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DIFFERENTIATION ON THE DUAL OF A GROUP: 
AN INTRODUCTION 

MARTIN E. WALTER* 

Introduction. This paper is the first of a series wherein we investigate 
a theory of differentiation on the dual of a group together with its applica­
tions to and its interrelationships with other aspects of the theory of 
groups and their representations. One of the major objectives in the study 
of locally compact group G is the computation of G, the set of all (unitary 
equivalence classes of) continuous, unitary, irreducible representations of 
G equipped with a natural topology, the Fell topology, cf. 3.4, 18.1 [8]. 
There are immediate problems; first of all it is usually very difficult to 
compute all the elements of G. Secondly, G with its natural topology is 
rarely Hausdorff ; and elementary examples yield spaces G in which not all 
points are even closed. Finally G, in general, seems to lack any natural 
elementary algebraic structure. For these reasons the study of a "dif-
ferentiable structure" or of any other structure of G in any generality is 
very difficult; to see any structure at all one usually is forced to investigate 
specific classes of groups—or, indeed, specific groups. Of course, a great 
deal of study directed at specific groups and specific classes of groups 
has been carried out with immense success over the last several decades; 
and we shall directly benefit from these studies. 

The seeming intractibility of G leads us to consider other structures 
closely related to G, namely, the space of all continuous, unitary repre­
sentations of G, denoted Repu(G). This space can be refined even further 
to P(G)l9 the space of diagonal coefficients (of norm one) of the elements of 
Rep„(G), i.e., P(G)i is the collection of all continuous functions of positive 
type (of norm one) on G. The space P(G) is often called the space of 
positive definite functions. (There are strong indications that even larger 
spaces can be usefully employed in the study of G and G, but we leave 
this possibility totally untouched for now.) 

The space P(G\ is a convex, Hausdorff, topological semigroup. To 
recover G one needs "only" to find the extreme points of P(G\ and then 
perform a canonical construction. Thus a thorough understanding of 
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P(G)i leads to a thorough understanding of G. Now PiG^ is not a locally 
compact, differentiate, manifold, Nevertheless, it does have a certain 
amount of natural differentiable structure. In this paper we shall inves­
tigate, almost exclusively, the differentiable structure that P(G)i has at its 
identity, 1. We shall start very naively with the classical (but very funda­
mental) notion of "limit of difference quotients"; and we shall see where 
this leads us. It turns out that P(G)1 always has some differentiable struc­
ture at 1, even if G is discrete ! We were led, using elementary considera­
tions from the theory of operator algebras, i.e., C* algebras, to a natural 
characterization of "derivatives" at 1 in P(G)i. Geometrically a "deriva­
tive" at 1 will be called a semitangent vector at 1, the collection of all 
such vectors is denoted by N0(G). Algebraically these semitangents have a 
characterization as the class of (normalized) continuous functions of 
negative type on G. 

With these characterizations of N0(G) in hand, a literature search 
showed that our semitangents appeared throughout all mathematical 
theories related to groups. Semitangents, though not called such, appear 
in physics, probability theory, imbedding problems, cohomology of group 
actions, and so on. To be specific the following five objects or classes of 
objects are all examples of semitangent (or sets of semitangent) vectors ! 
Though four examples are in the relatively elementary context of Rn, 
«-dimensional Euclidean space, all five examples generalize completely. 

(1) D = d2/dx2 on R1 ;D(ff) ^ (Df)f + f(Df), pointwise inequality 
of functions. This is a simple example of a completely dissipative operator 
from physics. The operator D is a semitangent vector concretely realized 
by what we shall call a semiderivation. 

(2) The Lévy-Khinchin formula on Rw: 

~</>(y) = c +i/(y) + q(y) 

+Li' - •*-*"» - T^PfcFlw 
where x,ye Rw, c ^ 0, / is a continuous linear form, q is a continuous, 
nonnegative quadratic form and /i is a non-negative bounded measure on 
Rn — {0} such that the above integral converges. 

(3) A function c{) on R1 that satisfies <J)(e) ^ 0, 0(—x) = <fi(x), and 

f ó(x)(^V)* * *ß.(x)dx ^ 0 for all <pe C^R1) , 
J RI \ dx I dx 

where (p\x) = <p( — x), the bar denoting the complex conjugate, »denoting 
convolution, and <p an infinitely differentiable function with compact 
support. 

(4) H\G, H{TC)) = Z\G, H{%))\B\G, H{%)\ the first cohomology 
group of continuous, unitary representation % of G. 

(5) The "screw functions" of J. von Neumann and I.J. Schoenberg 
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which allow isometric imbeddings of Rw into Hilbert space. (A corollary: 
/P, 1 ^ p ^ oo, p T£ 2, cannot be isometrically imbedded in any Hilbert 
space.) 

The main point of this paper is that a unified treatment of seemingly 
diverse phenomena (which seem even more diverse in the context of a 
general locally compact group action) can be achieved by means of a 
thorough study of the fundamental classical notion of differentiation on, 
albeit a non classical space, the dual of a group. We have tried to motivate 
thoroughly and explain for the non specialist every aspect of the develop­
ment. It would be helpful but not absolutely necessary if the reader were 
familiar with §13, [8]. We have additional results in almost all of the areas 
touched upon in this paper which we have not included in the hopes of 
keeping this paper a comfortably readable size. Any one of the topics 
discussed could easily have an entire volume devoted to it. We also men­
tion that strictly speaking we are dealing in this paper with (possibly) 
unbounded, semidifferential operators that arise from the space G, or 
P(G)i. There is a growing body of research on derivations associated with 
function spaces on G: e.g., C*(G). We do not address this latter topic in 
any direct way at this time. 

It is our hope that this program of study of G will allow us to under­
stand the structure of G in terms of the algebraic and geometric structure 
of G—even if we are not able to concretely compute every element in G. 

At this time the author would like to acknowledge the generous support 
he received as an Alfred P. Sloan fellow. Without this support and that of 
the National Science Foundation this and related papers probably would 
not have been written for many years, if ever. The author would like to 
kindly thank Professors E.G. Effros, R.V. Kadison, L. Pukansky, J. 
Rosenberg, and their colleagues at the University of Pennsylvania for 
their hospitality while part of this paper was being written. Also, I would 
like to thank Professors C.C. Moore, M. Rieffel, M. Takesaki, W. Arve-
son, C. Akemann and their colleagues in the University of California 
system for their hospitality while another part of this paper was being 
written. In particular, E.C. Gootman, a contemporaneous visitor at the 
University of Pennsylvania, showed me an elegant proof to the first part 
of Proposition 1. We also had conversations with P. Muhly, a contem­
poraneous vistor at U.C. Berkely and S. Wassermann a visitor at the 
University of Pennsylvania. Professor C.C. Moore introduced me to 
Proposition 9 by proving it in a seminar. I would also like to thank my 
student, Eric Larsen, for taking an interest in and making a contribution 
to this subject. 

1. Translation on the Dual of G. If G is a locally compact, abelian 
group there is a group G, the group (under pointwise multiplication) of 
continuous homomorphisms of G into the complex numbers of norm 



500 M.E. WALTER 

one, i.e., characters, which is again (with the compact-open topology) a 
locally compact abelian group called the dual group of G [31]. A translation 
of G by x0 e G is defined as a map of the form xeG ^ x0x e G. If we 
look at the transpose of this map, TXQ, on a function space like C0((/), 
the complex algebra of continuous functions which vanish at infinity on 
(/, we gain a new perspective and a new tool for studying translation maps. 

The importance of the latter perspective becomes more apparent in 
the case of non-commutative locally compact groups. In this more 
general setting a dual group is not to be found [37]; and the correct 
choice of the analogue of G9 or the "underlying dual space" is not over­
whelmingly obvious. In fact various researchers in the field have experi­
mented with different choices for the dual space of G with varying success. 
Strangely enough, however, there is good agreement as to what the "natu­
ral" analogue of C0(G) should be; it is C*(G), the universal enveloping 
C*—algebra of Ll(G). Note that L\G) is the Banach *—algebra (with 
convolution and the usual adjoint) of equivalence classes of Haar inte-
grable functions on G. See [8] for a definition and discussion of C*(G). 

The basis for this analogy is as follows. When G is abelian C*(G) and 
C0(G) are isometrically *-isomorphic, and C0(G) may be characterized as 
the (sup-norm) closure in L°°(G) ofL^Gy = {/ : feL^G)}, where/is the 
Fourier transform off Note that we view the elements of L°°(G) as 
multiplication operators on L2(G), the Hilbert space of functions square-
integrable with respect to Haar measure on G ; and thus it is a *-subalgebra 
of j^f(L2(G)), all bounded linear operators on L2(G). A weak analogue of 
the Fourier transform for nonabelian G is co, see [35], the universal 
representation of G, or of Ll(G), on the Hilbert space Hw. The norm closure 
in j£?(7/,y), the space of all bounded operators on H^, of co(Ll(G)) is isomet­
rically *-isomorphic to C*(G). Thus C*(G) is an analogue of C0(G). One 
might object and say that X, the left regular representation of either G 
or Ll(G) on L2(G) is the "correct" non-abelian analogue of the Fourier 
transform on abelian groups since X is unitarily equivalent to the Fourier 
transform for abelian G. Thus the norm closure of /l(Z,x(G)) in j£?(L2(G)) 
might be considered the "correct" analogue of C0(G). This closure of 
A(L!(G)) is called Q*(G), the reduced C*-algebra of G. The two algebras 
C*(G) and Cf{G) are the same precisely when G is amenable, cf. §18.3 
[8], in particular, if G is abelian. In the non-amenable case Cf(G) is a 
nontrivial quotient of C*(G). Since Cf (G) can be recovered as a quotient 
of C*(G) we will conventrate our study on C*(G). 

We thus have in hand an analogue for C0(G), namely, C*(G), even 
though we have no underlying group when G is not commutative. What, 
then, are the analogues of translations? A rather satisfying theory can 
be constructed if we take, as the underlying space of C*(G), the space 
PiG^ of continuous functions of positive type which are one at e, the 
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identity of G. See [37], [8], [12]. The treatment of generalized translations 
which we will now give can be further generalized and made more abstract 
and perhaps more useful. However, in this paper we wish to remain as 
concrete as possible and push the classical point of view of translation and 
differentiation as far as it will go. 

Now P(G)i is a convex set whose extreme points, ext P(G)i, identify 
with G if G is abelian. Thus ext P(G)l9 often called the pure positive type 
functions of norm one on G, is an abelian group if G is abelian; but it 
is not even a semigroup in general. Nevertheless, P(G\ is always a semi­
group under pointwise multiplication; and we have for general locally 
compact G the following definition. 

DEFINITION 1. The (generalized) translation of P(G)X by p0eP(G)i is 
the map p e P(G)i *-+ p$p e P(G)ìy which is defined since P(G)i is a semi­
group. 

Translations as just defined are rarely invertible (only when p0 is a 
character of G) and are thus decidedly different from translations in 
groups as classically understood. A better feeling for this new notion of 
translation is obtained by seeing what it means in the abelian case. Here 
the semigroup P(G)i can be identified (via the Fourier-Stieltjes transform 
and Bochner's Theorem) with the convolution semigroup of probability 
measures on (5, i.e., the positive linear functional of norm one on C0(G). 
Under this correspondence ext P(G)i identifies with the point masses on 
G, viz., G itself. 

The above notion of translation on P{G\ induces (via transposition) 
translations of C*(G). 

DEFINITION 2. The translate of a e C*(G) by p e P(G)h denoted ap, or 
Tpa, is that unique element in C*(G) which satisfies (ap, q} = <a, pq} 
for all q e P(G)i. The brackets denote the linear space duality between 
P(G)x c B(G) (the Fourier-Stieltjes algebra of G) s C*(G)' and C*(G), 
[12]. 

REMARK. Assuming Tp is well defined on C*(G), as we will show below, 
<Tpa, by = <a, pb} for each b e B(G). To see this, express b as a linear 
combination of positive type functions. We can also extend the notion of 
translation to include "translation by any element bQ in B(G)". Thus TbQa 
for a e C*(G) is that unique element of C*(G) that satisfies (TbQ a, b} = 
<a, bQby for any b e B(G). To see that this extension is well defined let 
bo = Lf=o ikakpk, where i = V^l, ak^0 and pk e P(G)l9 k = 0, 1, 2, 
3. Then 

3 
Th = TiikakTpk 
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is defined and easily verified to be independent of the decomposition 
chosen for b0. Alternatively, the following proof can be repeated almost 
word for word for TbQ. 

A proof that ap exists in C*(G) and is unique is in order. Uniqueness is 
clear since P{G)X is a total set in B(G) ^ C*((7)'. Identifying as we will 
often do C*(G) with its universal representation o)(C*(G)), we see first 
that Tpo)(f) = a)(pf)eC*(G) for all feL\G), since <œ(pf),q> = 
$c(pf) (*)?(*) dx = ]Gf{x){pq){x) àx = <o)(/), pqy = < 7 > ( / ) , q} for 
all q G P(G)h cf., (2.9) [12]. Thus Tp is defined on a norm dense sub-
space of C*(G) and is norm decreasing there, since \\a)(pf)\\c*(G) = 
sup{|<û>(/>/), * > | : * e * ( G ) , ||6|| ^ 1} = sup{|<co(/), pb}\: beB(G), 
\\b\\ ^ 1} ^ s u p d l ^ ^ l l ^ l l ^ l l ^ l l ô l l ^ : beB(G), \\b\\ ̂  1} ^ 
llû>(/)llc*(G)- ßy the usual Cauchy sequence argument Tp extends uniquely 
to all C*(G). We note in passing that in the abelian case, identifying 
C*(<7) with C0(G), we get Tpf = ju*/, for f*L\G) c C*(G), where/? is 
the inverse Fourier-Stieltjes transform of probability measure pi on G. 

It is clear that if a e C*(G) and a ^ 0 then Tpa ^ 0, i.e., T^ is a posi-
tivity preserving linear map on C*(G). We can say much more, however, 
since Tp has the more delicate property of being completely positive. 

PROPOSITION 1. The translation operator Tp: C*(G) -• C*(G) for pe 
P(G)i is a completely positive, norm decreasing linear map. There is a 
unique extension of Tp to W*(G), also denoted Tp, which is identity pre­
serving, completely positive, norm decreasing and o-weakly continuous. 

REMARK. AS in the remark following Definition 2, Tb: W*(G) -+ W*(G) 
is a well-defined linear map for each b e B(G). Note that W*(G) is defined 
in [35]. 

PROOF. We have observed above that Tp on C*(G) is a norm decreasing, 
linear map. We can extend this map to all of W*(G), e.g., by using the 
double transpose, or by <7-weak continuity, such that (Tpx, b} = 
<JC, pb} for all x e W*(G), p e P(G)h b e B(G). If, abusing notation, e = 
ù)(e) is the identity of W*(G) then Tpe = p(e)e = e. By definition, cf. 
[4], [34], Tp on W*(G) is completely positive if Tp ® In: W*(G) ® Mn -> 
W*(G) ® Mn is positive for each natural number n. Note that Mn is the 
C*-algebra of complex n x n matrices and W*(G) ® Mn is the (unique) 
C*-tensor product. The map Tp ® /„ is defined by Tp ® In(x ® e{J) = 
Tp(x) ® e{j where etJ- i, j = 1, . . . , n are the usual matrix units. The com­
plete positivity of Tp on W*(G) can be established by means of a direct 
calculation. However, a far more elegant and informative proof can be 
had using Theorem 1.1.1. of [4], due originally to Stinespring. I wish 
to thank Elliott C. Gootman for bringing this proof to my attention. 
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THEOREM (STINESPRING). Let Abe a C*-algebra with identity and let 
H be a Hilbert space. Then a linear map cp of A into ü? (H) has the form 
<p(x) = v*7c(x)v9 where it is a representation of A on some Hilbert space 
K and v is a bounded operator from H to K if and only if <p is completely 
positive. 

We actually only need the only if part of this theorem which is easy to 
verify. Let C*(G) be identified with its universal representation co(C*(G)) 
on i/<y. Let (Hp, £p, 7UP) be the Gelfand-Naimark-Segal triple specified up 
to unitary equivalence by /?, viz., p(g) = (7cp(g)Çp\Çp)9 cf. 13.4.5 [8]. We 
claim that co(pf) = Q((o ® Kp)(f)Q* where / e L1(G), and co ® %p is the 
representation of Ll(G) on H^ ® Hnp obtained by integrating the co ® %p 

representation of G, cf. 13.3.1 [8]. The operator Q: H^® HJCp •-> Ha ® 
C%p s Hœ is the orthogonal projection onto H^ ® %p followed by 
the identification x ® Ç^eif^ -> xeH^. Since Tpco(f) = co(pf) we will 
have that Tp is completely positive since both sides of the equation 
(Tpco(f), by = (Q(œ ® iü^)(f)Q*9 b} are continuous in / . The /he re is 
viewed as varying over LX(G), a dense subset of W*(G) with the ^-weak 
topology. Note that we used C above for the complex numbers. 

Thus if <p, 7] e H^ then 

(ü)(pf)<p\rj) = jc(û>(g)<p\jj)p(g)f(g) dg 

= JG(co(g)^|^)(^(g)^|^)/(g) dg 

= ((a>®7up)(f)(p®Çp\V®Çp) 

= (Q(a>®7üp)(f)Q*<p\7]). 

It will be important to us later to observe that it follows from Stine-
spring's theorem that an identity preserving, completely positive map <p 
on a C*-algebra A satisfies the Kadison-Cauchy-Schwarz inequality: 

cp(x*x) ^ <p(x)*<p(x) for x e A, 

where ^ refers to the order on A induced by its positive elements. 
We have now mentioned the important properties of the translation 

operators {Tp: peP(G)i} that we will need. Nevertheless, we will end 
this section with a partial investigation of the more obvious questions 
that might arise due to the non-invertibility of these translations. In 
particular, what sort of kernels can the operators Tp have? 

First of all it is clear that the map p e P(G)! •-> Tp e j^(^*(G)) , the 
bounded linear operators on W*(G), is a (multiplicative) semigroup 
homomorphism, i.e., TPlP2 = TPlTP2 for pl9 p2 e P(G)i and that the 
semigroup of translations {Tp: peP(G)i\ is commutative. Also if 1 is the 
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identity of P(G)h Txx = x for all x e W*(G). If p # 1 in P(G)h then 
Tp ^ 7\ as can be seen from the equation Tpf = pf for fe Ll(G). More 
generally the map p i-> Tp is one-to-one, since if /?j =£ /?2

 m P(@)i it is easY 
to find a n / e L^G) such that/?!/ ^ /?2/; hence 7^ ^ 7^. The homomor-
phism p*-+Tp\s also easily seen to be continuous in the following 
sense: if/?a -» /?0 uniformly on compact subsets of G then for x e C*(G), 
|| TpX — J^xHc*^) -> 0. We remark in passing that for each xe W*(G)9 the 
map p e P(G)! >-» xp e W*(G) is affine, i.e., xXp+a_X)p = ^ + (1 - X)xq 

for A e [0, l ] , A ? e P ( G ) , 
It is clear that Tp ^ 0 for any /? e P(G)i, since any / e L^G) which is 

non-zero in a neighborhood of e e G satisfies 7 ^ / = pf & 0. It is equally 
clear that the kernel of Tp in LKG) c= C*(G) is much larger than {0} for 
many/?. In particular if the support of/? is contained in a compact neigh­
borhood K of e, cf. (3.2) [12], then any fe Ll(G) with support disjoint 
from K satisfies Tpf = pf = 0. Along this same line of thought we have 
the following result. 

PROPOSITION 2. Let G be a locally compact group. If /? e P(G)l9 then 
Tp uniquely induces a well-defined norm decreasing, completely positive 
map, also called Tp, on Cf(G). If p is never zero on G then {aeCf(G): 
Tpa = 0} = {0}. This result is also true if Cf(G) is replaced by Wf{G) 
{defined below). 

REMARK. The reduced C*-algebra Cf{G) s C*(G)/kerc+(G)A, where A 
is the left regular representation, is isomorphic with C*(G) if and only 
if G is amenable. The ^*-algebra WX(G) is defined to be the quotient 
algebra W*(G)/kerw.{G) X. Note that ker^ (G) A = [A(G)Y in the W*{G\ 
B(G) duality, and hence W£(G) = W*(G)I[A(G)Y s A(G)\ the dual of 
A(G) which is none other than the left-ring of G, i.e., the von Neumann 
algebra generated by {A(g): g e G}, cf. [12]. 

REMARK. If p = e* where ^ is a complex-valued function, then p is 
certainly never zero. We will soon encounter many positive type functions 
of this form. 

PROOF OF PROPOSITION 2. We will first verify that for any p e P(G)X 

that Tp. Cf(G) -• Cf{G) is well-defined. This will follow if x e C*(G)9 

À(x) = 0 implies X{Tpx) = X(xp) = 0. But for x e C*(G) X(x) = 0 is 
equivalent to 0 = <x, CÜ^V} for all f, rj e L2(G), i.e., <x, a} = 0 for all 
aeA(G), the Fourier algebra of G, cf. (3.11) [12]. But then <*,, a> = 
<x, /?a> = 0 for all a e A(G) since ^4(G) is an ideal in B(G), and /? e 5(G). 
Thus X(Tpx) = 0. Note that the ideal property of A(G) = AX(G) = {all 
coefficients of representation X\ was all that was needed to make Tp: 
Cf(G) -> Cf{G) well defined. In particular, we can define Tp: Wf(G) -+ 
W£(G) by the same argument used above. Recalling the definition of the 



DIFFERENTIATION ON THE DUAL OF A GROUP 505 

quotient norm it is easy to show that Tp is norm decreasing. That Tp is 
completely positive follows from the definition of complete positivity 
and the fact that Tp®In: Cf(G) ® Mn -> Q*(G) ® Mn is the "quotient" 
of Tp ® In : C*(G) ® Mw -+ C*(G) ® Mw. 

Suppose now that Tpx = 0 where x = x + kerc*(G) X G Cf(G), with 
x G C*(G). Thus, TpX = J^x + kerc*(G) A = kerc*(G) A, i.e., 0 = <x^, a> = 
<x, /?a> for all a G y4(G). Now /^(G) is an ideal in A(G) which does not 
vanish at any point of G since p does not. By the Tauberian property of 
A(G)9 3.38 [12], this ideal is norm dense in A(G), in particular <JC, a} = 0 
for all a G ̂ 4(G). Thus A(x) = 0 and Â: = 0. The same argument works 
for Wf(G). 

There is a general statement contained in the proof of Proposition 2. 
Suppose % is a continuous unitary representation of G (hence also a 
•-representation of W*{G)) on Hilbert space H%. Let z[^] be the (central 
projection) support of % in W*(G), viz., # is quasi equivalent to x e 
W*(G) .-> z[i]û)W G zM^*(G) , cf. [35]. Let A% = z\%\B(G) be the sub-
space of B(G) consisting of the coefficients of %, cf. [35]. 

PROPOSITION 3. The sub space A% is an ideal in B(G) if and only if 
z[7ü]Tqz[7c]o)(x) = z[7c]Tqœ(x) for all qeP(G)i and all x in a total subset 
of W*(G). In this case, the map Tqiz(f) = 7c(qf) for all fe Ll(G) and all 
q G P(G)i is well defined. 

PROOF. We note first that A% is an ideal in B(G) if and only if 
(pq)-zW = pq f ° r all q e P(G)i anc* all p e z[iz\.P(G)i. Now in general 
we have that (œ(x), (pq).z[n\) = (z[n]a)(x), pq} = (Tqz[7u]œ(x), p} for x 
in W*(G). Also <û>(x), pq} = < !>(*) , p} = <z[7u]Tqœ(x), /?>, p in 
z[%].P(G)i. Now if An is an ideal then (pq).z[%\ = pq for p e z[iu].P(G)i 
and qeP(G)x and it follows that (Tqz[%]o){x), p} = (z[7c]Tqo)(x), /?>. 
Thus z[7c]Tqz[iz]o)(x) = z[tf]r9ûj(x). Conversely, if (Tqz[7c]o)(x), /?> = 
(z[m]Tqa)(x\ p} then <<a(x), ( M ) - Z M > = <<*>(*),/>#> for a total set of 
œ(x); hence (/?^).z[^] = pq for all # G P(G\ and ^ is an ideal. The fact 
that A% is an ideal in B(G) implies that Tqx G ker^*(G) % for all x G 
ke%*(G) %. This fact together with the identification of CÜ(X) + ker^*(G) % 
with Z[TÜ]OJ(X) (via zWFF*(G) s ^ S ^ * ( G ) / ^ S »F*(G)/ker^(G) *), 
and the identification of Z[#]Û)(X) with n(x) for x G W*(G) implies that 
TpTc(f) = %{pf) f o r / e Z,i(G) is well defined. 

A case where we have essentially that Tpiz(f) = 0 ^ 7z(pf) for some 
/ G LX(G) and certain % and/? is as follows. Let G be a non-compact group. 
Let % be the representation determined by the complement of A(G) in 
B(G)9 cf. [35]. That is, we have A% ® A{G) = B(G). In particular A% con­
tains the coefficients of any finite dimensional unitary representation of G; 
A% contains the constant functions at least. If 0 ^ /? G A(G) then Tpz[ic]<o(x) 
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satisfies (Tpz[iz\o){x\ b} = (Z[7Ü]CO(X), pb} = (z[7c]œ(x), (1 - z[jc]).(pb)y 
= 0 for all b in B(G), x e W*(G), i.e., TPZ[TC]CO(X) = 0. Thus identifying 
zMco(f) with 7ü(f) for fe L\G\ we might say that Tp7c(f) = 0 for all 
fe Ll(G). However, % is not the zero representation of W*(G), so 7c(pf) ¥^ 
0 for some fe Ll(G). It is interesting to note, cf. [18], that for G = R 
there exists a positive type function/? such that z\%\p = p and/?2 e A(G). 
Thus for our % above 7 > ( / ) ^ 0 for s o m e / e L\G) but (Tp)

27u(f) = 0 
fo ra l l / eL i (G) . 

As a last remark we note that to each x e Wf{G) there is a closed subset 
of G, which is non empty if x ^ 0, called the support of x. The support of 
x, denoted supp(x), may be defined to be the smallest closed subset F of 
G such that <x, a} = 0 for all a e A(G) fl CC(G) which vanish in a neigh­
borhood of F. Note that CC(G) is the set of continuous complex-valued 
functions with compact support of G. From (4.8) [12] we see that a neces­
sary condition for Tpx = 0 for x e Wf(G) is that p(g) = 0 for all g e 
supp(x). A sufficient condition that Tpx = 0 is that p vanish in a neigh­
borhood of supp(x). 

2. Differentiation at 1 in P(G)X. 
We now turn to the concept which unifies what may seem to be several 

diverse notions, examples of which were given in the introduction. Very 
simply we try to "differentiate at 1 in P(G){9 as though it were a Lie group. 
Though P(G)i does not resemble a Lie group near 1, it is nevertheless a 
convex subset of linear space B(G). It therefore makes perfectly good sense 
to ask whether the geometric model of a derivative at 1, namely a tangent 
vector to P(G)i at 1, exists. Looking at this geometric model of a tangent 
as a limit of a difference quotient we quickly see that such a tangent can 
be represented by a function on the group G. Limiting ourselves (in this 
paper) to complex-valued limits we have the following notion. 

DEFINITION 3. A semitangent vector at 1 to P(G)i is any continuous, 
complex-valued function ^ on G satisfying <fi(g) = iimn_^00 n(pn(g) — Ì) 
for each geG and some {/?„} c P(G)i, {n} the natural numbers. Note 
that we will often discuss groups Gd, where Gd represents the group G 
with the discrete topology. 

REMARK. It will be clear from the second corollary of Theorem 1 that 
Definition 3 could have been stated in a more general, yet equivalent, 
form. For example, {«} could be replaced by any subsequence {rij} of the 
natural numbers such that l im,.^ nj(pn.(g) — 1) exists for all geG. 

REMARK. Note that limw_00«(/?n(g) - 1) = limM_00(/?ff(g) - 1)/(1/« - 0) 
represents a "derivative with respect to the parameter 1/«" in the classical 
sense of a limit of quotients of differences. 

We will denote by NQ(Gd) the collection of all semitangent vectors at 1 
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in P(Gd)i. Note that the subscript 0 in N0(Gd) is to remind one that if 
<p e NQ(Gd), then <p(e) = 0. We will denote by N0(G) the collection of all 
continuous functions on G which are in N0(Gd). If both <p and — <p are in 
NQ(Gd) we shall call <p a. tangent vector at 1 to P{Gd\. It will be clear that 
NQ(G) is the set of semitangents at 1 to P(G\, cf. Theorem 1 and its 
corollaries. A cp e N0(Gd) is not ncessarily continuous; but if cp{g) = 
limw_>oo n(pn(g) — 1), pn necessarily converges to 1 at least pointwise on G. 
We will soon see that there are semitangents which are not tangents. We 
will also see that tangents generate one-parameter groups in P(Gd\ while 
semitangents generate one-parameter semigroups. This then is the justi­
fication of the term semitangent. 

We will shortly address questions regarding existence of and methods 
of construction of elements on N0(G). For now let us quickly note that 
p — 1 is in N0(G) for each p e P(G)i. To see this observe that pt{-) = 
exp(r(/?(-) - 1)) is in P{G\ for all / ^ 0. To see this note that exp(#(-)) 
= H™=o tnpn(')/nl is of positive type (and continuous by uniform conver­
gence and the continuity of p) since the sum and product of positive type 
functions is again of positive type. The e~* > 0 can be viewed as a norm­
alization factor, i.e., pt(g) = e-'etf <*> is 1 for g = e. Thus {pt}mo is a 
one-parameter semigroup in P(G)i, continuous in the sense that if t -> 
t0, then pt -> ptQ uniformly on G. Now observe that lim,^«, w(/?1/lf(g) — 1) 
= lim^ooHCexpCO/«)(/?(#) - 1)) = p(g) - 1. Thus/? - 1 is a semitangent 
at 1 on PiG)^ 

Let us now proceed to derive some necessary and sufficient conditions 
that a complex function (p on G be a semitangent at 1. The following 
theorem is a natural consequence of the point of view we have thus far 
developed. 

THEOREM 1. Let (p be a continuous, complex-valued function on G. Then 
(p is a semitangent at 1 to P(G)l9 i.e., cp e N0(G), if and only if <p(e) = 0, 
(p(g~l) = <p(g) for all g e G, and for each choice of natural number n and 
each choice of n elements gl9 g2, . . . , gn from G the n x n matrix 
(pigiai) - (pigj1) - (pigi)) is positive hermitian, i.e., 

(D t mj'gi) - m1) - MEOW* ^ 0 

for any choice of complex numbers X\, X2, . . . , Xn. 

COROLLARY. A function <p is in N0(Gd) if and only if<p(e) = 0, <p(g~l) = 
<p(g)for all g e G and for each natural number n and each choice ofgi, . . . , gn 

in G we have that the n x n matrix ((p{gjlgi) — (pigj1) — (p(gt)) I
s positive 

hermitian. 

REMARK. In the interest of clean typography we prove Theorem 1 using 
the "clean" definition of semitangent vector, namely Definition 3. The 
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proof below will work, however, if a more general definition of semitan-
gent vector is given, cf. the first remark following Definition 3. 

PROOF OF THEOREM 1. By definition, if <fi e N0(G) then 0 is continuous 
and for all g e G, 0(g) = l im^oo^/^g) — 1), as in the definition of semi-
tangent vectors. Since pn(e) = 1 for all n, c])(e) = 0; and since pn(g~l) = 
pn(g) for all n and all g e G, 0(g_1) = 0(g) for all g e G. Now consider 
the set of completely positive maps { 7 ^ } ^ of W*(G) into W*(G). 
By the Kadison-Cauchy-Schwarz inequality we have that TPn(x*x) §: 
(TPnx*)(TPnx) for all x e W*(G). In other words 

n{TPn(x*x) - (TPnx*)(TPnx)} ^ 0 

for all x e W*{G) and all n. Let us see what this expression yields in the 
limit as n -» oo for x = 2 / U Akgk, where gl9 . . . , gn are in G and Xl9 . . . , Xn 

are complex numbers. [Note that we are identifying g in G with o)(eg) in 
CÜ(J^*(G)) where eg is the unit point mass at g.] To simplify notation we 
will use x for 2?=i A*g* until the final step of the computation. Thus 

lim n{TPn(x*x) - Tpx*Tpx} 
»-•oo 

= lim n{TPn(x*x) - x*x + x*x - (Tpx*)x + (TPnx*)x - (Tpx*){Tpx)} 
W->oo 

= lim n(TPn - Tù(x*x) + lim «(J, - TPn)x*x + lim T^nÇT^ - Tp)x 
n—*oo n-+°o w—>oo 

= l i m TntPn-lfa**) - l i m (Tn(Pn-l)^X - l i m (Tp„xTn(Pn-l)X)' 
»—>oo »—>oo »—>oo 

Now for our choice of x = 2?=i fagk w e s e e ^ a t 

( » \ » 

E ^ Ä T ^ * ) = l i m 2 hh<Pnig?gò - % ^ 
ï*,£=l / W->oo *,£=1 

= 2 hk<l)(gïlgi)gïlgi-
i,k=l 

In a similar fashion 

J™ (^i)(gte*))*(gte<) = J^Wtor1)**1*,; 

lim (rAS w Y r ^ i f ] A,ft) = S Wte,)^,-. 
M->oo \ k=i A v = i / f,*=i 

We observe that l i m ^ « , / ^ ) = 1 since l i n v ^ n(pn(g) — 1) exists and 
is finite by assumption. Also for x = 2£=i hgk the above limits can 
be viewed as being taken with respect to the norm in W*(G)9 e.g., 

\\Tn{Pn_l)g - 0(g)g||^(G) = \\g\\w*iG)\n{pn{g) - 1) - 0 (g ) | - 0 
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as« -• oo, fo rge G. 
Now the norm limit of positive elements in W*(G) is positive; hence 

we have 

È iMüftd - #***) - </>(g,)Wg< ^ o. 
i,k=l 

Since 1 e P(G)i we have that 

< È W W * * ) - tftór1) - fl^ter1** i> ^ o, 
thus 

for each n, each choice of gl9 . . . , gw in G and each choice of complex 
numbers Al5 . . . , ln. 

We now turn to proving the converse. If the conditions on cjj of Theorem 
1 really mean that (p is a semitangent at 1 in P(G)h then in analogy with 
the theory of Lie groups it should not be unexpected that {et(^}t^0 is a 
one-parameter semigroup in P(G)i. If we could indeed establish this then 
0 must be a semitangent, since 0 = lim,_>0(l/f )(e^ — 1) and e^ e P(G)i 
for all t à 0. 

We will thus show that a continuous function cjj satisfying equation (1) 
of Theorem 1 and (])(g~l) = (]){g) for all g e G , determines a one-parameter 
semigroup of continuous functions of positive type, {et(^}t^0. If (p(e) = 0, 
then this semigroup is in P(G)V The proof is straightforward. We merely 
must verify that for t ^ 0 that é$ is indeed of positive type, i.e., 

for each natural number n, each choice of complex numbers Ai, . . . , Àn 

and each choice of gh . . . , gn in G. One way to verify this last inequality 
is by expressing the n x n matrix {(])(gjlgl) — (fiigj1) — (J>(gt)) in the form 
Œk=ifrkJUkj)> i-e-> (/w) is ^ e positive hermitian matrix square root of the 
"0-martix." If one inserts EjLi/W*/ + (J){gJl) + <J)(gt) for $(gjlgt)9 then 
uses the exponential series expansion followed by some tedious manipula­
tions, one gets the desired result. This was our first proof. 

A much simpler proof uses the easily verified fact that if A = (a^), 
B = (bjj) are two positive hermitian matrices, then A o B = (a -̂ft,-/), 
the "component-wise" product (sometimes called the Schur product) of 
A and B is also a positive hermitian matrix, cf. p. 9 [10], p. 683, vol. II 
[17]. Thus 
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i,J=l 

since if A = (<])(gjlgl) — (fiigj1) — <fi(gd) is a positive, hermitian, n x n 
matrix, the "Schur exponential" etA = / + tA + t2A o A + t3AoA<>A + • • • 
is also positive hermitian for t ^ 0. Note that we used the fact that 
^ ( S - 1 ^ ^ ) for all g eG. 

COROLLARY. Let cp be a continuous function. Then cp is a semitangent 
vector at 1 in P(G)i, i.e., <f> e N0(G), if and only if{et(^}t^0 is a one-parameter 
semigroup in P(G)i. 

REMARK. It is fairly easy to see that a function cjj satisfies 0(g -1) = <p{g) 
for all g e G and equation (1) if and only if <p satisfies equation (1'), viz., 
((fiigj^i) — </>(gj) — <fi(gi)) is a positive definite hermitian matrix for each 
natural number n and each choice of gh ..., gn in G, i.e., 

(io t im'g.) -Wi)- ttsMh ^ o 
for each natural number n, each choice of complex numbers X\, . . . , Xn 

and each choice of gl9 . . . , gn in G. If 0 satisfies either equation (1) or (1') 
then (j)(e) ^ 0. 

DEFINITION 4. A function <p which satisfies (1') is said to be of negative 
type, and we write cjj e N(Gd). The continuous functions of negative type 
on G are denoted N(G). 

REMARK. The term negative type is often used synonomously with the 
term negative definite. The former terminology is perhaps more accurate, 
but the latter seems to be more prevalent, at least in mathematics written 
in English. 

It is immediate from the definition of N(Gd), N(G\ N0(Gd), and N0(G) 
that they are convex cones, i.e., Xcpi -f ßfa *s m the set if <fil9 <j>2 are and 
A, fi ^ 0. If (J) belongs to any of the four cones, then ^, the complex 
conjugate, as well as Re cjj also belongs. We have that N(Gd) and N0(Gd) 
are closed under pointwise convergence while N(G) and NQ(G) are closed 
in the compact-open topology, i.e., topology of uniform convergence on 
compact sets. Finally the range of 0 e N(Gd) lies in the closed left-half 
plane of the complex numbers, viz., 2Re (jj{g) ^ <fi(e) ^ 0 for all g eG. 
It is not hard to see that (J) e N(Gd) actually implies Re (jj(g) ̂  </>(e) g 0 
for all g eG. 
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The unnormalized version of the corollary immediately above is as 
follows. 

COROLLARY. Let <]) be a continuous function on G. Then <j> is of negative 
type, i.e., <fi e N(G), if and only if(i) <p(e) ^ 0, and (ii) eW is of positive type 
for all t ^ 0. 

This result was first discovered by Schoenberg for G = R1 in [33] ; and 
his proof in a real number context generalizes, modulo some technicalities 
with complex numbers. 

The corollary immediately above can be strengthened to the following. 

COROLLARY. Let $ be a complex function on G. Then <p is continuous 
and of negative type, i.e., (Jj e N(G), if and only if <fi(e) ^ 0 and e^ ( ) is 
continuous and of positive type, i.e., e^ ( ) e P(G),for each t > 0. 

PROOF. The only if part of this corollary is contained in the above 
corollary. Conversely, suppose (p(e) ^ 0 and that e^ ( ) is in P(G) for 
each t > 0. Consider that 

1 poo 

A _ - = I e-*eWdt 
4>(g) Jo i - m 

holds for each g e G, because / H+ e-'<W<*>> is continuous and integrable 
(since \e*^{g)\ ^ eV{e) g 1) on [0, oo) for each g eG. However, we claim 
that JgV-'e'i^ dt is continuous for g in G. To see this let ga converge to 
go in G. Then 

I /»oo /»oo I 

I e-teufaa)dt - \ e-'eW^dt 
Uo Jo I 

/•oo _-, 
< 2 1 / 2 1 e-teWV)$Ui\eW,e) __ £^(£aV))|l/2 dt 

since e^(,) is of positive type, cf. 13.4.7 [8]. Given e > 0, choose N e [0, oo) 
so large that e~N < e/4. Then the above integral equals 

21/2 [Ne-tfa(t)dt + 21/2 f °°e-<fa(t)dt 
JO J N 

where 

f (t) = eW2)<l>{e)\et<l>ie) __ e ' ^ a V ) | l / 2 # 

The last integral is no more than 2e~N < e/2. The first integral of the sum 
can be made less than e/2 for sufficiently large a. This follows since fa(t) 
is continuous in t for each a, and by hypothesis fa(t) -• 0 as a -• oo, for 
each te[0, N]. Thus by the usual compactness argument for sufficiently 
large a,fa(t) < e/4, for / e [0, N], and we are done. 
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If <]) belongs to N(G) then <fi — cp(e) belongs to N0(G); in other words, 
any <fieN(G) is easily normalized so as to belong to N0(G). For this 
reason we will most often restrict our attention to N0(G). The fact that 
(J) — (J)(e) G NQ(G) for all <]) e N(G) follows from an alternate characteriza­
tion of negative type functions given by Schoenberg in [33]. 

PROPOSITION 4. A function <f> belongs to N(Gd) if and only if (p(e) ^ 0; 
(J) = ft and 

(i") S ^gfsdhh §; o 

for any choice of natural number n, any choice gl9 . . . , gn G G, and any 
choice of complex numbers Ai, . . . ,A„ such that 2?=i h = 0. 

PROOF. We leave the reader to construct the proof or to look it up in 
[33], [5]. We warn the reader that the set of negative definite functions 
defined in [5] is { — </>: <{>eN(Gd) as herein defined}. Recall also that by 
definition ^(g) = (pig"1) for all g e G for any complex function cp on G. 

REMARK. The functions defined by equation (1") in Proposition 4 are 
often called conditionally positive definite in the literature. 

COROLLARY. If<J) G N(Gd), then <fi - <])(e) G N0(Gd). 

PROOF. Let c/>0 = <j> — <fi(e)9 then <fi0(e) = 0 and $ = </>0, since cj)(e) ^ 0 
is real. Finally if £?=iAf- = 0, then 

S ^ I W Ä - = xh^igj'gi) hh ^ o 
by Proposition 4, since cp G N(Gd): 

REMARK. We have already observed that p e P(G)X (respectively p e 
P(G)) implies that p — 1 (respectively, p — p(e)) is in NQ(G) (respectively 
N0(G)). This also follows from Proposition 4. 

We now have the following corollary of the various equivalent formula­
tions of negative type functions. 

COROLLARY. Let 0 be a continuous complex-valued function on G. The 
following are equivalent: 
(1) (J) is of negative type; 

(2) ÌGÌGWT1*) - m - Ä / w dydx ^ °f°r eachfe c ^ ) ' 
(2') ìcÌG^iy'1^ - (p(y) - (fi(x))dft(y) d/j(x)^0 for each (bounded) 

complex Borei measure jj, with compact support; 
(3) </>(e) ^ 0, ^ = $, and ]G\G ^rW/UVW dy dx ^ Ofor each fe 

CC(G) such that \Gf(x)dx = 0; 
(3') (])(e) ^ 0, <fi = 0, and \G\G ^(y-^djrfj) dft(x) ^ Ofor each (bounded) 

complex Borei measure ^ with compact support such that /j,(G) = 0. 
PROOF. Note that ft(g) = ^ÖT*) for all geG, and / * = A~lP where 
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A is the modular function for G. We leave the proofs to the reader; 
however, note that (1) => (2) => (2') => (1) follows from the proof of 
13.4.4 [8] with only slight modifications. Also (2) => (3) and (2') => (3') are 
trivial. The proof of implication (3) => (3') follows much the same lines as 
(2) => (2') with the observation that if // has compact support and //(G) = 
0 then for fe CC(G) // * / e CC{G) and JG// * / = //(G) \Gf{x)dx = 0. The 
implication (3') => (2') follows much as in the discrete case, cf. §7.5 [5]. 

REMARK. The condition $Gf(x)dx = 0 or 0 = //(G) = \Gdp(x) is 
equivalent to saying f or // is in the kernel of the trivial 1-dimensional 
unitary representation, 1. 

REMARK. If for fe CC(G) a continuous function 0 satisfies 0(/# * / ) ^ 
( 0 / ) ^ / + / * * ( 0 / ) , ^ being operator order, i.e., <o(0( /**/ ) )è 
(oWrco(f) + <o{f)*œ(<J>f\ then J{0(*)(/* */)(*) - (0/*) */(*) -
(/* * (0/))(*)}l dx ^ 0. This reduces to (2), hence 0 is of negative type. 
A similar result holds if 0 is not necessarily continuous but 0 satisfies 
the above relationships with / replaced by £?=i^£^> a complex-linear 
combination of point masses. 

There are two more properties of semitangents at 1, or more generally, 
negative definite functions, which follow immediately from the definition. 
We give first the following. 

DEFINITION 5. A non-negative, subadditive function p on G is called a 
seminorm on G, i.e., p: G -• [0, oo) and p(gig2) ^ p(gi) + p(g2)-

PROPOSITION 5. If 0 e N(Gd), then p^ = |0|1 /2 is a seminorm on G. If 
0 e NQ(Gd) then we also have that p^e) = 0. 

PROOF. Equation (1') for n = 2, which we call the 2-positivity condition 
for negative type functions, is equivalent to saying that the matrix 

/0(e) - 0teî) - </>(gi) 0(g2~
1si) - <j<g2) - <P(gi)\ 

Wrfe) - TO - 0fe) 0(e) - 053 - 0fe) / 
is non-negative hermitian for any gl9 g2 e G. Using the fact that 0b = 0 
and taking the necessarily non-negative determinant of the 2 x 2 matrix 
above we are led to 

(2) I0(gr^2) - 05T) - 0(£2)I
2 è (0(e) - 2Re 0(g!))(0(e) - 2Re 0(g2)). 

The right hand side of this expression is less than or equal to 4|0(gx)| 
|0(g2)|; it then follows that |0(g lg2)| S (I0(gi)l1/2 + I0(g2)l

1/2)2. 

COROLLARY. Let 0eiV(G), then H^ = {geG: 0(g) = 0} is a closed 
subgroup. 

COROLLARY. Let f be a function on a group G such thatf(g~l) =f{g) = 
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Re/(g) g f(é) = Ofor all g in G. Then f satisfies the 2-positivity condition 
if and only if\f\1/2 is a seminorm on G. 

REMARK. Proposition 5 was noticed in [33], footnote page 525. See [5] 
also. The seminorm property, being a consequence of the 2-positivity 
condition alone for negative type functions is indeed a much weaker 
condition than complete positivity. For example, every non-compact, 
compactly generated group has unbounded seminorms, cf. [20], but many 
groups, cf. Theorem 2 below, have only bounded negative type functions. 

One very important consequence of Proposition 5 is that the "growth 
rate" of |0(g)| as g -> oo of any 0 e N(Gd) is limited. We will use this idea 
later on. For now let us briefly observe that |0(gw)|1/2 ^ «|0(g)|1/2, i-e> 
|0(g*)| ^ «2|0(g)| for every g e G. 

The last elementary property of negative type functions that we will 
discuss now is as follows. 

PROPOSITION 6. Let function 0 be in N(Gd). Then 0 is an algebraic 
homomorphism into the additive complex numbers if and only / /Re 0(g) = 
(])(e) = Ofor all g e G. In this case 0 = iy where y is an algebraic homomor­
phism of G into the additive reals, and all functions 0 of this form are in 
N(Gd). 

PROOF. If Re 0(g) = 0(e) = 0 for all g in G, then since 0 G N(Gd) 0 
satisfies equation (2). Thus <J)(gîlg2) = 0(gi) + 0(g2) for all gl9 g2 in G. 
Replacing g1 by gf1 we see that 0(gig2) = f(gi) + ^ fe ) for all gl9 g2 in 
G, i.e., (p is a homomorphism. Conversely if ^ is a homomorphism then 
0(g-i) = - ^ ( g ) for all g eG. However, Re (J>eN(Gd) if </>eN(Gd); 
and for all g e G, Re 0(g) ^ 0(e) = -0 ( e ) = 0. Thus Re 0(g~1) = 
- R e 0(g) ^ 0 implies that Re 0(g) = 0 for all g G G. Finally, if 0 = ij>, 
7* a real, additive homomorphism, then 0 easily satisfies equation (1'), 
i.e.,0G7VXG,). 

REMARK. See [5] also. 

REMARK. If y is a homomorphism of G into the additive reals than 
-y2 e N(Gd). This can be seen directly from the definition of N{Gd). 

Up through the proof of Theorem 1 we have developed our ideas 
essentially as we first discovered them. After having discovered equations 
(1) and (V) we decided to search the literature to see if this type of function 
had been discussed before. Our search first brought us to [6]; and then 
we quickly discovered that "our" semitangents had been considered as 
early as 1938 by Schoenberg in [33], at least for real valued negative 
definite functions on G = R. Sometime later we became aware of [5] 
which contains a fairly complete and concise account of negative type 
functions on abelian groups. Since much of the treatment in [5] works 
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equally well for non-abelian groups we will refer to [5] (as we have already 
done) for needed properties of negative type functions even when the 
group under consideration is not abelian. 

We have searched the literature relevant to this paper fairly thoroughly 
and have two remarks to make. The first is that the notion of semitangent 
(though never called such) occurs in a variety of contexts, as mentioned 
in the introduction. We will proceed to discuss the various "applications" 
of the notion of semitangent shortly. The fact that such diverse topics 
can be seen to be different manifestations of such a fundamental notion 
as differentiation lends interest and depth to the subject. Secondly, 
nowhere in the literature have we seen equations (1) or (1') derived as a 
natural consequence of the combined notions of complete positivity and 
differentiation. This, of course, cannot be expected in treatments of the 
subject from a commutative point of view. It appears that our approach 
is new, and hopefully will have interesting consequences. For example, 
from any discrete sequence {pnj] converging to 1 in P(G)i such that 

l i m « / / ? ( . ) - 1) 
j—>oo 

exists at each point in G we get a $ e N0(G) and hence a one-parameter 
semigroup in P(G)i. This leads us to a method for actually constructing 
functions in N0(G), as we shall see later. We view this latter occurrence 
as "proof" that we have actually "differentiated" at 1 in P(G)i. 

Before leaving Theorem 1 too far behind we would like to observe 
another fact implicit in the first half of its proof. Let us begin with the 
following definition. 

DEFINITION 6. A linear operator 3 defined on a norm dense subspace of 
C*(<7), denoted Dom(3), with values in C*(G) is called a semiderivation on 
C*(G) if x e Dom(3) implies x* e Dom(3) and 

(3) 3(X*JC) ^ (dx*)x + x*dx 

whenever x e Dom(3) and x*x e Dom(3). We define a semiderivation on 
W*(G) to be a linear operator defined on a ^-weakly dense self-adjoint 
subspace of W*(G), denoted Dom(r(3), which satisfies (3) whenever x and 
x*x are in Dom^(3). Note that ^ is the operator order. 

REMARK. If ^ is a continuous complex function on G and 3 is a semi-
derivation such that do)(f) = 0)(<])f) or fe CC(G), then <p is of negative 
type. To see this consult the second corollary of Proposition 4. In a similar 
fashion if 3 is a semiderivation such that dœ(g) = (p(g)o)(g) for g e G, 
$ a function on G, then cjj is of negative type (but not necessarily continu­
ous). From this remark and the next proposition we see that the notion of 
a semiderivation (that "comes from" a function 0) and the notion of ^ 
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being a semitangent are equivalent. We note in passing that there are 
semiderivations, in fact derivations of W*(G) or C*(G) which do not 
come from a function on G via pointwise multiplication on G. For ex­
ample, an inner derivation determined by an element from Ll(G) or 
C*(G) "comes from pointwise multiplication on the dual of G". 

PROPOSITION 7. Each semitangent <fi in N0G) defines a semiderivation, 
denoted 9^, which is a closed operator on C*((7). A semiderivation, again 
denoted 9^, is also defined on W*(G). If cj) is a tangent (at 1 in P(G{), then 
df is a derivation. 

PROOF. In either the C*(G) or W*(G) case we take the domain of 9^ to 
be the "natural" one, i.e., those x in C*(G) (respectively W*(G)) for 
which the norm limit as t -• 0 of (\lt)[Te^x — x] exists in C*(G) (respec­
tively W*(G)). We define for such x: 

déx = lim (l/t)[Tet<fiX - x]. 
Y no 

Now {Tet<i,}ti>0 is a one-parameter semigroup of norm-decreasing opera­
tors, i.e., contractions, on C*(G) (respectively W*(G)) and Tew = Tx is 
the identity operator on C*(G) (respectively W*(G)). On C*(G) the one-
parameter semigroup is very nicely behaved in that we have the following 
continuity condition: 

lim \\Tet<fiX — x\\ç*,G) = 0 for every x e C*(G). 
no 

This last condition is clear when x = co(f), fe Ll(G)\ and a "3-epsilon" 
argument coupled with the norm density of o)(Ll(G)) in C*(G) finishes 
the proof of the continuity condition. We thus can appeal to standard 
results for semigroups, cf. 13.35 [32], chap. X [19], to get that 9^ on C*(G) 
is a closed densely defined linear operator. 

Since the involution * is an isometry on C*(G) (respectively W*(G)) we 
have 

9^(x*) = l im(l / / ) [ r^x* - x*] = {\im(l/t)[Tet,x - x]}* = (9^)* 
Y no no v 

for every xe Dom(9^), (respectively Domff(9^)). A trivial modification of 
the first half of the proof of Theorem 1 then shows that if JC and x*x are 
in Dom(9^) (respectively Dom(T(9^)) then equation (3) holds. Finally, since 
Dom(9^) c Dom„(9^) and the former is ^-weakly dense in W*(G), the 
latter is also, cf., the following remarks also. 

Now suppose that <fi is a tangent at 1, i.e., 0 and —<J)eN(G); thus 
Re $ = 0 and, by Proposition 5, ^ = iy where y is an additive homo-
morphism of G into the reals. Thus {e**?} is a one-parameter group of 
characters, and {Teitr} is a one-parameter group of isometries of C*(G) 
(or W*(G)). Since eilr is a character, 
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for fl9f2 e Ll(G); it follows that 

TeitT{pciX^ = (TeitrXi)(Teitrx^) 

for all *i, x 2 e W*(G). (A norm density argument gets this result for jq, 
jt2eC*(G). A (7-weak density argument, using the separate tf-weak con­
tinuity of multiplication, will do for xh x2e W*(G).) Thus if x, y e Dom(3^) 
(resp. Dom,(3/)) then ^eDom(3^) (resp, Dom,(3^)) and d^xy) = (dfx)y 
+ xd<j,y by the usual calculus argument. Note that Dom(3^) and Domff(3^) 
are *-subalgebras in this case. 

COROLLARY. Each semitangent 0 in N0(G) defines a semiderivation, 
denoted dx ̂ , which is a closed operator on Cf(G), the reduced C*-algebra. 
A semiderivation, again denoted 3 ^ ) , is also defined on Wf(G). If $ is a 
tangent (at 1 in P(G){) then 3 ^ is a derivation. 

PROOF. The semigroup {e^} fè0 in P(G)1 induces a semigroup of com­
pletely positive maps of Cf (G) and Wf(G), 

(see Proposition 2). The proof of Proposition 7 now applies. 

COROLLARY. Each semitangent </> in NQ(G) defines a closed, normal oper­
ator on L2(G), denoted M^, and 

M M = etM*, 

t ^ 0; where Met<j, is the bounded operator on L2{G) given by multiplication 
by et<p for each t ^ 0. If (]) is a tangent {at 1 in P(G)i) then each Me^ is 
unitary and M^ is skew-adjoint. 

PROOF. See 13.37 [32]. The condition 

l | M ^ | - £ | | L 2 ( G ) - > 0 a s f - + 0 , 

needed to apply 13.37 [32], follows since e^ -> 1 uniformly on compact 
sets of G. 

REMARK. There is a dual Haar weight <px on Wf(G) and a natural dual 
Hilbert space L2(Wf, <px) which is isometrically isomorphic with L2(G), 
cf. p. 158 [36]. There is thus a version of the last corollary on L2(Wf, çj). 
We will address this in more detail in another paper. 

REMARK. The operators 3 ,̂ 0 e NQ(G), are examples of completely dis-
sipative operators. Such operators are of some importance, for example 
in physics, [24], [3], [15]. Since (at t = 0) we can differentiate T& ® In, 
which acts on W*{G) ® Mn (or C*(G) ® Mn), we get that 30 ® In is a 
semiderivation for each natural number n. 
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REMARK. From the general semigroup theory we get 

(Î) ~dt^et^ = d<i)Tet<i>x = Tet<td,f,x 

for x e Dom(3^) and 

( t t ) T#x = lim exp(f(l/e)[ï> - Tx]x) 

for all x e C*(G), with convergence being uniform for t varying over com­
pact subsets of [0, oo), cf., [32], [19]. 

REMARK. In this group algebra case we can say a good deal more about 
Dom(3^) and Domff(3^) than can be deduced from general semigroup 
theory on Banach spaces. In particular (o(Cc(G)) a Dom(3^) for each 
<l) e N0(G). Recall that C£G) is the space of continuous, compactly sup­
ported complex-valued functions on G. The linear space CC(G) is also an 
algebra (with convolution for product) with involution/* = Zf_1/b, where 
â is the modular function on G and f\g) = / (g _ 1 ) for g eG. This is im­
portant since it implies that equation (3) is not vacuous; in fact, d^coif) = 
a>(</>f) and d^œip * / ) ^ (d^>(f)*Mf) + a)(f)%a>(f) for a l l / e CC(G). 
It is easy to see that (o(Cc(g)) is in the domain of polynomial operators 
in several variables formed from the 3^, (fieN0(G). Thus "semidifferential 
equations" and inequalities can be formed and their solutions contem­
plated. We can also easily see, cf., proof of Theorem 1, that the linear 
span of {(o(g): g e G} is an algebra with involution in Dom,(3^) which is 
not in Dom(3^) if G is not discrete, cf., [1]. Thus the extension of 3^ from 
C*(G) to W*(G) is often non-trivial. We thus have an abundance of 
"smooth elements" in C*(G) (and W*(G)) in the sense that they can be 
semidifferentiated by all (several variable polynomials in) 3^, (J) e N0(G). 
Questions about Dom(3^) and Domff(3^) obviously remain and are beg­
ging to be discussed; and, indeed, we shall shortly return to discussing 
Dom(3^), if only briefly. However, to investigate Dom(3^) and Doma(3^) 
thoroughly here would take us too far from the "introductory" nature 
of this paper and increase its length beyond reasonable bounds. To get 
a glimpse of some of the intricacies that abound, even when G = Rn see 
p. 142ff [9]. 

To partially illustrate what we have done so far let us consider what 
are perhaps the two simplest examples. These examples occur in the con­
text of the corollaries to Proposition 7. 

EXAMPLE 1. Let G = R1; the arguments that follow are quite similar, 
except for notation, on G = R*, k = 2, 3, . . . . If/?„(-) = e*y*'\ n = 1, 
2, . . . , then fa(x) = lim^^n(e*x/n) - 1) = ix for each jceRi. Thus, 
since (f)i and -fa (where in a similar fashion -fa = l i n v ^ n(e~tX')/n - 1) 
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are semitangents at 1 to P(Rx)i ; fa (or - fa) is a tangent. As is well known 
the operator Af_ ,̂ multiplication by - ^ o n L ^ R 1 ) , say, is unitarily 
equivalent via the Fourier-Plancherel transform to D, i.e., d/dy, the 
differentiation operator on L2(G) = L2(Rl). Thus the identity Dff = 
(Df)f + fDf becomes, if, say, / i s a rapidly decreasing Schwartz function, 
fa(f* * / ) = (faf*) * / + / * * faf- Hence the non-negative "error term" 
in equation (3), viz., d^x^x) — (d^x^x — x*d<j,x ^ 0, is 0 in this case, 
i.e., we are looking at a true derivation (obviously). 

EXAMPLE 2. Let/?w2() = cos(( •)/>*), « = 1 , 2 , . . . ; then 

fa(x) = lim n\pnz{x) — 1) = lim n2(cos(x/n) — 1) = — x2 

»->oo »->oo 

for each X G R 1 . Thus fa is a semitangent (which is easily seen not to be a 
tangent). Clearly fa corresponds to Z>2, or d2/dy2

9 on G = R1. In particular, 
for / a Schwartz function, say, we have D2(ff) = (D2f)f + fD2f + 
IDfDf, which transforms to 

0 2 ( /* * / ) = (0 2 / # ) * / + / * * faf + 2 ( - ^ / ) # * ( - f t / ) 

and thus the non-negative "error term" in (3) is 2( — faf)* * ( — faf). 
The reader might ask: What about Z>3? This transforms to x K-> /X3 

which is easily seen not to be of negative type. (Check equation (1'); or 
see that ix3 grows faster than Proposition 5 allows, i.e., |/(«x)3| = nz\ixz\ 
which is greater than n2\ix3\ for x ^ 0 and n > 1.) 

This is perhaps an opportune moment to make one last comment on 
Dom(3^). Integrability of a function / on G is not generally sufficient to 
guarantee that œ(f) e Dom(3^). For example if X[_if 13 is the characteristic 
function of [— 1, 1] c R1, then XL-hU* Xi-hll is not everywhere differen­
t ia te , yet it is the Fourier transform of an integrable function on R1. How­
ever, if (f,fe Ll(G), then fyû>(/) = (o(<pf) and w(f) e Dom fy for 0 e N0(G). 
Since Proposition 5 limits the growth of any (J> in N0(Gd) we are able to 
find a "rate of decay" for a function/which will imply a certain "degree 
of smoothness" of œ(f). 

DEFINITION 7. Le t / e Ll(G), then/is said to have a mean rate of decay of 
order d or more if there exists a compact neighborhood K of e e G such 
that 

(i) l/oo xc/(g)^g = 0; and 

(ii) Z>*~2 f l / f e ) l * < o o . 

REMARK. We apply this notion here only for d ^ 2. The symbol J£w de-
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notes the product of K, n times with itself in G. Also ((J^Li Kn)c is the com­
plement of {J™=1 K

n in G and Kn\Kn~l is the complement of Kn~l in Kn. 
Clearly the notion of mean rate of decay is related to the growth rate of 
the Haar measure of Kn\Kn~l for the choices of K which may be possible 
in G. For example, some groups have some order of polynomial growth, 
others exponential growth, and so forth. We now have the following re­
sult. 

PROPOSITION 8. If the complex-valued function fe Ll(G) on locally 
compact group G has mean rate of decay of order 4 or more, then co(f) is in 
Dom(3^) for all $ e NQ(G). In this case we have d^œif) = o)(</>f)for all 
(fi e NQ(G)9 i.e., co(f) is "completely semidifferentiable". 

PROOF. Given (J>eN0(G), let M = sup{|^(x)|: xeK}. We have for 
some K 

f W)\\fix)\dx = S L , \^)\\f{x)\dx 
J G n=l v Kn\Kn 1 

oo /• 

^T]Mn2\ \f(x)\dx<ao. 
n=l J K»\K"-1 

Note that sup{|0(x)|:xeKn} ^ n2M. 

REMARK. I f /has mean rate of decay greater than d for all d ^ 2 then 
ù)(f) is in the domain of any polynomial, semidifferential operator (with 
constant coefficients, say). 

REMARK. Definition 7 and Proposition 8 make sense for measures. 
Using this generalization one can further generalize the second corollary 
following Proposition 4. 

REMARK. There are groups for which each cjj e N(G) is bounded, cf. The­
orem 2 below. For these groups semidifferentiability as thus far developed 
is not a very restrictive notion, e.g., Dom 3^ = C*(G) for cjj bounded. 

We have thus far seen that the situation regarding the semigroup P(G)h 

the semitangent space at 1, namely the cone N0(G), and the exponential 
map of NQ(G) into P(G)i bears a strong resemblance to the Lie group 
situation, with, of course, major differences. Nevertheless, it is worthwhile 
to keep the analogy in mind for it suggests many directions of further 
study which we will pursue here and elsewhere. For example, by analogy 
with the classical situation, two computational techniques are suggested 
for finding semitangent vectors. 

The first technique, though quite simple, has applications, cf., Theorem 
2 below. It is an "additive technique" and is simply this. For each p e 
P(G)h P — 1 e No(<7)> as we have noted before. Linear combinations of 
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the form %%=ih(Pk - 1), « a natural number, Xk ^ 0 for k = 1, 2, . . . , 
n, are again in N0(G). Any series Tit=ih{Pk - 1)> with Xk ^ 0, which 
converges pointwise yields an element in N0(Gd). If, say, uniform conver­
gence on compact subsets of G can be arranged, then the series converges 
to an element of N0(G). Since this computation occurs in the cone of 
semitangents it might be called a "Lie cone" technique. For some ap­
plications of this technique see [2]. 

The second computational technique is of a "multiplicative" nature, 
and though basically simple is rather delicate. The essential idea (which 
we adapt below) goes as far back as von Neumann's studies of matrix 
groups, cf. Chap. 24 [19]; and it is this. Select a sequence {pn} c P(G)i 
which converges to 1 e P(G)i (in the compact-open topology) "at such a 
rate" that (at least a subsequence of) {/?*} converges (in the compact-open 
topology) to some p00eP(G)i with p^^l. Hopefully one then has that 
Poe = et for some 0 e NQ(G), e.g., logp^ = cjj makes sense. 

Let us go through an example of this computation in a simple but 
nontrivial situation. Let G be a discrete group, and let {xh x2, x3, . . . , 
xn} = K be a finite subset. Suppose also that G = {J™=1K

n, i.e., G is 
finitely generated. Now let | | / | | = sup{|/(x)|: xeK} fo r /any complex-
valued function on K. If {pn} is a sequence in P(G)i which converges to 
1 pointwise with pn±\ for all n, then \\pn — 1|| > 0 for all n. (Ifpn(x) = 
1 for all xeK, then pn(x) = 1 for all xeG. This is the only place where 
we use the fact that K generates G.) Now select e, 0 < e < 1. Let pno be 
the first element of {pn} such that \\pno — 1|| < e/2. Now let nx be the 
largest natural number such that ||/?wo — 1|| < eßn^ Relabel pno as pnv 

Then we have e\2(nx + 1) ^ \pnx - 1|| < e\2nx. Now let pm be the first 
element of {/?„} with n00 > n0 such that \\pnQ0 — 1|| < eß{ni + 1). Let 
n2 be the largest natural number so that \\pngo — 1|| < eßn2. Relabel 
pm as pn2, and we have e/2(n2 + 1) ^ \\pn2 - 1|| < e/2n2 with n2 > nt. 
Continue by induction, obtaining a sequence {pn)f=\ such that 

(*) £/2(«,. + 1) g \\pn. - 1|| < e/2n„ ; = 1, 2, . . . , 

while pn. converges to 1 as 7 -> 00. 
A sequence of elementary estimates yields 

(**) el A < \\pvt - 1|| < 3e/4 

for sufficiently large j . 
Now {pp.} has a convergent subsequence (which we will again denote 

{pp.} to simplify notation) in P(G)^X, the collection of continuous functions 
of positive type of norm less than or equal to one, since P(G)^ is a(B(G), 
C*(G)) compact. So there is a p^ e P(G)^ such that 

a(B(G), C*(G))-\im p»J=Poo, 
/ - • 0 0 
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in particular co(ee) e C*(G) and 

lim (p»J o){ee)y = lim (pn(e))»J = 1 = p^e). 
/—>oo j—*oo 

Thus Poo e P(G)1 and />*> converges to poo pointwise on G. We also have 
that/?«, # 1 since e/4 £\\poo-l\\û 3e/4. 

Now define 

0(g) = lim nj(p (g) - 1) 
/'—>oo 

for each geK. We can see that this limit exists as follows : 

for all rij and all geK. Thus the binomial series gives : 

PnfS) = (1 + (Pnjig))"' - 1)V"> 

= l+£(1/" /)((^te))By-1)*' 
hence 

"//>„/£) - i) =g».{1/Wy)((^/te))"' - D*. 
The series 

s-ay 
converges uniformly with respect to « and }> for ||j>|| û p < 1. Thus for 

0(g) = lim rifa (g) - 1) 
j—>oo 

oo 

= L((- i)*-W(/ag)- i)* = îog/»»^) 
A r = l 

and 0(g) # 0 for at least one geK. 
We now show that 

0(g) = lim nj(p (g) - 1) = log ^ ( g ) 

holds for all g eG. Of course, if |/?oo(g) — 1| < 1, then for sufficiently 
large j , 

\{pnj{g))nj - 1| ^ p < 1 for some p > 0. 

Thus the same argument as above shows that 0(g) = Hindoo nj(pn.(g) — 1) 
exists and 0(g) = log/>oo(g). If l̂ oo(g) — 11 è Ì» then there exists a complex 
number e*9w such that k ' ^ / ^ t e ) - 1| < 1. Thus 
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W9i8KPnt&Y' - II = l(exp(/Ö(g)/AzyK.(g))^ - 1| ^ p < 1 

for some p > 0 and sufficiently large y". By the binomial series argu­
ment above we then have that limy_M30/iXexp(iô(^)//iy)pw/(g) - 1) = 
log e^^pUg)- But 

nj(Qxp(i0(g)/nj)pn.(g) - 1) 

= n / A / g ) + W(g)lnj)pHJ(g) + (l/«2.)i?y(g) - 1) 

where {Rj(g)} is a bounded complex-valued function of j . Thus 

lim nj(exp(i6(g)/nj)p (g) - 1) 
y—>oo 

= lim K(/>w.(g) - 1) + /0(gK/g) + ( l / # y ( g ) } 

= lim«y(/> (g) - 1) + /0(g) 
y->oo 

= l0g^>/?0 0(g) 

exists and we have 

0(g) = lim rijip .(g) - 1) 
y-*oo 

= log e ^ / J ^ g ) - /0(g) 

= log/?oo(g) 

for suitably defined continuation of the log function. 

REMARK. It is easy to see that \Poo(g)\ è exp( — n2e/2) for all geKn. 
(Use Proposition 5 to get 1 — njs/2 ^ \pnj(g)\ for g e Ä>.) 

In order to be certain that there are sequences {p„} c P{G)i converging 
to 1 it is best to assume G is ^-compact, i.e., countable if G is discrete. If 
G is separable then P(G)i with the compact-open topology is a metrizable 
topological space. The assumption we made in the argument above, viz., 
G is finitely generated, is really not necessary. All we need in order that 
a (j), defined as in the above discussion by a sequence {pn} converging to 
1, be not identically zero is that there be a point g e G such that \pn(g) — 11 
> 0 for all n. We have thus proved the following proposition. 

PROPOSITION 9. Let G be a countable discrete group. Let {pn} be a se­
quence in P(G)i converging pointwise to le P(G)x. If there is a geG such 
that \pn(g) — 1| < Ofor all n, then there exists a (possibly relabeled) sub­
sequence {pn'} of {pn} so that 

clig) = lim /i'Qvfe) - 1) 

exists for all geG and <j) e N0(G), 0 ^ 0 . 
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COROLLARY. If G is a finitely generated discrete group and {p„} is a se­
quence in P(G)i converging to 1 in P(G\ with the compact-open topology, 
such that j ? „ ^ l for all n, then there exists a (possibly relabeled) sub­
sequence { /v} °f {Pn} sucn *nat 

cfig) = l imf l ' ( /vte) - 1) 
»'-KX5 

exists for all g e G, <fie N0(G) and c]j ^ 0. 

REMARK. Such sequences as hypothesised in Proposition 9 always exist, 
provided G has more than one point. 

REMARK. We have a certain uniqueness result here, in that up to a posi­
tive multiple the <p of Proposition 9 depends only on its defining sequence. 
If 

(J) = lim n'(pnr — 1) 
n'->oo 

and n" is another subsequence of the natural numbers which converges to 
oo as«' -> oo, then 

lim n\pn, - 1) = lim « /*> ' ( /> , ' - 1) 

if lim («"/«') = X e [0, oo]. 
»'-»•oo 

We now briefly turn our attention to generalizing the foregoing results 
from the discrete case to the (continuous) locally compact case. Our first 
observation is of a negative nature. We exhibit a sequence {/?„} a P(G\ 
converging to 1, uniformly on compact sets, such that no matter what sub­
sequence is chosen or how the "rate of convergence" is adjusted the (con­
tinuous) (J) e NQ(G) obtained is identically zero. The reader may note that 
G = R1 exhibits the following example. 

Let {Un}™=1 be a sequence of compact neighborhoods of e e G with the 
interior of Un containing Un+i for all n and f)%=i Un = {e}. Let qn e P(G)X 

have support contained in U„, cf. [12]. Now let 
pn = 2-i'"l + (1 - 2-i/»)<7w. 

Clearly pn e P(G)x. Thus given any g # e in G, for sufficiently large n, 
pn(g) = 2~1/w; and hence limnpn = 1 in P(G)i with the compact-open 
topology. Thus no matter what subsequence we choose, or the rate of 
convergence chosen we must obtain that 0 is constant for all g e G, 
g ^ e. If $ e N0(G), then continuity requires that <]j(g) = 0 for all g e G. 

This example is not disappointing. It merely makes evident the fact that 
we need to impose some condition (such as we imposed in Proposition 9) 
to guarantee that the semiderivatives (J) obtained by the "differentiation 
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process" (of Proposition 9) are not identically zero. The careful reader will 
find that the proof of Proposition 9 generalizes to arbitrary locally com­
pact G, except at one crucial point. When a a(P(G), C*(G))- convergent 
subsequence of {pfynj is obtained we have no a priori guarantee that the 
limit, /?oo, is in P(G)i. In order to generalize the proof we must assume some 
condition which will guarantee that a limit point (not equal to 1) of {p%} 
will be in P(G)i. Suppose, in addition to having our sequence {pn} satisfy 
(*) in the proof of Proposition 9, we have that {pnj} also satisfies condition 
(C) : Given any y > 0 there exists a neighborhood of e, Uv, such that for 
all rtj, sup{|/?„.(g) — 1|: g e Uv} < rj/lrij. It then follows that 

supf l^ /g)" ' - l\:geUv} g ( 3 / % 

for all rtj and hence if /?TO is a a(P(G), C*(G)) limit point of {pfy that 

ll/U ^ |(1/|^|) ^GpJy)Xufg) * l £ 1 - 39/4, 

where dg is left-Haar measure on G, Z^ is the characteristic function of 
Uv and \UV\ = \G^uvis) dg. Since rj > 0 was arbitrary, H/JJI = 1, thus 
p^ e P(G)V This said, we leave to the reader the routine task of stating and 
proving an appropriate generalization of Proposition 9 to "continuous" 
^-compact, locally compact groups. 

Although our condition (C) as well as other conditions on P(G)i can be 
verified in certain circumstances, we have found them to be unwieldy in 
general. We have found it usually simpler to work in NQ(G) (using the addi­
tive "Lie cone" technique mentioned at the beginning of this section) in 
order to obtain results about NQ(G) and one-parameter semigroups in 
P(G)i. As an example of this we offer Theorem 2 below, cf. [2]. 

3. Cohomology. The central role that functions of positive type play in 
the representation theory of locally compact groups and their associated 
algebras is in large part due to a well-known device called the Gelfand-
Naimark-Segal (or G.N.S.) construction, cf. 2.4.4. [8]. Very briefly if 
A = Mi(G) is the Banach (convolution) algebra with involution of the 
(bounded) complex Borei measures on G, then a continuous positive de­
finite function p on G defines a pre-Hilbert space structure on A (modulo 

(f + NP\Ç + Np)p = JG/7(g) rfç* * £(g) 

= f f pQrig) d&g) dm 
JGJ G 

for £ e A where 

Np = {ye A: j^(g) drf * ifig) = o} 
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is a left-ideal in A. A continuous representation %p of A on Hilbert 
space Hp, the completion of A/Np with respect to (• | •)/,, is determined by 
7Cp(/Li)(£ + Np) = ju*£ + Np for | e A. The restriction of %p to G c= 4̂ 
is a continuous unitary representation of G. In the above construction 
we could have taken A to be Ll(G), the Haar-integrable functions on G, 
or CC(G). 

In analogy with the G.N.S. construction above we have the following 
for (J) e N0(G). This time let A = Ml(G), the convolution algebra with 
involution of (bounded) complex Borei measures with compact support. 
(Note that the role of compact support is to assure that (£\rj)̂ 9 defined 
below, is finite for £, y e A. Using Definition 7 we could choose A to be 
a larger class of measures.) 

We define a sesquilinear form on A as follows : 

(£\y)* = J [#*-**) - m - #*)] *€te>W 

where ^ is the complex conjugate of measure TJ e A. Let ||f||̂  = (£|£)^/2. 
By the second corollary following Proposition 4 (*|-)^ is indeed a 
pre-inner product and it follows by a routine calculation that 
(n^g)mMv\ = (ffo)# for all f, ^ , where /^(g)f = ^ * £ - £(G)^, 
with eg the unit point mass at geG and f(G) = §Gd£(h) for £e^4. 
[Note thatII^(g)A czA0 = {£eA: f (G) = 0}.] The subspace Nf = {ÇeA: 
II £ III = ^} is invariant under /^(g) for all g e G; and hence a continuous 
unitary representation II$ of G on the Hilbert space H^, the completion 
of y4/7V̂  with respect to ( • | -)#, is determined by ^(g)(£ + A^) = ^ * £ -
%(G)eg + A^. [Note that continuity of %$ at e, hence at g, in G follows by 
a straightforward calculation.] 

We thus have the following result. 

PROPOSITION 10. Given <J>eN0(G) there exists a pair (%$, c^) consisting 
of a continuous unitary representation TZ^ of G on a Hilbert space H^ 
together with a continuous cocycle c^: G -> H^for %^ i.e., 

c<p(gh) = c^g) + iCj,(g)Cf(h). 

PROOF. All that remains is to define c^. Let c^(g) = eg + N$ e H^ for 
g G G. Then for g, h e G, c^gh) = egh + N(l) = (sg + Jfy) + (egh - eg + 
Nf) = Cf(g) + TC^gy^h). Since ||<^(g) - ^(A)||J = - 2 R e $A -ig), c^ is 
continuous. 

REMARK. If 0 is replaced by <]j + i / where ^ is any continuous homo-
morphism of G into the additive reals, then Hf+ix = /fy, c^x = c^ and 

That functions of negative type are related to cohomology of group 
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representations (or group actions) is at least hinted at in the form that 
is taken by the kernel [<Jj{h~lg) — cp{h) — ^fe)]. Let us recall the basic 
definitions of group cohomology. 

General references for group cohomology are [26], [11]. Constant maps 
of G into a fixed abelian group Z7, upon which G acts, are called 0-cochains. 
The set of functions from G to T7 is called the set of 1-cochains, and in 
general the set of functions of n variables in G to r is called the set of n-
cochains. The set of w-cochains is an abelian group if addition of n-
cochains is defined pointwise. I f / i s a 1-cochain, then by definition of <5, 
5/fei, g2) = Si/fe2) - /fei£2) + /fei). The group homomorphism Ö is 
called the coboundary operator (applied to 1-cochains) and its range is 
by definition the set of 2-coboundaries. The 2-coboundary öf is said to be 
cobounded by/ . This basic cohomological structure has already occurred 
both explicitly and implicitly. 

First if r = Hf and G acts on H^ via %$ the map c^ defined in Pro­
position 10 satisfies 7ty(g)ty(A) - c^gh) + c^fe) = 0 = öc^g, h). Thus 
CQ is in the kernel of (group homomorphism) d. By definition 1-cochains 
which are mapped by ô to the identically zero 2-cochain are called 1-
cocycles. Thus c^ is a 1-cocycle (relative to the action it^\ sometimes 
such maps are called "crossed homomorphisms." Here the symbol 
ZX(G, H&f)) denotes all such continuous crossed homorphisms for %^. 
We note in passing that the operator ö applied to a 0-cochain/is defined 
by <5/fe) = 7tyfe)v - v, for g e G , where f(g) = v e Hf for g e G. The 
range of ö applied to the 0-cochains is denoted B\G, H(7c^)), the 1-
coboundaries for %$\ this being a subgroup of Zl(G, Hin^)), we get the 
quotient group H\G, H(ic$) = Z\G, H{n$)IB\G, H(ic$\ the first 
("continuous") cohomology group of it^ 

Second, if r = the additive real line and G acts trivially on T7, i.e., 
leaves all points fixed, then ö(Jj{h~l, g) = <p(g) — ^ih~lg) + 0(A), so our 
kernel is a coboundary with a "twist." Since (c^g^c^h))^ = 0(A_1g) — 
fflò - 0fe)> w e h a v e t h a t -8<fi(h9 g) = (Cf(g)\Cf(h-l))f is cobounded by 
— (p. In particular ReO^fe^c^/r1))^ is cobounded by —Re 9XO = 
(l/2)lk,(-)lß and Im(^fe) |c 0 ( / r% = - I m ( ^ f e - i ) | ^ f e - i ) ^ ( Ä - % is co-
bounded by — Im 0(0-

The relevance of these last observations will be more evident after the 
next Proposition. Let us first recall how d, the coboundary operator, is 
applied to 2-cochains. Namely 5/feb g2> £3) = gi/fefc £3) - /fei#2> £3) + 
/fei» g2#3) -~/fei>g2)- When ö is applied to 2-cochains, its kernel is called 
the set of 2-cocyles. (Sometimes 2-cocycles are called "factor sets" because 
of their role, mentioned below, in group extensions.) If / is any 1-cochain, 
ö(öf) = 0; thus any 2-coboundary is a2-cocycle. The symbol Z2(G, H(7Ü^)) 

denotes the set of all continuous 2 cocycles for %$ and B2(G, Hin^) the 
continuous 2-coboundaries for %$. The quotient group H2(G, H(%$) = 
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Z2(G, H(7C^))/B2(G9 H(TC^)) is the ("continuous") second cohomology 
group for icp 

We are now ready to state and prove a "converse" of Proposition 10. 
We first saw this proposition proved by C.C. Moore in the Moore-
Rieffel seminar on group representations, Berkeley. 

PROPOSITION 11. Given a continuous complex Hilbert space valued 1-
cocycle c for continuous unitary representation % of G on Hn there exists a 
continuous function (]) of negative type {zero at the identity) such that c = 
CQ and % = TZQ where %$ and c^ are as defined in the proof of Proposition 
10. The function <p is either defined on G or G, an extension of G. The 
group G may be taken to be a central extension of G by R, the additive 
reals, with respect to the trivial action of G on R. In fact G may be taken 
to be the "multiplier" extension defined by the "multiplier", i.e., factor set 
or 2-cocycle, Im (c(h), c(g~l))9 for g, h eG. 

REMARK. The equalities c = c^ and % = ic$ are in the sense of unitary 
equivalence. Thus if ^ e N0(G) there is an isometry u from Hc, the closure 
of the linear span of {c(g) : geG}, onto H^, the closure of the linear span 
of {Cf(g) :geG}, such that K ( £ ? = 1 XAgi)) = E?=i h^igt) for any gl9...9 

gneG, Ai, . . . , Xn e C, the complex numbers. We also have u%{g)u~1^ = 
x</,(g)Ç for all g e G, £ e H^. In the case where <]> e N0(G), G defined below; 
we have that c^s, g) = c^(0, g) and TC/S, g) = ^ (0 , g) for all s e R, g e G. 
In this case there is an isometry u: Hc-+ H^ such that M(2?=I A|C(g,-)) 
= S f = i ^ ( 0 . gi)> M> . . . , A„eC, gi, . . . , g„eG; and U7c(g)u~^ = 
*ty(0, g)£ for ÇeH^geG. 

PROOF. The main idea is this. If a complex-valued function fa on G 
satisfies fa(e) = 0, fa(g~l) = fa(g) f°r all g m G> and ô cobounds 
(c(g)\c(h)) with a "twist", i.e., 

dfa(h~\ g) = Mg) - Mh-'g) + W) = (c(g)\c(h))9 

then — faeN0(G). This follows from Theorem 1, equation (1). Now 
although (c ( ) , c ( ) ) may not be cobounded on G it is always cobounded 
on a suitable extension of G. This is what we will now show. 

If c is a 1-cocycle for % and we define ^>i(g) = (l/2)(c(g)\c(g)) for all 
g e G , then it is easy to show that 5fa{h~l, g) = Re(c(g)\c(h)). Thus if 
1-cocycle c has range in a real Hilbert space, i.e., (c(g)\c(h)) is real for 
all h, geG, then — fa e N0(G). In general it is easy to show (taking the 
action of G on R to be trivial) that m(g, h) = Im(c(A) |c(g-1)) for g, heG 
is a 2-cocycle, sometimes called a factor set; or were we to look at e*m(e>h), 
the latter would often be called a multiplier. By p. 112 [26] the group 
G = R x m G, where (s, g)(t, h) = (s + t + m(g, h), gh) for s, teR, 
g, heG, is indeed a locally compact group. If fa is the map (s, g)eG >-> 
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- s 6 R, then 5(fa)(( - U A"1), (s, g)) = Im(c(g) | c(A)). Extending fa trivially 
to G, i.e., fais, g) = fa(g) for all s e R, let fa = fa + ifa on G. We have 
that fa(0, e) = 0, and since mfe"1, g) = 0 for all g e G fa(s, g)'1) = 
# f o g ) . Also öfa((t, h)-\(s, g)) = (c(g), c(A)). Thus ^ = -fa e N0(G). 

COROLLARY. If the cocycle of Proposition 11 is real Hilbert space valued, 
then the <f> of Proposition 11 can always be taken in N0(G). 

REMARK. The function </) of Proposition 11 is unique up to an i% where 
1 is a continuous homorphism of G (or G) into R. Thus Propositions 10 
and 11 say roughly that modulo the tangents in N0(G), the semitangents 
are in a fairly precise manner a description of the Hilbert space valued 
continuous crossed-homomorphisms of G, i.e., continuous 1-cocycles for 
unitary representations. In fact the map $ •-> (^, c^) of Proposition 10 and 
its "inverse" defined by Proposition 11 indeed define a one-to-one cor­
respondence if one restricts attention to real negative definite functions 
(]) and real Hilbert space valued cocycles c. 

REMARK. The conclusion of Proposition 11 can be simplified to say that 
<]) e NQ(G)9 if every real valued 2-cocycle is known to be a coboundary, 
e.g., for separable, simply-connected semisimple Lie groups. Passing 
from Borei measurability to continuity can be done by using the second 
corollary to Definition 4 and Theorem 3.1 [29]. See also V.S. Varadarajan, 
Geometry of Quantum Theory, Vol. II, Chapter X. 

As a simple application of these ideas we can generalize Proposition 
7.13 of [5] to all locally compact groups and at the same time simplify the 
proof. 

PROPOSITION 12. Let <f> e N(G) and suppose </> is bounded on G, then there 
exists a constant m ^ 0 such that m 4- (peP(G);i.e.,m + 0 is a continuous 
function of positive type. 

PROOF. Construct %$ and c^ as in Proposition 10. Since (J) is bounded, 
Re (]) is bounded, hence c^ is bounded and is hence a 1-coboundary, by 3.4 
or 3.7 [21], i.e., there is a v e H^ (without loss of generality v ^ 0) such 
that c^(g) = 7ty(g)v — v. (Note that we can find this v directly by applying 
the Ryll-Nardzewski fixed point theorem, cf. [14], to the action g-w = 
Kt(g)w - Cfig) of g on Hf.) Thus 

fah-ig) - #S) - fag) = (c,fc)|c,(A)), 

= Oty(g)v - v|*ty(A)v - v)^ 

= 0ty(A_1g)v|v)^ - 0ty(g)v|v)^ 

- (*,(A)v|v), + \\v\\$. 

Let p(k) = Oty(A;)v|v)0 for all k e G, where p{ •) is continuous and of posi-
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tive type. Thus for g, heG <f)(hrlg) - (fiji) - <fi(g) = (pQrlg) - m) -
(p(h) — m) — (/>(#) — w) where AW = ||v||$ > 0. Hence % = $ + w — /? 
satisfies ^ ( / r ^ ) = X(Ä) + x(g) = ^(/r1) + ^(g), for g, heG, i.e., ^ is 
a continuous homomorphism of G into the complex numbers, and % is of 
negative type. By Proposition 6, % = 17* where 7* is a continuous homo­
morphism of G into the additive reals. Finally 0 4- m = /? + 17- is bounded 
on G, hence y(g) = 0 for all g eG. In the first sentence of this proof we 
tacitly assumed <fieN0(G); but if <JjeN{G) we can without loss replace 
0 by 0 - ^(e). 

COROLLARY. 7/* ^ e iV(G) and Re c£ w bounded on G, then there exists 
a homomorphism y of G into the additive reals and a constant m > 0 such 
that (j) + m — /y* e P(G), i.e., IJ continuous and of positive type. 

4. Isometric Imbeddings of a Group in Hilbert Space. It is perhaps fitting 
that as we near the end of this paper we return to the beginning of the 
subject as it appears in the early papers of von Neumann and Scheonberg, 
[28], [33]. One of the problems of interest to them was the construction of 
all (semi) metrics p on R, the real line, which allowed (R, p) as a metric 
space to be imbedded isometrically in a (real) Hilbert space. In particular 
they were interested in finding screw functions (their terminology) F o n R 
so that p(x, y) = F(x — y) for x9 y e Vi. One of the elementary screw 
functions found was F(x) = |sin(<ax)|, œ fixed in R. We can now give a 
rather novel proof that this is indeed a screw function. First of all sin2((ox) 
= (1 — cos(2<ax))/2 for x e R is easily seen to be in — iV0(R) since cos(2<a#) 
= Re ei2û)x, for x e R, is in P(R)i. By Proposition 5, |sin(cDx)| = 
(sm2(cox))1/2 for xeR is a seminorm on R. From our considerations of 
cohomology we have a cocycle c which imbeds R into a (real) Hilbert 
space H so that \\c(x) — c(y)\\H = (2\sin co(x — y)\)1/2. We might note in 
passing that if </> e N(G), then — ( — (ß)a (suitably defined when <J) is com­
plex) for a e (0, 1) is also of negative type. A useful formula in this 
regard, used also by von Neumann and Scheonberg, is 

xa = -T^—v f °°(1 - er*')s-"-1 ds for x > 0, 
I (1 — a) Jo 

r the gamma-function, a e (0, 1). This last formula is a special case of a 
Bernstein function; a subject discussed fully in [5] Chapter II §9, wherein 
it is shown that if —</>eN(G) then the composition /<> ( —^) e —N(G) 
whenever / is a Bernstein function continuous on the closed right-half 
plane and holomorphic in the open right-half plane. It is interesting to 
note that - 1 • |a e N0(R) for a e (0, 2], but not for a > 2. 

We can now relatively painlessly solve the von Neumann-Schoenberg 
"screw function problem" for any locally compact group G, and simulta­
neously establish a direct link with the Lévy-Khinchin formula from 
probability theory. 
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We start with a theorem which in a slightly simplified form appeared 
as early as 1928 in a paper by K. Menger, [27]. We take the following from 
[40] Lemma 2.3, Theorem 2.1 and Remark 3.2. 

PROPOSITION 13. A (semi) metric space (X, p) is embeddable isometrically 
in some (real) Hilbert space H if and only if fixing some point x0eX the 
quadratic form 

S (l/2){p(*o, *y)2 + p(*o> *,)2 - fa, xföXjkj ^ 0 
t,,=i 

for all choices of natural number «, all choices xiy . . . , xn e X, and all 
choices Ai, /l2, . . . , An e R. 

REMARK. AS a corollary of the ideas in Proposition 13 we find that /P 
(p ^ 2) cannot be imbedded isometrically in any Hilbert space, cf. [40]. 
By (X, p) being isometrically embedded in H we mean, of course, that 
there is a function <p: X -» H such that p(x, y) = \\<p(x) — <p(y)\\H for all 
x, y eX. The 1/2 factor in the above quadratic form is irrelevant to us at 
this time and can be dropped. 

If a continuous function F on G is to be a screw function for p, a con­
tinuous semi-metric on G, we must have by definition that F(x~ly) = 
p(x9 y) for any x, y eG. It is, of course, convenient to pick the x0 of Pro­
position 13 to be the identity, e, of G; and we shall do so. We then easily 
find that a necessary and sufficient condition for a non-negative, real 
valued function F to be a screw function is that —F2 e NQ(G). 

We can not yet say we have "solved" the screw function problem unless 
we have a "concrete" description of the (continuous) functions of negative 
type on G. It turns out that a convenient description is possible; namely, 
one can express an arbitrary $ e N0(G) as an integral over extreme rays in 
N0(G) following Choquet (at least for separable G), [30]. E. Larsen, in 
his Ph.D. thesis [23], is giving a description of this process among other 
things. Of course, if G = R the results of this process of decomposing a 
<l) e NQ(G) as "barycenter of extreme rays" yields the classical Lévy-Khin-
chin formula characterizing infinitely divisible laws in probability. See 
[6] for a proof (not using Choquet's theorem) that N(Rn) is given exactly 
by the Lévy-Khinchin formula. 

5. A Characterization of N0(G) using Difference and Differential Opera­
tors on G. A somewhat different approach to characterizing A^R'O is 
taken by I.M. Gelfand and N. Ya. Vilenkin in [13] Chapter II, Section 4, 
wherein they show that conditionally positive definite functions on Rw 

(of order 1) are characterized by a Lévy-Khinchin type formula. We will 
now show that a weak version of the definition they take for "conditionally 
positive definite generalized function on Rn of order 1" can be generalized 
to any Lie group G and that it coincides with our definition of N(G). For 
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lack of an immediate need and enough space we stop short of pushing all 
of this approach to the generality of locally compact G, using say [22]. 

Let G be a Lie group and &, its Lie algebra of left invariant (analytic) 
vector fields, &r its Lie algebra of right invariant (analytic) vector fields. 
Let 9(G) be the locally convex (nuclear) topological vector space of 
infinitely differentiate functions with compact support on G equipped 
with the usual inductive limit topology. Let 9'(G) be the continuous, 
complex-valued linear functional on 9(G), i.e., the distributions on G. 
If L is a linear map of 9(G) into 9(G) let L9(G) = {L<p: <pe9(G)}. 
For geG let A(g) (respectively, p(g)) denote convolution on the left 
(respectively, the right) by the measure eg, the unit point mass at g. Also 
if <pe9(G), (p\g) = â(g~l)ip(g~l) for geG, where <p is the complex 
congugate of <p and A is the modular function of G. If S is a subset of 
9(G) we let <S>" be the closed subspace of 9(G) generated by the 
complex-linear span of S. We denote by 9(G)0 = {(pe9(G) : JG <p(g)dg = 0}, 
i.e., the kernel of left Haar measure viewed as a distribution. We have 
the following Lemma. 

LEMMA. IfXh . . . , Xn is a basis of&r, then, 

<Û XMG)>- = ®(G)o = <{W(S) - Ae))9(G):g e G}>". 

PROOF. Let u be in 9'(G), and let (u, Xt<p} = 0 for all <p e 9(G), i = 1, 
. . . , « . Now u * <p e C°°(G), the infinitely differentiate functions on 
G, p. 489 [39]. Also for all 7 e ^ / 5 Y(u*(p) = u*(Y<p) = 0 since 0 = 

<W, ( n % ) ^ > = <«, Afc)(ry)> = <n, a<g)(i>r> = u*(Y<p)(g) tor 
all g e G . Note that (Y"Y e ^ r is the image of Ye &, under the map of 
&s onto <gr determined by x e G »-> x - 1 e G followed by the inner auto­
morphism x e ( j K gxg - 1 e G. Also çT(x) = 0>(x_1) for all x e G, by defini­
tion. Thus w * <p is a constant function on G. Letting #> run through an 
approximate identity at e e G we find that w is a scalar multiple of Haar 
measure. Now for i = 1, . . . , n, Xt9(G) c 9(G)0, since A^p = lim^0 (1/0 
tf(exp(-UQ) - X(e)]<p; and [X(g) - X(e)]<p e 9(G\ for all geG. If 
<U?=i xi@(Gy>~ S ^(G)o t h e n by the Hahn-Banach separation theorem 
[32] Theorem 3.5 there is a u^e9'(G) such that w0 vanishes on 
<U?=i x&(G)y~ b u t n o t o n ®(G)o- B u t w o i s a scalar multiple of Haar 
measure and we are done. A similar even easier argument shows that 
<{Wfc) - Ke)]9(G): g e G}>~ = 9(G)0, cf. Proposition 5.2.1.2, [39]. 

If p = E ?=i *••*• i s in ^ / where a, e C / = 1, 2, . . . , n, define Z) e &r 

by 5 p = (D<p*)* for all p e 9(G). Then Z>5(p * p#) = D(<p * %#) = 
(D<p) * (Zty)#. Similarly we define Lg<p == [A(g) - A(e)]<p and L^ p = 
(L^#)# for cp e 9(G) and geG. Then Z ^ f y ) * p*) = (Lg(p) * (L5p)# for 
<p e 9(G). First we have the following result. 
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PROPOSITION 14. 4̂ continuous function (p (viewed as a distribution) is 
in N(G) if and only if cp(e) ^ 0, ft = cp, and either 

\$> ( J aixi<pi) * ( g *iXm) y^Ofor all cph . . . , (pn e 9(G) 

^ ' where a{eC,i = 1, . . . , n\ and Xl9 ..., Xn is a fixed basis of 

&r, n a positive integer, 

or 

( 2 ) (<f>, ( g hL8&) * ( jg hLgiç)j y^Ofor all P l , . . . , f t e 

^(G), Ai, . . . , Xn e C, gl5 ...9gneG,na positive integer. 

PROOF. Inequality (1) says that $c<ft(g)y*'rf(g)dg ^ 0 for all rje90(G) 
by the lemma. Now i f /e CC(G) has integral zero, then for all i, / * p,- e ^(G)0 

where {p,} is an approximate unit in 9(G) at e e G. This implies that 
jGS0fe)/»/*fe)* è 0 for a l l / e Q(G) such that \Gf(g)dg = 0. Thus by 
part (3) of the second corollary to Proposition 4, <p G N((J ) . The converse 
is clear. The proof involving inequality (2) is similar. 

PROBLEM. What class of distributions <p satisfy <^, DD(<p * p#)> ^ 0 
or (cp, LgLg((p * p#)> ^ 0 for all ç e 9(G), where Z>, D, Lg, Lg are defined 
as above? 

REMARK. In the sense of distributions DD<p is of positive type, if <p G 

N(G). Thus ^ is a derivative on the dual of G as well as a "global anti-
derivative" of sorts on G. 

REMARK. The formulation of functions of negative type given by 
equation (2) generalizes easily to the general locally compact case. Also 
Proposition 14 can be stated using <gr and p. 

6. Some Final Remarks. We will close this paper with a brief mention 
of some applications and examples. First of all, when looking for examples 
of functions of negative type one encounters basically two types of 
groups. First there are those groups G for which {1}, viewed as the set 
containing the trivial one-dimensional continuous irreducible unitary 
representation of G, is open (with respect to the Fell topology) in G, the 
collection of all continuous, irreducible unitary representations of G. 
Such groups are said to be Kazhdan groups or groups with property (T). 
Second, there are groups without property (T), i.e., {1} is not open in 
{(/}. If {1} is an isolated point in G it seems intuitively clear that one 
cannot "differentiate classically," even though {1} a P(G)i is not strictly 
isolated in the compact-open topology of P(G\. We are led to the follow­
ing theorem. 
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THEOREM 2. Let G be a locally compact, a-compact group. The following 
are equivalent: 
(1) G has property (T); 
(2) Every <fieN0(G) is bounded as a function on G; 
(3) Every semiderivation 3^, induced on C*(<7) by a <fieN0(G), is 

bounded as an operator on C*(G); 
(4) Hl(G, H(7c)) = Ofor all continuous unitary representations % ofG. 

PROOF. A rigorous proof for (1) o (2) requires some attention to 
preliminary details (especially for non separable G), but the basic idea 
is that for a G with property (T) a net {pa} a P(G)i can only approach 
1 G P(G)1 by eventually converging uniformly on G. Then using a "Lie 
cone" technique, i.e., working in N0(G) as opposed to P(G)Ì9 the result 
can be established, cf. [2]. To prove that (3) implies (2) we first note that 
f o r / e L\G) with f(g) ^ 0 for all g e G that 

II/IILI(G) = \\a>(f)\\cKG» 

13.11.1 [8]. Thus for $ e N0(G), cjj real, if 3^ is bounded, we must have that 

119*11 à l|3<M/)llc*(G) = J G -</>(g)Ag)dg 

at least for non-negative, compactly supported functions fe Ll(G) with 
ll/llz,i(G) ^ 1. An argument by contradiction shows cjj is bounded as a 
function on G, hence (2) follows, even for complex <j>, cf. §7.14 [5]. Con­
versely, if (f>eN0(G) is bounded, by Proposition 12, (/> = p — m for 
p e P(G)9 m positive constant. Thus 

l|3<M/)llc*(G) = \\(o(pf- mf)\\c*(G) 

è \\0>(pf)\\<XG) + ™\h(f)\\c*(G) 

S (m + p(e))\\co(f)\\^G). 

Thus (2) implies (3). 
To see that (2) implies (4) we observe that if there is a continuous 

unitary representation iz with non-trivial cocycle c, then c is not bounded 
in H{K) by the proof of Proposition 12. Thus <]j(g) = —||c(g)||2 is an 
unbounded function, and ^ G N0(G). Conversely, (4) implies (2). For if 
each cocycle for every unitary representation is trivial, hence bounded, 
then Re <J> is bounded for all cjj e N0(G). Thus by the corollary of Proposi­
tion 12, any $ G N0(G) is of the form (/> = p — m + iy where p G P(G), 
m is a constant, and y is a homomorphism of G into the additive reals. 
But —y2 G N0(G) is real, hence bounded; thus y is bounded. Note that (1) 
implies (4) is known, but existing proofs are different from ours, cf. [38]. 

In [2] we establish the equivalence between various ways in which 
<J) G N0(G) can be unbounded and certain properties of G. As for concrete 
examples, §10 of [5] provides several examples on Rw; indeed, in principle 
all examples on Rn are provided by the Lévy-Khinchin formula. In the 
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case of non-commutative groups certain very interesting examples have 
been discovered. Among these is the fact that in F2, the free group on two 
generators, s e F2 »-> —\s\ = (negative) word length of s, is a function of 
negative type. The word length function is also of negative type on Fw 

where n is a finite natural number [16]. 
In his thesis, [23], E. Larsen investigates several examples. Sometimes 

one is fortunate in that a "nicely" parametrized family of positive definite 
functions converging to 1 is known. Such is the case for SL(2, R). Since 
SL(2, R) is a group without property (T) it has at least one unbounded 
negative type function which in "suitable" coordinates one can compute 
to be of the form — ln(cosh / ) , — oo < t < oo. Such unbounded elements 
of N0(G) do not exist for G = SL(n, R), n > 2 [7]. 

We have said nothing about differentiation at points p0 e P(G)i other 
than p = 1. To develop this part of the theory here would take us many 
pages and beyond our aim of an "introduction." We close with an example 
of an interesting derivative on the dual of the "ax + b group" {a > 0) 
at the point pQ where p0(a, b) = (2a/(a2 + l))V2(a > 0). It can be shown 
that pt(a, b) = (2a/(a2 + l))i /2 exp((-t/2){b2/(a2 + 1) + (In a)2/2}) is 
continuous and positive definite for f ^ 0, yet the function of (a, b) in 
the exponent is not of negative type. Thus the space of semitangents at 
some points p0 e P(G)I is strictly larger than N0(G). (N0(G) is obviously 
always contained in the space of semitangents at any p0 G P(G)I). The 
larger problem of which this last example is a part will be treated in a 
sequel to this paper. 
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