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ABSTRACT. Let Z be the classical Lie algebra of type 4, with a
basis {e, f, h} and [e, fl=~h, [e, h] = 2e, [f, ] = —2f over an
algebraically closed field of characteristic p > 2. Let £ be the radi-
cal of the u-algebra % of #. Our main result is the obtainment of
(p — 1)/2 sets of generators of #, and hence (p — 1)/2 criteria for
complete reducibility of restricted representations of %,

Introduction. For the classical Lie algebra % with a basic {e, f, h} and
[e, f1 = h, [e, h] = 2e, [f, K] = —2f over an algebraically closed field
of characteristic p > 2, Jacobson [2] showed that a sufficient condition
that a representation ¢ of % be completely reducible is that ¢(e)?! =
&(f)?1 = 0. Seligman [4] showed a necessary and sufficient condition
for complete reducibility of any restricted representation ¢ of % to be
#e)r1 + g(e)r—1¢(h) = 0 and @(f)*! + (h)@(f)*~1 = 0. Using the
minimal right ideals in the u-algebra % constructed by Nielsen [3] and by
an approach entirely different from those given by Jacobson and Seligman,
we obtained a number of generating sets for the radical 2 of %, and hence
a number of criteria for complete reducibility of restricted representations
of % including the one obtained by Seligman. Our approach involves
only computations within the u-algebra and is easily generalized to give
some necessary conditions for complete reducibility of restricted repre-
sentations of classical Lie algebras of rank ~ = 1 as was shown by Wong
[6]. Throughout this paper unless otherwise stated ., »#°, % and £ will
denote the aforesaid Lie algebra, field, u-algebra and radical respectively.

1. The main theorem and its corollaries.

MAIN THEOREM. Let % be the classical Lie algebra of type A, with a
basis {e, f, h} and [e, f] = h, [e, h] = 2e, [f, h] = —2f over an algebraically
closed field A" of characteristic p > 2. Then the radical & of the u-algebra
U of Z is generated by any one of the (p — 1)/2 sets of elements
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COROLLARY 1. Let ¢ be a restricted representation of &. Then ¢ is com-
pletely reducible if and only if

#0r- T1 1g(h) +0 = 0

and
[T @ + 0 e~ = o,

forany one ve{l,2, ...,(p — 1)/2} where I is the identity linear transforma-
tion.

The corollary follows since a restricted representation ¢ of % is com-
pletely reducible if and only if ¢ vanishes on the radical 2 of #. In case
v = 1, we have the following result.

COROLLARY 2. (SELIGMAN [4]). Let ¢ be a restricted representation of &£ .
Then ¢ is completely reducible if and only if

$@)?19(h) = — ()1 and J(M(/)~! = — ().

2. Proofs of main theorem and related lemmas. Our proof of the main
theorem is quite a computational one. It could in fact be verified by a
computer. First we shall establish a few lemmas which will facilitate the
proof.

LeMMA 1. Let A(h) be a polynomial in h over X and let n be any positive
integer. Then

(1) A(h)er = erA(h — 2n),

(2 f*Ah) = A(h — 2n)f,

() fer = erf — ner1fh — (n — 1)}, and

4) fre = ef* — nlh — (n — D)L

LEMMA 2. Let n be a positive integer such that 0 < n < p — 2. Then

(5) ex(h — n) = (er*lf — fer™D)/(n + 1), and

6) (h — n)fr = (efr! — frtle)/(n + 1).

Lemmas 1 and 2 are proved by induction on n.

LEMMA 3. Let m and n be any two positive integers less than p. Then
Min(m, #) o /m\/n (.2 . . i
frem= ) (—-1)!j!( .)(j)em—!{]'[ th—-m—-n+j+ 1)}f”—l.
7=0 J 7=1
Proor. Using formula (4) we prove the lemma by induction on m. A
complete proof is given by Wong in [5].

Next we shall need a theorem obtained by Nielsen to construct the
irreducible #-modules with which we can easily carry out the computa-
tions in our proofs.
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THEOREM 4. (NIELSEN [3, p. 17]). Let &, be a classical Lie algebra of
rank ¢ with a basis {ey, ..., €y by, ..., b, ey, ..., e_,} over an algebrai-
cally closed field of characteristic p > 7 and let %, be the u-algebra
of %, Let Etl=eb?. ..ot Frl=etl...et! and H(c) =
M= H(hy, c;) forc = (cy, ..., ¢,) €(Z), where H(h;,0) = 1 — h?~! and
H(hy, c)) = LM (hifcy, if ¢; # 0. Then the p right ideals E?—'H(c)F?—%,
in U, form a complete set of representatives of all isomorphic classes of
irreducible % ,-modules.

From Nielsen’s theorem when setting ~ = 1 we have H(0) = 1 — A?,
H(i) = X2Zi(hfi)ifori=1,2,...,p — 1, and that {et"1H(i)f*"1%|i =
0,1, ...,p — 1}is a complete set of nonisomorphic irreducible %-modules.
This leads us to the following result.

PROPOSITION 5.  Let m,; = et 'H(p — 1) f#71, and m; =
e 1H(p—2 —i)f*1fori=0,1,...,p—2. Then foreachi=0,1, ...,
p—1, L(i) = mA is an irreducible %-module having a minimal vector
m; with weight — i and a maximal vector m;e* with weight i. {m;, me, . . .,
mee'} and {me', met f, ..., met [} are two bases of L(i) and me'fi =
o;m; for some 0 # 0;€ A .

PRrROOF. Since f? =0, m;f = e"'H(p —2 — i)f? = 0. Hence m; is a
minimal vector. By formula (2) we have mz = —im;, hence —i is the
minimal weight of L(i). By Lemma 3, m,e*l = 0, and me/ # 0 for
Jj=0,1, ..., i Hence me is a maximal vector and {m;, me, ..., me'}
forms a basis of L(i). Again by Lemma 3 we have m,ef fit! = Qand m,e’f7 #
0forj=0,1,...,i Hence {me, mef, ..., me'fi} also forms a basis
of L(i). Since

meifs = (=D 1 U = G + Dljm;,
J=1
the last assertion of our proposition is proved.
LEMMA 6. Let m and n be any two elements in & , with m # n. Then
—l=G+mt+ng®)+ T +pH+ I t+)),
JEZ p—{m} JEZ p—{n}

where g(h) is some polynomial in h over X .

PrOOF. Let x be an indeterminate. Since ¢ is of characteristic p > 2,
xt — x = []jeg,(x + j). Computing derivatives of both sides we have
—1=2% I =+ =+mx+ ngx)
€2 ]EIP‘—(I')
+ I c+p+ I G+,
jEQ’p“(m) jE.Tp—(ﬂ)
where
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gx) =2 I G&+p
€L y—(myn) JEZ p—{i,myn)

is a polynomial in x over #". Replacing x by 4 we have the lemma.

LEMMA 7. For each vy = 1,2, ...,1/2(p — 1), let A", be the two-sided
ideal in % generated by the two elements e?~>[[25}(h + j) and[[]25}h + j)]
J?, and let R be the radical of %. Then for vy = 2, 3, ...,1/2(p — 1),
N1 is contained in N, and N ,3) p—1) IS contained in 3?.

ProoF. By Lemma 6,
e Y(h + 1)

—e? ik + Dk + 2k + 3)g(h) + Z H (et

=2JjE€

]

—et2e(h + I)Z:2 21-[ (h +j) (mod A7), by formula (1),
= i i

— 2 + 3)[2 M G+

=2 JEZ p—{i+2}

—et2(h + 3)h + 2k + 1)[%; M @+ j)}e

=2 JSZ y—i+2,1,2)
=0 (mod A4%).

Similarly, by Lemma 6 and formula (2), we prove (h + 1)f*-1 =0
(mod.#"). Hence .47 is contained in A",.

Assuming that 4", ; is contained in 4", forye {2, 3, ..., (p — 3)/2},
we shall infer that 4", is contained in .#",,;. By Lemma 6,

2—1
et I (h +j)
=1

2v—1 20+1
= e[+ j)} [(h + )+ 2+ gl + 3 T e+ ])]

=2 jEQ'p {7}

= —ep—W0tD e[ ]'[ h + j):l Z,‘ I1 (h + j)(mod 4",+;), by formula (1)

=20 JEZ p— (i}

= —erew[Tla+n|[3 T G+nk

=2 JEZ p—{i+2)
+1) h R h
= —ep—W j
el n][E, T, 0+ 0k

=0 (mod A4, .

Similarly, by Lemma 6 and formula (2) we prove that[[[25(h + /)] f?™> =
0 (mod .#',;,). Hence .4, is contained in .4, ;. This proves that fory = 2,
(p = 1)/2, &', is contained in #7,. Next we establish that
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N (-1 ,2 18 contained in # by showing that the generators of 4", 1),2
annihilate all the irreducible %-modules L(i).

Since by Proposition 5, L(i) has a basis {me”jn =0, 1, ..., i}, and
mei =0 for j> i, (me)e®V/2.T[22h +j)=0fori=0, I,...,
(1/2(p —)and n=0,1,...,i.Hencefor i =0, 1, ..., (1/2)(p — 1),
L(i) is annihilated by e+ 2[[#=2(h + j). For i=(p + 1)/2, ...,p — 1,
since [122%h + j) = 145 =7,

1—2

2 1
(meme PtV 2T (h + j) = mernt#tD/2. Hz(h —j), by formula (1),
=1 J=

= m, ]‘[ h—j+2n+p+ 1)}n+(p+1>/2

j=2

- []‘[ (—i—j+2m+p+ 1)}n,-e"+‘l’+1>/2= 0,

=2
because if n + (p + 1)/2 > i, mert@D/2 =0, If n+ (p + 1)/2 £,
p+1=2n+p+1=Z2i <2p— 1)whichthenimplies2 =(p + 1) —
p-D=m+(p+1)—ifis<p—1.Hence 2=2n+p+1-—i
< p— L. Sincejrangesfrom2top — L, [[232n +p + 1 —i - j) = 0.
Therefor e+ /2. T[2_%(h + j) annihilates all L@)fori=0,1,...,p— 1,
and is in £. Similarly, by Proposition 5 and formula (2) we prove that
[TT122%h + )If#™/2 is in . Hence A"y 1),z is contained in £. This
proves the lemma.

Our theorem will be proved if we show that £ is contained in .#7. For
this we need the concept of extent vectors defined by Curtis [1]. The
extent of a standard monomial emh*f» in % is defined as the integer m — n.
A nonzero element u € % is called an extent vector if u is a linear com-
bination of standard monomials of the same extent, and the common
extent is defined as the extent of » and is denoted by &(u).

PROPOSITION 8. (NIELSEN [3, p. 11]). If u and v are two extent vectors
in U, then each standard monomial of uv has extent equal to &(u) + &(@).

LEMMA 9. If x = uy + --- + u,€ R, where u; is an extent vector of
extent &(u;), and &u;) # Euy) for i # j, thenu;e R forj=1,...,n

ProoF. By Proposition 5, for each i =0, 1, ...,p — 1, {me’lp = 0,
1, ...,i} is a basis for the irreducible #-module L(i), and since x € %,
0 =mex = Rrymeu;, If &@meu;) >p — 1 = maximal extent,
meeru; = 0, If &(meru;) < p — 1, then since £(m;) = 0 and by pro-
position 8, &(meu;) = v + Euy) # v + &) = s(meny) for j +# k.
Since elements of % which are of different extents are linearly indepen-
dent and the m.eu;’s are either zero or of different extents, me'u; = 0
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for vy =20, 1, ...,i Hence u; annihilates L(7) for i=0,1,...,p — 1,
and uegforj=1,...,n

LEMMA 10. Let xe R be an extent vector. If &(x) £ 0, then xe
{Q + B)fP1), the. two-sided ideal in U generated by (1 + h)ft-1. If
&(x) =0, then xe {et"(1 + h)), the two-sided ideal in U generated
by et~1(1 + h).

ProoF. Let A4 = ((1 + A)f?71), and let &(x) = —d for some
de{0, 1,...,p — 1}. For each je{d, d+1,...,p— 1}, let &#; =
{ei~dA(h)fi|A(h) is a polynomial in h over x}. &; is a vector space
over & and X273%; is the set of all extent vectors in % of extent — d.
Our proof is carried out by induction in the following manner: first
we show that x e # 1 &, implies x € 4. Our next step is to assume
that xe 2 N X2k, & for k = dimplies xe 4, and then to infer that
xeZ (| L, &;implies x € A"

When x€ R (| Fp1, x = et~ 174A(h)f#-1. Let m, ; be as defined in
Proposition 5. Then 0 = m,_jex = 6, 1A(—1)m,_; where 0 # 0, ;€ A".
Hence A(—1) = 0 and x = e?~1-4B(h)(h + 1)f?-1 where B(h) is some
polynomial in /4 over ;#". Hence x € 4"

When xe () X2} &; for some ke{d, d+1, ..., p—1}, x=
2 2-tei~44 (h)f/ where the A (h)’s are polynomials in h over . For
ie{k,k +1,...,p — 1}, let m; be as defined in Proposition 5. Then
since e'—%—9 x € # and by Proposition 5, 0 = m;ei~%=D x = A, (i)me'f*.
Since i = k, meifk # 0. Hence Ay(i) = Oforie{k, k +1,...,p — 1}
and A,(h) = B(h)[14%=}(h — j) where B(h) is some polynomial in 4 over
2. Hence

x = ek—dB(h)E]j:(h - j)]fk + -:Z,,L e~ A (h)f .

Now fory=1,2,...,p — k — 1, we claim that

1

) x = (=B 1= ) |reoefie + 1) - (p = D]

J=k+

1
(mod Pi: & j) .
j=k+1
Using formulas (1) and (6) we prove (*) easily by induction on y. Setting
v=p—1—k in (*) we have x =y (mod X2}  &;), where y =
(— D)p-1-kek—dB(h)(h + 1)ft- et 1-*|[(k + 1) - - - (p — 1)]. Since y is in 4",
defined in Lemma 7, ye %. Hence x — ye 2 | X%}, ¥; and by
induction hypothesis x — y e 4". Since y e .4, we have x € 4. This
proves the first part of the lemma. Similarly, by Proposition 5, formulas
(2) and (5), and Lemma 7 we prove the second part of the lemma.
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PROOF OF THE MAIN THEOREM. Since Lemma 7 affirms that 4 € - - -
€ N p-ns2 E X It remains for us to show that Z & A47. Let 0 # x
€ #. Since each element in % is a finite sum of extent vectors, x = u;
+ -+« +u,, where the u;’s are extent vectors and &(u;) # &(u,) for j #
k. By Lemma 9, each u; € 2. By Lemma 10, u;e " forj=1,...,n
Hence # < 4. This completes the proof of the main theorem.
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