. Moreover,

$$
\left\|S_{\alpha}^{n}\right\|=\sup \left(\alpha_{k} \alpha_{k+1} \cdots \alpha_{k+n-1}\right) \leqq(n+1)\left\|T^{n}\right\|
$$

which implies that $r\left(S_{\alpha}\right) \leqq r(T)$. If T is nilpotent, let $N=\inf \left\{n: T^{n}=0\right\}$. Choose $\alpha_{k}=1$ if $k<N$ and $\alpha_{k}=0$ if $k \geqq N$. Then $r\left(S_{\alpha}\right)=0=r(T)$. Define $A_{1}: H \rightarrow \ell^{2}(H)$ by $A_{1} x=\left\{x, T x, \ldots, T^{N-1} x, 0,0, \ldots\right\}$. Then A_{1} is one-one and bounded and has closed range M_{1}. Also

$$
\begin{aligned}
\left(S_{\alpha} A_{1}\right)(x) & =S_{\alpha}\left\{x, T x, \ldots, T^{N-1} x, 0,0, \ldots\right\} \\
& =\left\{T x, T(T x), \ldots, T^{N-1}(T x), 0,0, \ldots\right\} \\
& =\left(A_{1} T\right) x
\end{aligned}
$$

for each x in H. So M_{1} is invariant under S_{α} and T is similar to $\left.S_{\alpha}\right|_{M_{1}}$.
Corollary 2.1. (Foriaş-Pearcy) [3]. Let T be a quasinilpotent operator in $B(H)$. Then there exists a quasinilpotent S_{α} on $\iota^{2}(H)$ such that T is similar to a part of S_{α}.

References

1. L. De Branges and J. Rovnyak, Perturbation Theory and its Applications in Quantum Mechanics Calvin H. Wilcox, ed., Wiley, New York, 1966.
2. C. Foiaş, A remark on the universal model for contractions of G.C. Rota, Comm. Acad. R.P. Române 13 (1963), 349-352.
3. \quad, and C. Pearcy, A model for quasinilpotent operators, Michigan Math. J. 21 (1974), 399-404.
4. P.R. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton, NJ, 1967.
5.
6. G.C. Rota, On models for linear operators, Comm. Pure Appl. Math. 13 (1960), 469-472.
7. A.L. Shields, Weighted shift operators and analytic function theory, Survey No. 13, Topics in Operator Theory, A.M.S., Providence, R.I, 1974.

Faculty of Mathematics, University of Delhi, Delhi-110007, India.

[^0]: *The second author gratefully acknowledges the support of U.G.C. grant No. F-259 (11633)/80 for this research work.

 AMS (MOS) Subject classifications (1980): Primary 47A15, 47B37.
 Key words and phrases: Weighted shift operators, part of an operator, similarity of operators, invariant subspaces.

 Received by the editors on July 1, 1982.

