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ON DIOPHANTINE EQUATIONS OF THE FORM 
1 + 2a = p*q* + 2*p«q/ 

LEO J. ALEX AND LORRAINE L. FOSTER 

ABSTRACT. In this paper several Diophantine equations of the 
form 1 + 2a - pb qc + 2dpeqf, where p and q are distinct odd 
primes, and the exponents are non-negative integers are solved. In 
particular this equation is solved for {p, q) = (23, 47), (7, 23), and 
(73,223). The related equations 1 + 73* = 2*223* + 2rf73«223/ and 
1 + 223' = 2*73c + 2<*73e223/ are also solved. This work extends 
recent work of the authors and J.L. Brenner. 

1. Introduction. In this paper we consider equations of the form 

(1) 1 + x = y + z, 

where the primes dividing xyz are specified. Such equations are exponen­
tial Diophantine equations. For example if the primes dividing xyz in 
(1) are 2, 3, and 5 and (x, 15) = 1, then (1) has the form 

(2) 1 + 2« = 3*5< + 2*3*5/, 

where a, b, e, d, e and / a r e non-negative integers. Thus it is the exponents 
a, b, e, d, e and / which are to be determined. 

These equations (1) and (2) are special cases of the general equation 
J^x{ = 0, i = 1, 2, 3, . . . , m, where the primes dividing xix2 - • • xm are 
specified. There has been very little work done in general to solve such 
equations. For example the equation 

(3) 1 + y = 5* 4- 3<5* 

is unsolved. Also it is unknown whether such equations always have a 
finite number of non-trivial solutions. Such equations always have an 
infinite number of trivial solutions. For example the equation (3) above 
has infinitely many solutions of the form b — d = 0 and a — c. 

It follows from work of Dubois and Rhin [5] and Schlickewei [6] that 
the related equation pa ± qb ± rc ± sd = 0 has only finitely many solu­
tions when p, q, r and s are distinct primes. However, their methods do 
not seem to apply when the terms in the equation are not powers of 
distinct primes. 

The authors and J.L. Brenner [1], [2], [4] have recently developed 
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techniques which solve such equations in some cases. These techniques 
involve careful consideration of the equation modulo a series of primes 
and prime powers. 

Such equations arise quite naturally in the character theory of finite 
groups. If G is a finite simple group and p is a prime dividing the order 
of G to the first power only, then the degrees jq, x2, . . . , xm of the ordinary 
irreducible characters in the principal /7-block of G satisfy an equation 
of the form 2<5,x, = 0, dt- = ± 1, where the primes dividing X\X% . • . Xm 

are those in \G\jp. Much information concerning the group G can be 
obtained from the solutions to this degree equation. For example, one 
of the authors in [3] has used solutions to equation (2) above to charac­
terize the simple groups L(2, 7), U(3, 3), L(3, 4) and As. 

In §2, the equations 1 + 2a = 23*47* + 2*23*47/, 1 + 2a = 7*23* + 2d 

7*23/, and 1 + 2« = 73*223* + 2*73*223/ are solved. 
In §3, the related equations 1 + 73* = 2*223* + 2*73*223/ and 1 + 

223* = 2*73* + 2*73*223/ are solved. 

2. Some equations of the form 1 + 2a = p*q* + 2*p*q/. In this section 
we study equations of the form 1 + 2a = pbqc + 2dpeqf where p and q 
are distinct primes such that the order of 2 is odd mod p and mod q. 
Hence, if (a, b, c, d, e, / ) is a solution of such an equation, cf = 0 and 
be = 0. Further, if b, c = 0, then e,f=Q,a = d. We begin by studying 
the equation 

(2.1) 1 + 2" = 23*47* + 2*23*47/. 

LEMMA 2.1. The equation 

(2.2) 1 + 2a = 23* + 2*47/, b ï 0 

has no solution. 
PROOF. Let (a, b, d,f) be a solution. Clearly a > 3 so that 1 = (— 1)* + 

2*(- 1)/ (mod 8). Thus, either d = 3 and b is even, or, d = 1, / = 0, 
b = 1 (mod 2). In the latter case, using mod 3, we have a contradiction. 
Hence b is even. Easily 2a = 2d+*f (mod 11) so that 

(2.3) a = d= 8/(mod 10). 

In particular, a = d (mod 2) so that, using mod 3, / is even. We note 
that if b = 0 (mod 3), then b = 0 (mod 6) so that, using mod 13, a = d 
(mod 6). Thus, in the general case, considering our equation mod 63, 
we have the possibilities listed in Table 2.1. Thus, using mod 13, we 
have (a, b, d9 f) = (t9 0, U 0), (t + 6, 0, t, 2), (5, 2, 7, 0) or (5, 2, 1, 
2) (mod (12, 6, 12, 4)), t arbitrary. Hence, using mod 5, we conclude 
that (a, b, d,f) = (f, 0, t, 0) or (t + 6, 0, f, 6) (mod 12). Using mod 37, 
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a 

t 
5 
5 
5 
1 
1 
1 

b 

0 
2 
2 
2 
4 
4 
4 

d 

t 
1 
3 
5 
1 
3 
5 

/ 
0 
2 
0 
4 
2 
0 
4 

Table 2.1. (Ö, è, d,f) mod 6, f arbitrary. 

a = d (mod 36) so that (0, b, d,f) = (*, 0, f, 0) (mod (36, 12, 36, 12)), t 
arbitrary. Define m = è/2. Then 

(2.4) 1 + 2b = 2m + 2*-/(mod 31). 

If m == 0 (mod 5), then a = d - / ( m o d 5), so that, from equation 2.3, 
/ = 0, a = d (mod 5). Hence, suppose m & 0 (mod 5). Considering (2.4) 
in base 2 (since 25 — 1 = 31) we conclude that d = / , m = a (mod 5). 
Thus (a, b, d,f) = (t, 0, /, 0) or (m, 2m, k, k) (mod (5,10, 5, 5)). Combining 
the above results we have the possibilities listed in Table 2.2. 

a 

t 
1 
6 
2 
7 
3 
8 
4 
9 

Z> 

0 
2 
2 
4 
4 
6 
6 
8 
8 

rf 
f 
9 
4 
8 
3 
7 
2 
6 
1 

/ 
0 
4 
4 
8 
8 
2 
2 
6 
6 

Table 2.2. (a, 6, rf,/) mod 10, t arbitrary. 

Using mod 61, we thus conclude that (a, £, d, f) = (t, 0, t, 0) or (59, 
48, 11, 36) (mod 60), t arbitrary. In the latter case we have a contradiction 
using mod 41. Thus (a, b, d,f) == (f, 0, t, 0) (mod 60), t arbitrary. 
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Since 1 + 2a = 2* (mod 23), we have (a, d,) = (0, 1), (1, 8), (3, 5), 
(8, 2) or (10, 7) (mod 11). Hence after some calculation using mod 89, 
we have fourteen possibilities listed in Table 2.3. 

a 
0 
0 
1 
1 
1 
1 
3 
3 
8 
8 
10 
10 
10 
10 

b 
5Ï-

0 
0 
4 
8 
44 
0 
24 
0 
64 
36 
80 
84 
0 

d 

i 
1 
8 
8 
8 
8 
5 
5 
2 
2 
7 
7 
7 
7 

/ 

28 
16 
24 
28 
40 
8 
32 
36 
36 
32 
8 
24 
28 
40 

Table 2.3. (a, b, d,f) mod (11, 88, 11, 44). 

We now consider equation 2.2 mod 331. (The orders of 2, 23 and 47 
are 30, 66, 66 respectively mod 331). Recall that (a, b, d,f) = (t, 0, t, 0) 
(mod60), / arbitrary and write b = 6k,f = 6m. Since 236 = 111, 476 = 74 
(mod 331), equation 2.2 becomes 2'(74w — 1) = 1 — 111^ (mod 331). 
Checking cases in table 2.3, we find that (a, b, d,f) = (23, 48, 41, 6) or 
(63, 42, 57, 54) (mod 66). Using mod 67, we thus have a contradiction. 

LEMMA 2.2. The equation 

(2.5) 1 + 2a = 47' + 2*23«, c ^ 0 

has no solution. 

PROOF. Suppose that (a, c9 d, e) is a solution. Using mod 23, e = 0. 
Hence 

(2.6) 1 + 2a = 47' + 2d, c ï 0 . 

Since 2a = 2d (mod 23), we conclude that a = d(mod 11) so that 1 = 47' 
(mod 89) and c = 0 (mod 44). Then 2a = 2d (mod 13) so that-a = d 
(mod 12). Hence 1 = 5' (mod 7), c = 0 (mod 6). 
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Since 1 + 2a = 2d (mod 47), there are eleven cases: (a, d) = (0, 1), 
(1, 19), (3, 15), (4, 6), (6, 16), (11, 14), (12, 3), (17, 10), (19, 2), (20, 12) 
or (22, 18) (mod 23). Now consider equation 2.6 mod 139. (The orders 
of 2 and 47 are 138 and 69 respectively mod 139). After some calculation 
we have the following nine cases listed in Table 2.4. 

a 
23 
69 
93 
3 
49 
50 
29 
88 
22 

c 
51 
27 
42 
51 
27 
6 
12 
12 
54 

d 
47 
93 
111 
15 
61 
98 
131 
94 
64 

Table 2.4. (a, c, d) mod (138, 69, 138). 

In each case, using mod 277 we have a contradiction. (The orders of 2, 
47 (mod 277) are 92, 138 respectively). 

LEMMA 2.3. The equation 

(2.7) 1 + 2° = 23>47< + 2*, be ^ 0 

has no solution. 

PROOF. Suppose that (<z, b, c, d) is a solution. Clearly a ^ 5. Using 
mod 32, we have four possiblities : 

Case 1. d = 1, b = 2 (mod 4), c odd. 
Case 2. d = 3, b = 1 (mod 4), c odd. 
Case 3. d = 4, b = 2 (mod 4), c even. 
Case 4. d ;> 5, è = 0 (mod 4), c even. 
In Case 1 we have an immediate contradiction using mod 3. In Cases 

2 and 3 we have contradictions using mod 23. In Case 4, using mod 23, 
we have the following five possibilities: {a, d) = (0, 1), (1, 8), (3, 5), 
(8, 2) or (10, 7) (mod 11). Now b = 4k, c = 2m for some integers k, m 
so that 

1 + 2« == 234*".472™ + 2d = 23^+7Qm + 2<* (mod 89). 

Thus each of the five possibilities for (a, d) (mod 11) leads to a contradic­
tion. 
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Combining the above results, we have the following theorem. 

THEOREM 2.4. Equation 2.1 has only the solutions {a, b, c, d, e, f) = 
(t, 0, 0, t, 0, 0), t arbitrary. 

Secondly, we find all solutions to 

(2.8) 1 + 2* = 7*23' + 2dl'23f. 

LEMMA 2.5. The equation 

(2.9) 1 + 2« = 7* + 2d, b # 0 

has only the solutions (a, b, d) = (6, 2, 4) or (3, 1, 1). 

PROOF. Let (a, b, d) be another solution. Then 2a = 2d (mod 3) so that 
a = d (mod 2). Clearly a ^ 7 so that 1 = 7* + 2* (mod 128). Easily, 
d ^ 4. We consider three cases. 

Case 1 is d = 4. Then 2* = 7* + 15 so that 7* = 113 (mod 128), b = 
10 (mod 16). 

Hence 2a = 710 + 15 = 0 (mod 17), a contradiction. 
Case 2 is d = 5. Then 2a = 7* + 31, 2a = 3 (mod 7), again a contradic­

tion. 
Case 3 is d ^ 6. Then 1 = 7* (mod 64) so that b = 0 (mod 8). Thus, 

using mod 7, 9 successively, (a, b,d) = (0, 2, 4) or (3, 1, 1) (mod (6, 3, 6)). 
Therefore, using mod 19, (a, è, d) = (6, 2, 4) or (3, 1, 1) (mod (18, 3, 18)). 
Since b = 0 (mod 8), we immediately have a contradiction in each case 
using mod 73. 

LEMMA 2.6. The equation 

(2.10) 1 + 2« = 23< + 2'7«, c # 0 

Aas «ö solutions. 

PROOF. Let (a, c, rf, e) be a solution, c ^ 0. By Lemma 2.1, e # 0. 
Using mod 7, (a, c) = (0, 1) (mod 3). Clearly a > 4 so that using 
mod 16, c is even and c = 4 (mod 6). Further, using mod 9, (a, </, e) = 
(0,0, 1), (0, 2,2), (0,4, 0), (3, 1, 1), (3, 3, 2) or (3, 5, 0) (mod (6, 6, 3)). 
Thus in particular a = d (mod 2) so that, using mod 11, e is even. 
Therefore, using mod 13, (a, d, e) = (0, 2, 8), (0, 8, 2), (3, 5, 0), (3, 11, 6), 
(6, 4, 6) or (6, 10, 0) (mod 12). Hence, using mod 5, (a, c, d, e) + (6, 4, 
4, 6) or (6, 4, 10, 0) (mod 12). In both cases we have a contradiction 
mod 37. 

LEMMA 2.7. The equation 

(2.11) 1 + 2" = 7» + 2*23/, bf # 0 
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has no solution. 

PROOF. Let (0, b, d,f)be a solution, bf ^ 0. Clearly a ^ 6. Using 
mod 64, we conclude that d ^ 3. Thus 1 = 7 * (mod 8), 6 even. Now 1 + 
2« = 2*+-/(mod 7) so that (a, d,f) = (0, 0, 1), (0, 1, 0) or (0, 2, 2) (mod 3). 
Each case yields four cases, considering (2.11) mod 9. These are listed in 
Table 2.5. 

0 
0 
3 
3 
0 
0 

4 
4 
2 
2 
2 
2 

3 
0 
0 
3 
4 
1 

1 
4 
1 
4 
0 
3 

3 
3 
0 
0 
3 
3 

4 
4 
0 
0 
0 
0 

1 
4 
2 
5 
2 
5 

0 
3 
2 
5 
5 
2 

Table 2.5. (a, b, d,f) mod 6. 

Using mod 13, mod 5 successively, we have (a, b, d,f) = (6, 2, 4, 0), 
(6, 8, 10, 0), (9, 8, 6, 1) or (9, 4, 4, 3) (mod 12). Using mod 19, there is a 
contradiction in the last two cases. In the first two cases we conclude 
a = 6 (mod 18) so that a = 6 (mod 36). Hence, using mod 37, (a, b, d,f) = 
(6, 2, 4, 0) (mod 12). 

Since 1 + 2« s 7* (mod 23), (a, Z>) = (0.14), (1, 2), (3, 4), (8, 6) or 
(10,10) (mod (11, 12)). Combining results, in each case we have a contra­
diction using mod 67. 

LEMMA 2.8. The equation 

(2.12) l + 2 f f = 7*23< + 2d, be ^ 0 

has no solution. 

PROOF. Let (a, b, c, d) be a solution, be ^ 0. Clearly a _ 5. Thus 
1 = lb-c + id (mod 32) so that d ^ 4. If </ = 4, then 2« = 15 (mod 23), 
a contradiction. Hence d ^ 5 so that 1 = 7*_c (mod 32) and b = c (mod 4). 
Thus using mod 5, a = d (mod 4). Since 1 + 2a = 2d (mod 7), (a, d) = 
(0, 1) (mod 3). Thus, using mod 9, we have the possibilités listed in Table 
2.6. 
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a 

0 
0 
0 
3 
3 
3 

b 

0 
4 
2 
0 
4 
2 

c 

4 
2 
0 
2 
0 
4 

rf 
4 
4 
4 
1 
1 
1 

Table 2.6. (a, è, e, d) mod 6. 

Thus using mod 13 we have the cases listed in Table 2.7. 

a 

6 
6 
6 
9 
9 
9 

b 

0 
4 
8 
6 
10 
2 

c 

4 
8 
0 
2 
6 
10 

rf 
10 
10 
10 
1 
1 
1 

Table 2. 7. (a, 6, c, d) mod 12. 

Using mod 19, 27 successively and combining results once again, we have 
the cases listed in Table 2.8. 

a 

18 
18 
18 
6 
30 
9 
9 
9 
21 
23 
21 

b 

0 
28 
28 
20 
20 
18 
18 
18 
10 
10 
14 

c 

28 
32 
8 
0 
24 
2 
14 
26 
18 
30 
10 

d 

10 
22 
34 
22 
34 
13 
1 
25 
1 
1 
13 

Table 2.8. (a, b, c, d) mod 36. 
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In air cases, we have a contradiction using mod 37. 

Combining the results of the four previous lemmas, we have the 
following theorem. 

THEOREM 2.9. Equation 2.8 has only the solutions {a, b, c, d, e,f) = (t, 0, 
0, 0, t, 0, 0), (6, 2, 0, 4, 0, 0) or (3, 1, 0, 1, 0, 0), t arbitrary. 

Lastly, we study the equation 

(2.13) 1 + 2« = 73*223* + 2*73*223/. 

LEMMA 2.10. The equation 

(2.14) 1 + 2" = 73* + 2*223/, b # 0 

has no solution. 

PROOF. Suppose that (a, 6, d, f) is a solution, b # 0. Since 1 + 2a = 
2*+2/ (mod 73), a = 0, d + If = 1 (mod 9). If b is odd, using mod 16, we 
deduce that d = 3 so t h a t / = 8 (mod 9). Immediately, using mod 9, we 
have a contradiction. Hence b is even so that 2a = 2d (mod 37), a = d 
(mod 36), a = d = 0 (mod 9),f= 5 (mod 9). Again we have a contradic­
tion using mod 9. 

LEMMA 2.11. 7%e equation 

(2.15) 1+2«= 73*223* 4- 2*73% c * 0 , 

Aas AIO solution 

PROOF. Let (a, 6, c, J, e) be a solution, c # 0. Suppose that e ^ 0. 
Then 6 = 0 and 1 + 2a = 22< (mod 73), a = 0, c = 5 (mod 9). Since 
2a = 2*(-1> (mod 37), a = d or d + IS (mod 36). In any event, a = d 
(mod 6) so that using mod 9, we have an immediate contradiction. 

Hence e = 0. If b # 0. then using mod 73 once again, a = 0, d = 1 
(mod 9). Using mod 7, we have an immediate contradiction. 

Thus b = 0 so that 

(2.16) 1 + 2* = 223* + 2*, c # 0 . 

Using mod 37, a = d (mod 36). Thus 1 = 3* (mod 5) so that c = 0 
(mod 4). Further A > 9. Also 1 + 2a = 2d (mod 223). Thus there are nine 
pairs (a, d) (mod 37). Since a = d (mod 2), we have eighteen possibil­
ities: (a, d) = (0, 38), (32, 40), (4, 60), (19, 41), (5, 45), (8, 24), (33, 19), 
(29, 53), (18, 22), (37,1), (69, 3), (41, 23), (56, 4), (42, 8), (45, 61), (70, 56), 
(66, 16) or (55, 59) (mod 74). Consider the prime P = 1777 (The orders 
of 2, 223 are 74, 16-37, respectively mod P). We have three cases. 

Case 1 is d ^ 9. Then 1 = (223)* (mod (512) so that c = 0 (mod 16). 
Using mod P and considering the eighteen possibilities for (a, d) (mod 74), 
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we conclude after some calculation that (a, c, d) = (0, 368, 38), or (37* 
480, 1) (mod (74, 592, 74)). Hence, since a = d (mod 4), we have four 
possibilities: (a, c, d) = (0, 368, 112), (74, 368, 38), (37, 480, 1) or (111, 
480, 75) (mod (148, 592, 148)). Now consider the prime Q = 149. (2 and 
223 are primitive roots mod Q and Q — 1 | 592). Hence each of the four 
triples (a, c, d) above yields a contradiction considering (2. 16) mod Q. 

Case 2 is d = 8. Then examining the eighteen possibilities for (#, b) 
(mod 74) above, we conclude that a = 42 (mod 74) and in fact a = 116 
(mod 148). Thus 110 = 223- (mod 149) so that c = 82 (mod 148), c ^ 0 
(mod 4), a contradiction. 

Case 3 is d < 8. Then examining (a, d) (mod 74), we have d = 1, 3 or 4. 
Easily, using mod 64, we have a contradiction. 

Thus we have proven the following theorem. 

THEOREM 2.12. The only solutions to 
(2.13) are {a, b, c, d, e,f) = (t, 0, 0, /, 0, 0), t arbitrary. 

3. Related equations. In this section we study two equations related to 
(2.13). 

THEOREM 3.1. The equation 

(3.1) 1 + 73" = 2*223- + 2*73*223/ 

has only the solutions (t, 0, 0, 0, t, 0), t arbitrary. 

PROOF. Let (a, b, c, d, e,f) be another solution. Using mod 3, b and d 
are even. Thus, using mod 8, b = d = 0. Further, since 73 has order 3 • 37 
mod 223, cf = 0 so t h a t / = 0. Hence we have 

(3.2) 1 + 73* = 223- + 73-, ace * 0 . 

Thus 1 = 4- (mod 73) so that c = 0 (mod 9). Using mod 4, we conclude 
that c = 0 (mod 18). Hence ( -8)* = ( - 8 > (mod 27) so that a = e (mod 
3). Further 9a = 9e (mod 32) so that a = e (mod 4). Hence 1 = 3- (mod 5) 
so that c = 0 (mod 4). Therefore 73* = 73- (mod 128) so that a = e 
(mod 16). Thus 1 = 2- (mod 17) so that c = 0 (mod 8). Hence 1 + 73* = 
73- (mod 223). Since a = e (mod 3), after considerable calculation, we find 
that there are eighteen possibilities: (a, e) = (0, 24), (1, 64), (5, 74), (8, 2), 
(9, 81), (12, 96), (15, 12), (26, 59), (30, 51), (31, 40), (34, 100), (55, 1), 
(61, 79), (81, 21), (89,14), (96, 108), (99, 84), or (102, 72) (mod 111). Hence, 
using mod 149 (73 and 223 have orders 37 and 148 respectively), we elimi­
nate all but five cases. Thus (a, c, e) = (5, 88, 0), (15, 84, 12), (31, 64, 3), 
(15, 32, 14), or (22, 116, 34) (mod (37, 148, 37)). Now consider (3.2) mod 
372. (73,223 have orders 74, 37 respectively). Since a = e (mod 2), we have 
ten possibilities. Only one of these, (a, e, c) = (5, 14, 37) (mod (74, 37,74)), 



ON DIOPHANTINE EQUATIONS 331 

does not yield a contradiction. Finally consider (3.2) mod the prime 593. 
(73, 223) have orders 8.37 and 592 respectively). Since c = 0, a = e (mod 
8), there are eight cases. In each of these we have a contradiction. 

THEROEM 3.2. The only solutions to 

(3.3) 1 + 223« s 2*73* + 2*73«223/ 

are (a, b, c9 d9e9f) = (t, 0,0, 0, 09t)9t arbitrary. 

PROOF. Let (a, b9 c9 d, e9f) be another solution. Using mod 73, ce = 0. 
Immediately, using mod 64, min{b9 d} g 5. Also, using mod 3, b and d 
are even. 

Suppsoe c = 0 so that 

(3.4) 1 + 223« = 2* + 2*73*223/. 

Easily b9 d > 0. Further 2 = 2b ± 2d (mod 37). Since b and d are even, 
in each of the four cases b or d = 2 or 4 and we easily have a contradic­
tion. 

Hence c > 0, e = 0 so that 

(3.5) 1 + 223« = 2*73< + 2*223/ . 

Suppose bd = 0 so that b = d = 0, 1 + 223« = 73' + 223/. Immediately 
7« = 7/ (mod 9) so that a = / (mod 3), yielding a contradiction mod 73. 
Hence bd > 0, 2 = ±2* + 2«" (mod 37). As in the previous case we have 
a contradiction. 
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