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DIOPHANTINE CHAINS 

JAMES C. OWINGS, JR. 

ABSTRACT. We solve a large class of quadratic binary Diophan-
tine equations without resort to the theory of quadratic number 
fields. Examples are given of equations amenable to our approach, 
including some which are intractable by classical methods. A 
corollary is drawn concerning the size of smallest possible solutions 
to certain quadratic forms. 

In most treatments of Diophantine equations, the determination of all 
integral solutions to the quadratic binary equation 

(*) ax2 + bxy + cy2 4- dx -f ey + / = 0 

with integral coefficients is reduced to the solution of a Pellian equation 
x2 — Dy2 = K, where D — b2 — 4ac. To solve the latter one must find 
the fundamental unit of the real quadratic field Q( VD ). This is a laborious 
process, to be avoided if possible. In [4] we presented an alternative ap
proach, first suggested by W. H. Mills [2], which applies whenever Û ^ O , 
b jz 0, c ^ 0, a divides b and d, and c divides b and e. In this paper we 
improve and simplify the methods of [4] and show how they may also be 
used in many cases when (*) does not immediately satisfy the divisibility 
conditions. There are still many equations we cannot solve (e.g., x2 — 
I3y2 = 1, whose smallest solution is JC = 649, y = 180), and we do not 
hold much hope that the method can ever be made completely general. 
However, it does apply to most examples we have seen considered in 
number theory texts and, in these cases, effects a substantial savings in 
computation. It has the added attraction of being completely elementary; 
in particular, no knowledge of the theory of quadratic number fields is 
required. 

If the pair (x, y) satisfies (*), then so do the pairs (x', y) and (x, y') where 
ax' = —ax — by — dand cy' = —cy — bx — e. The divisibility conditions 
are needed to ensure that JC' and y' will be integers whenever JC and y are. 
Thus, each integral solution (x, y) generates an endless (but possibly cyclic) 
chain • • • x"y'xyx'y" • • • and in [4] we showed that the number of such 
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chains is always finite. If the discriminant D ( = b2 — 4ac) is zero or 
negative, or positive but a perfect square, then (*) has only finitely many 
solutions, as may be seen by completing the square, and these may easily 
be determined. Therefore, we shall only be concerned with equations of 
positive nonsquare discriminant, although this is not an assumption in the 
following theorem. 

THEOREM. Suppose a divides b and d9 c divides b and e, a > 0, b ^ 0, 
and either (1) c > 0 and a + b + c < 0 or (2) c < 0. Define the following 
finite sets of integers: 

X = {x\ax2 + dx + / £ 0}, 

Y = {y I cy2 + ey + / g 0} in case (1), 

Y = {y \cy2 + ey + f ^ 0} î/i awe (2), and 

W = {w> | (a + è + C)H>2 + (d + e)w +f^0} in case(l). 

In case (1), let X' = X {) W, Y' = JFör to X' = W, Y' = F U W. In 
case (2), fer X' = X,Y' = Y. Then X\ Y' are finite sets of integers such that 
every chain of integral solutions to (*) contains some member of X' as an 
x-value or some member of Y' as a y-value. 

In case (1), this is an improvement of Thorem 1 of [4]. Case (2) is identi
cal to Theorem 3(b) of [4], but for completeness we repeat the proof. The 
vastly more complicated Theorem 3(a) turns out to be unnecessary in 
applications, as we demonstrate below. 

PROOF (of the theorem). The following equations follow directly from 
the defining relations ax' = —ax — by — d, cy' = —cy — bx — e, and 
equation (*). 

(1) a(xx') = cy2 + ey + fi 
(2) c(yy') = ax2 + dx + fi 
(3) a(x - y){y - x') = -((a + b + c)y2 + (d + e)y + / ) , 
(4) c(y - x)(x - / ) = -((a 4- b + c)x2 + (d + e)x + / ) , 
(5) a{x" - x') = b(y - / ) . 

Case (1). Suppose, for example, that X' = X U W, Y' = W and that 
Cis a chain having no member of X' as an JC-value and no member of Y' 
as a j-value. Then no member of C belongs to W, which, by equations (3) 
and (4), means that Cis monotone; i.e., either strictly increasing or strictly 
decreasing. But since X E X', we also know from (2) that every y-value 
in C has the same sign, clearly a contradiction. 

Case (2). Here X' = X and Y' = Y. Suppose C does not satisfy the 
conclusion of the theorem. Since c < 0, equation (2) tells us that consecu
tive y-values of C have opposite signs. So, if we delete every other x-value 
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from C, the x-values remaining form a sequence which, by equation (5), 
is strictly monotone. But, by (1), all x-values have the same sign, again a 
contradiction. 

We now show that the above theorem can always be used when the 
divisibility conditions hold, even if neither of its two cases holds directly. 
So suppose a and c are both positive. In the first place, if there are to be 
any solutions at all, gcd (a, c) must divide/, so that we may assume gcd(û, c) 
= 1. Also we may suppose b is negative, since otherwise we substitute — y 
for y. Therefore, since a and c both divide 6, b g — ac. If a, c ^ 2, then 
a 4- b 4- c ^a-ac + c = a(\ - c) 4- c ^2(1 - c ) + c = 2 - c ^ 0 . 
We cannot have a = c = 2, else gcd (0, c) = 2. So either a > 2 or c > 2, 
which means one of the two inequalities above is strict, yielding a 4- b 4- c 
< 0. Thus Û = 1 or c = 1; by symmetry, we may assume a = 1. Let 
6 = — fcc. Then a 4- 6 4- c ^ 0 means 1 — fcc 4- c ^ 0, implying that 
fc= l o r c = 1. If c = l,fl + fc + c ^ 0 becomes 6 ^ — 2 , which implies 
that D = b2 — Aac = b2 — 4 ^ 0. As mentioned before, we are only 
concerned with equations of positive discriminant. If k = 1 and c ^ 4, 
we again get b2 — 4ac = c(c — 4) ^ 0. Finally, if k = 1 and c > 4, we 
make the substitution JC = w + v, y = v. Our equation becomes (w + v)2 

— c(u + v)v 4- cv2 4- d(w 4- v) + ev + / = u2 + (2 — c)wv + v2 + du + 
(d 4- e)v 4- / = 0. where 1 4- (2 - c) 4- 1 = 4 - c < 0, so that case (1) 
of the theorem now applies. 

A linear transformation x = Pu 4- ßv, y = Ru + Sv such that x and 
y are integers if and only if u and v are integers is called unimodular. By 
Cramer's Theorem, an equivalent statement is PS — gi£ = ± 1. If one 
has an equation not satisfying the divisibility conditions, a discreetly 
chosen unimodular transformation may convert it to one that does. 
For example, suppose our equation is ax2 4- bxy + cy2 = m and that we 
have at our disposal a solution (P, R) of ax2 4- bxy 4- cy2 = 1 (in stand
ard terminology, this means the given quadratic form represents 1). Then 
P and R must be relatively prime; choose integers Q and S with PS — 
ßjR = 1. If we make the substitution above our equation becomes u2 4-
(2aPQ 4- b(PS 4- ßi*) 4- 2cRS)uv 4- (aß2 4- eßS 4- cS2)v2 = m, since 
aP2 4- Wi* 4- CÄ2 = 1. The hope is that aQ2 4- bQS 4- cS2 is small 
enough to divide the coefficient of uv (it cannot be zero if b2 — Aac is not 
a perfect square). Or if one has a Pellian equation x2 — Dy2 = K and 
knows that A2 — DC2 = 1, where C ^ 0, he can make the substitution 
x = u 4- y4v, y = Cv, yielding w2 4- 2,4wv 4- v2 = AT. In this case, the 
transformation is not unimodular, but this is not an essential problem, 
since u and v will be expressible as fractions with denominator AC, so 
one solves the equation u2 4- 2Auv 4- v2 = K(AC)2 instead. If Dis not a 
perfect square, and we have been assuming that it is not, then it is known 
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that x2 — Dy2 = 1 has infinitely many solutions [3, p. 197], but this 
is really no solace, as they may be hard to find. In theory, at least, the 
divisibility conditions can always be attained. Achieving them is often 
serendipitous, but if the coefficients are small, one has a reasonable 
chance, as in several of the examples below. 

EXAMPLE 1. u2 - 3v2 = —17. Let u = x9 v = x - y. The equation 
becomes 2x2 — 6xy 4- 3y2 = 17. Case (1) of the theorem applies. W = 0 , 
so we can take X' = X = {x\2x2 - 17 g 0} = {0, ±1 , ±2) , Y' = 0 . 
Setting x = 0, ±1 , ± 2 we get successively 3y2 = 17, y2 ± 2y = 5, y2 ± 
4y = 3, none of which have integral solutions. So u2 — 3v2 = —17 
cannot be solved in integers. 

EXAMPLE 2. [1, p. 246] w2 4- 3wv - 5v2 = 65. Let u = x + y, v = y. 

We get x2 -f 5xy — j 2 = 65. Case (2) of the theorem applies with X' = 
X = (X|JC2 - 65 g 0} = {x| |x| ^ 8 } , r = Y = {^| - j ; 2 - 6 5 ^ 0} = 

0 . In order for x2 — 5xy — y2 = 65 to be solvable in y, ( — 5x)2 — 
4(—1) (x2 — 65) = 29x2 — 260 must be a perfect square, which means 
x = ± 3 or ±6. If x = ±3 , ;; = ± 7 or ± 8 ; if x = ±6, >> = ± l o r 
±29. Using the formulas x' = — x — 5j, y' = — ̂  + 5JC we generate 
the chains 

. . . 1023 -197 -3$ 1 1_ 8 ^^43 -223 1158 . . . 

. . . 291 - 56 - 1 1 1 6 29 -151 -784 4071 . . . 

in which all ^-values are underlined, along with the negatives of these 
chains. Going back to u and v we get the following list of all solutions 
to the original equation: v = l,w = —10 or 7; v = 7, u = —31 or 10; 
v = 8, u = - 3 5 or 11; . . . ; v = -784, u = -935 or 3287; . . . ; and 
their negatives. 

A similar example [1, p. 330] is u2 + uv - 7v2 = 35. Upon setting 
u = x + 2y, v = y this becomes x2 + 5xy — y2 = 35, so that X' = 
{x\ \x\ ^ 6 } and Y' = 0 . Here 29x2 - 140 must be a perfect square, 
leading to the values x = ±3 , ±4 . From these we go back to the solu
tions (w, v) = (6,1), (7, 2), (29,13), (42,19) from which all other solutions 
may be generated. 

EXAMPLE 3. x2 - 97JC^ + y2 4- 53* - 29y + / = 0 , / = 61, 71. 

(a) / = 61. Case 1 of the theorem applies. 

X = {x\x2 + 53x4- 61 g 0 } = { - 2 , - 3 , . . . , - 5 1 } , 

Y = {y\y2 - 29j + 61 g 0} = {0, 1, 2, . . . , 27}, 

W = {W|-95H>2 4- 24w 4- 61 ^ 0} = {0}, so 
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weletJT = W= {0}, Y' = Y{j W = {0,1,2, . . . , 2 7 } . x = Oisimpos-
sible; so every chain of solutions has some member of y as a >>-value. 
Solving for x by the quadratic formula, we get 

2x = 97y - 53 ± ^9405^2 - 10166>> + 2565. 

So 9405}>2 — 10166>> 4* 2565 must be a perfect square. Trying successively 
y = 0, 1, 2, . . . , 27 we find there are no solutions. Classically, one sets 
9405j>2 - 10166>> + 2565 = v2, multiplies through by 4(9405), completes 
the square on y, and sets u = 2(9405)>> — 10166. This yields u2 — 
4(9405)v2 = (10166)2 - 4(9405)(2565), i.e., u2 - 37620v2 = 6852256. One 
now has the unpleasant task of showing that this equation has no solu
tion, or at least no solution which will make y an integer. In a private 
communication, Daniel Shanks showed that this equation is unsolvable. 

(b) / == 71. Zand Fare the same as in (a), Wis now {0, 1}. So we let 
X' = {0, 1}, r = {0, 1, 2, . . . , 27}. As before, x = 0 is impossible; 
however, we do have the solution x = 1, y = 1. Solving for x we find 
that now 9405>>2 — 101667 + 2525 must be a square. Testing y = 0, 1, 
2, . . . , 27 we get y = 1 as the only possibility. Therefore, all solutions 
lie in the single chain • • • 125 Ĵ  1 jtó 8370 • • • generated by 
(1,1) and the relations/ = -y + 97* + 29, x' = -x 4- 91y - 53.To 
determine these solutions classically one must solve the Pell equation 
u2 — 4(9405) v2 = 1, not an easy task in itself, and then enumerate 
by hand all solutions to u2 - 4(9405)v2 = (10166)2 - 4(9405)(2525) = 
8357056 satisfying certain bounds (see [3, p. 205, Theorem 108]). 

By constructing an appropriate list of squares, one can, using the above 
techniques, easily determine the range of x2 — 97xy + y2 4- 53* — 29}> 
between given bounds. For instance, the only possible values of / , 0 < 
/ ^ 100, are 28, 52, 54, 71, and 78. We know of no reasonable way of 
doing this by classical methods, as each value of / must be dealt with 
separately. In theory the entire range can be characterized, as in [1, p. 
328, Example 3], but it is difficult to apply those methods to the present 
example. 

We close with an easy corollary, one of several that may be drawn 
from our theorem. 

COROLLARY. Suppose a > 0, b ^ 0, a divides b, c divides b, and either 
c > 0 and a±b + c<0orc<0. Let m be an integer. Then ax2 + 
bxy 4- cy2 = m is solvable in integers x, y if and only if there exists a solu
tion (x, y) with \x\ g V\m\ or \y\ ^ V\m\. If m is positive, this can be 
improved to \x\ g V\nï/a\ or \y\ g V\m/c\. 
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