
ROCKY MOUNTAIN 
JOURNAL OF MATHEMATICS 
Volume 12, Number 3, Summer 1982 

THE DUNFORD-PETTIS PROPERTY OF SOME SPACES 
OF AFFINE VECTOR-VALUED FUNCTIONS 

PAULETTE SAAB 

ABSTRACT. Let K be a Choquet simplex, E be a Banach space, 
let C(K, E) denote the Banach space of all continuous ^-valued 
functions defined on K with supnorm, and let A(K, E) be the 
subspace of C(K, E) consisting of affine functions. We show that 
A(K, E) has the Dunford-Pettis property whenever C(K, E) has 
the same property. We also exhibit a compact convex set C that is 
neither a Choquet simplex, nor a dual unit ball of a Banach space 
with the Dunford-Pettis property such that A(C, R) has the Dun
ford-Pettis property. 

Introduction. Let K be a compact convex subset of a locally convex 
Hausdorff space, and let E be a real or complex Banach space. In this 
paper we investigate the Dunford-Pettis property of A(K, E), the space of 
all continuous and affine ^-valued functions defined on a Choquet simplex 
K. This study is motivated by the fact that when AT is a Choquet simplex, it 
is well known [10] that A(K, R)* is linearly isometric to an Z^-space, thus 
A(K, R) has the Dunford-Pettis property. This raises the following inter
esting problem. 

Problem. For a Choquet simplex K, and for a Banach space E, does 
A(K, E) have the Dunford-Pettis property whenever E does? 

It turns out that the above problem is closely related to another still 
open problem of whether the space C(Q, E) of all continuous 2>valued 
functions defined on a compact Hausdorff space Q has the Dunford-
Pettis property whenever E does. In this paper, we will show that, for a 
Choquet simplex K, the space A(K, E) has the Dunford-Pettis property 
whenever C(K, E) has the Dunford-Pettis property. 

We also observe that there are compact convex sets Z such that A(Z, R) 
does not have the Dunford-Pettis property. For it can be shown that a 
real Banach space V has the Dunford-Pettis property if and only if the 
space A(B(E*), R) of all continuous and affine functions on the unit ball 
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of is*, has the Dunford-Pettis property. Finally, we exhibit a compact 
convex set C that is neither a Choquet simplex nor a dual unit ball of a 
Banach space with the Dunford-Pettis property such that A(C, R) has the 
Dunford-Pettis property. 

1. Definitions and preliminaries. If V is a real or complex Banach space, 
we shall denote by F* the topological dual of V. 

If Q is a compact Hausdorff space, and if E is a Banach space, we 
shall denote by C(Q, E) the Banach space of all continuous is-valued 
functions on Û under the supremum norm. 

If A'is a compact convex subset of a locally convex Hausdorff space, and 
E is a Banach space, the symbol A(K, E) will stand for the (closed) sub-
space of C(K, E) consisting of affine functions. 

In this paper we shall mostly consider Choquet simplexes, we shall 
mainly use the characterization given in [8]. For a detailed study of 
Choquet simplexes and other equivalent definitions we refer the reader to 
[2], [7], and [8]. 

2. The Dunford-Pettis property for A(K, E). 

DEFINITION 2.1. A Banach space V has the Dunford-Pettis property (DP) 
if whenever (xn) and (x*) are weakly null sequences in V and F* respec
tively, then 

lim x*(xn) = 0. 
n 

The best-known spaces with the Dunford-Pettis property are Ll(fj) 
spaces, C(Q) spaces, where Q is a compact Hausdorff space, Banach spaces 
with the Schur property (i.e., weakly compact sets are norm compact) 
and complemented subspaces of Banach spaces with (DP). 

The next theorem reduces the study of the Dunford-Pettis property of 
A(K, E) to that of C(K, E). 

THEOREM 2.2 Let K be a Choquet simplex, and let E be a Banach space, 
then A(K, E) has the Dunford-Pettis property whenever C(K, E) does. 

PROOF. Suppose that C(K, E) has (DP). Let (af)n^l and «,)M^i be se
quences in A(K, E) and A(K, £)*, respectively, such that limnan = 0 
weakly and lim„ /n = 0 weakly. Since A' is a Choquet simplex it follows 
from [8] that there exists an isometric linear selection mapping S from 
A(K, E)* into C(K, £)*, i.e., S: A(K, E)* -> C(K, £)* is linear, S(/) = / 
on A(K, E) and \\S(/)\\ = \\/\\ for each / in A(K, £)*. It follows that 
\imnS(/n) = 0 weakly in C(K, E)*. Also, since \imnan = 0 weakly in 
A(K9 E), \\mnan = 0 weakly in C(K, E). Hence, since C(K, E) is supposed 
to have the Dunford-Pettis property, we have 
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lim /n(an) = lim S(/n)(an) = 0. 
n n 

This completes the proof. 

It is known [4] that if E has the Schur property or if E = L1 [1], and Q 
is a compact Hausdorff space, then C(û, E) has the Dunford-Pettis prop
erty. The following corollary is now immediate. 

COROLLARY 2.3. If K is a Choquet simplex and E is a Banach space that 
is either Ll or has the Schur property, then A(K, E) has the Dunford-
Pettis property. 

When the Banach space E is a real or complex predual of an L1-space 
one can say more about the space A(K, E), namely we have the following 
theorem. 

THEOREM 2.4. If K is a Choquet simplex and E is a real (resp. complex) 
predual of an Ll-space, then A(K, E) is a real (resp. complex) predual of an 
Llspace. In particular A(K, E) has the Dunford-Pettis property. 

PROOF. Let £ b e a real (resp. complex) Banach space such that E* is 
isometrically isomorphic to an L1-space. Without loss of generality one 
can assume that E* is a real (resp. complex) Llspace. It is known [9] 
that the dual of C(K, E) is isometrically isomorphic to the Banach space 
M(K, £*) of all w*-regular £*-valued measures m defined on 2 the ^-field 
of Borei subsets of K, and that are of bounded variation with ||ra|| = 
\m\(K) where \m\ denotes the variation of m [3]. Since E* is an L1-space, 
the space M(K, E*) is easily checked to be an ordered linear space under 
the order defined as follows : for m e M(K9 is *), m ^ 0 if m(B) ^ 0 for all 
Be 2. Moreover, if m e M(K, £"*), one can define the absolute value of 
m as follows. Let Be 2 and let % = (Bt)^n denote a finite Borei partition 
of B. For each B{ e % let \m(Bt)\ denote the absolute value of m(Bt) in E*. 
Since E* is an Llspace, for each partition % = (Bt)^n of B we have 

2 \m(Bt)\ = 2 
Il BjëTC II , - = i 

Hence the family 

IT. 

m(Bt) è H(B). 

|^Jw(5,)| :B= (J5, 

is a norm bounded family in E* and is easily seen to be directed upward. 
Since E* is an Lx-space, we can define the element \m\a(B) of E* as follows : 

\m\a(B) = sup 2 \m(B,)\ 

and 
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= SUP ZI \™(Bt)\\ 
it II Bi^-% II 

= sup 2 |w(5,-) |= \m\(B). 
It Bj^lt II II 

Hence \m\a is a well defined set function on Borei subsets of K and takes 
its values in E*, and if we compute its variation, we get | \m\a\(B) = \m\(B), 
for each Bel. This shows that \m\a e M(K, E*) whenever m eM(K, E*). 
Hence M(K, E*) is a Banach lattice. Moreover, it can easily be verified 
that the variation norm is additive on the positive elements. Thus 
M(K, E*) is itself linearly isometric to an Z^-space. Since K is a Choquet 
simplex, it follows from [8] that A(K9 E)* is isometrically isomorphic to 
a closed linear subsapce of C(K, E*) ^ M(K, E*) and that there exists a 
contractive linear projection from M(X, E*) onto A(K, E)*. Thus, it 
follows from [5] that A(K, E)* is itself linearly isometric to an Z^-space. 
This completes the proof. The last assertion of Theorem 2.4 follows from 
the fact that if the dual F* of a Banach space V has the Dunford-Pettis 
property then so does V. 

3. More spaces with the Dunford-Pettis property. Theorem 2.4 shows 
that if K is a Choquet simplex then A(K, R) has (DP). This raises the 
following question : Besides Choquet simplexes, for what compact convex 
set K, does A(K, R) have (DP)1 

Let us first observe that if V is a real Banach space, then a simple ap
plication of the Hahn-Banach theorem shows that the Banach space V is 
linearly isometric to AQ(B(V*))9 the Banach space of all affine and continu
ous real valued functions defined on the unit ball of V*, and that are zero 
at the zero functional. Moreover, we have the following proposition. 

PROPOSITION 3.1. Let V be a real Banach space, then A(B(V*), R) is 
linearly isometric to V ®A R. 

Hence A(B(V*\ R) has the Dunford-Pettis property if and only if V 
does. In particular, this shows that there are compact convex sets K such 
that A(K, R) does not have the Dunford-Pettis property. These observa
tions motivated the search for a compact convex set C that is neither a 
Choquet simplex nor the unit ball of a dual of a Banach space with the 
Dunford-Pettis property, such that A(C, R) has (DP). The first step in 
this direction is given next. 

Let Xl and X2 be two compact convex sets. Denote by BA(Xt x X2) 
(or simply BA) the Banach space of all continuous functions that are 
affine for each variable (separately). It is well known that BA separates the 
points of the compact convex set Xx x X2, and contains the constant 
functions. 

\m\a(B) 



THE DUNFORD-PETTIS PROPERTY OF SOME SPACES 495 

LEMMA 2.9. If K is a compact convex set and E is a Banach space, then 
A(K, E) embeds isometrically into BA(K x B(E*)). Moreover if E is 
a real Banach space, the space A(K, E) considered as a subspace of 
BA(K x B(E*)) is complemented in BA(K x B(E*)) with complement 
A(K, R) andBA(K x B(E*)) is linearly isomorphic to A(K, E) ®A A(K, R). 

PROOF. Let /: A(K, E) -> BA(K x B(E*)) be defined as follows: for a 
in A(K, E), 

I(a)(x, x*) = x*(a(x)) for each {x, x*) in K x B(E*). 

It is easily checked that / defines an embedding of A(K, E) into 
BA(K x B(E*)). Moreover, if E is a real Banach space, we can define 
the following map P: BA(K x B(E*)) -> A(K, E), where for each b in 
BA(K x B(E*)) we let Pb(x)(x*) = (b(x, x*) - b(x, -x*)/2, for 
each x in K and x* in B(E*). Note that for each x in K and b in 
^ ( t f x B(E*)), Pb(x) is in 0̂C#OE*))> and hence it is in E, since E is 
identified with A0(B(E*)). This shows that P is well defined and takes its 
values in A(K, E). Moreover it is easy to check that P is a linear projection 
and that ||P|| = 1. An element b in BA is in the complement of A{K, E) if 
Pb = 0; that is, for each x* in B(E*) and for each x in K, (b(x, x*) — 
b(x, -x*))/2 = 0. It follows that b(x, x*) = (b(x, x*) + b(x, -JC*))/2 = 
b(x, 0). This shows that if b is in the complement of A(K, E), then b can 
be identified with the element b{-, 0) of v4(#, R). Conversely, each element 
of A(K, R) defines an element of BA(K x B(E*)) as follows: for eachx in 
Ä ând je* in B(E*), ä(x, x*) = a(x). It follows that Pä = 0. Also it can 
easily be shown that for each b in BA(K x B(E*)), 

\\b\\ $_ \\Pb\\ + \\b - P(b)\\ è 2\\b\\. 

Hence BA(K x B(E*)) is linearly isomorphic to A(K, E) ®A A(K, R). 
The following proposition is now immediate. 

PROPOSITION 3.2. If K is a Choquet simplex and if E is a real Banach 
space with Schur property, then BA(K x B(E*)) has the Dunford-Pettis 
property. 

The next example ends the search. 

EXAMPLE 3.3. A compact convex set C that is neither a Choquet sim
plex nor the unit ball of the dual of a Banach space with the Dunford-
Pettis property such that A(C, R) has the Dunford-Pettis property. 

Let K be a Choquet simplex and let E be a real Banach space with the 
Schur property. Consider BA = BA(K x B(E*)), and let C denote the 
state space of BA; that is C = {/e BA* / ( l ) = ||/|| = 1}. We know that 
C is a weak*-compact convex subset of BA* and it can be shown that BA 
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is linearly isometric to A(C, R). Hence A(C, R) has the Dunford-Pettis 
property by Proposition 3.2. Moreover C is neither a unit ball in a dual 
space nor a Choquet simplex because it follows from [6, 2.10] that the 
state space of BA is a Choquet simplex if and only if K and B(E*) are 
Choquet simplexes. But B(E*) is never a Choquet simplex, for any measure 
ix of the form (ex* + e_**)/2, where x* is an extreme point of B(E*\ is a 
maximal probability measure whose barycenter is 0 [7] or [2]. 
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NOTE ADDED IN PROOF. Recently, M. Talagrand has constructed a separable Banach 
space E, such that E* has the Schur property but such that C(J, E) fails the Dunford-
Pettis property, here A= {0, 1}N is the Cantor group. This answers in the negative the 
problem mentioned in this paper. 




