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COMPUTABLE ERROR BOUNDS FOR FINITE ELEMENT 
APPROXIMATIONS TO THE DIRICHLET PROBLEM 

ROBERT E. BARNHILL AND CALVIN H. WILCOX 

ABSTRACT. The constants bounding the solution of Poisson's 
equation in terms of the given boundary data are derived. Knowl
edge of these constants then permits the interpolation remainder 
theory of Barnhill and Gregory to be used to find computable finite 
element error bounds. 

1. Introduction. The purpose of this paper is to extend the finite 
element error bounds of Barnhill and Gregory [2, 3] so that they become 
numerically computable from the data. This section is a very brief review 
of the necessary facts. 

DIRICHLET PROBLEM. If Q c R2 is a bounded domain, find u: Q -• R 
such that 

Au = f in Q(f given) 

u = 0 on dû. 

WEAK FORMULATION. Find u e W\(Q) such that 

f V"-Vv dx = - f fvdx Vv e W\{Q\ 
J Q J Q 

OPERATOR-THEORETIC FORMULATION. Define an unbounded linear 
operator 

âD: 149) - L2(Q) 

by 

D(àD)= » K f l ) n {u:JuzL2(Q)} 

ADu = Au Vu e D(AD). 

LEMMA 1. u is a weak solution of the Dirichlet problem with fe L2(Q) 
if and only ifue D(AD) and ADu = / . 

PROOF. (=>) Take v e C^(û). (<=) C?(fl) is dense in W&Ü). 
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LEMMA 2. AD is selfadjoint on the Hilbert space L2(û). 

Ref. [10, p. 322] 

LEMMA 3. Let Û have the segment property [1], or the "finite tiling prop
erty" [16]. Then a(AD), the spectrum of AD, is discrete and lies on the 
negative real axis. 

PROOF. The finite tiling property and boundedness of Q imply that the 
Rellich selection theorem is valid for Q [16]. The latter implies that a(AD) 
is discrete. If A e a(AD) and u # 0 is a corresponding eigenfunction, then 
the weak formulation with / = Xu, v = u implies A ^ 0. Moreover, if 
A = 0, then Vw = 0 in Û and hence u = const. But then the boundary 
condition implies u = 0 contrary to hypothesis. 

EXISTENCE AND UNIQUENESS OF A SOLUTION. Lemmas 1, 2, and 3 imply 
the following theorem. 

THEOREM 4. If Q has the finite tiling property, then there exists a unique 
solution (weak formulation) for eachfeL2(Q). 

REGULARITY OF THE SOLUTION. The most precise results are the Schauder 
estimates [9, pp. 331-350, or 11, pp. 164-9]. Let C c f i b e compact, 
dû fi Ce O+2+a and fe C"+*(p) for n = 0, 1, 2, . . . and 0 < Ö < 1. 
Then u e C*+2+*(C). 

FINITE ELEMENT (GALERKIN) APPROXIMATIONS. Let Sh be a finite dimen
sional subspace of W\(Q) which contains the interpolants of interest. 
The finite element approximation U to u from Sh is determined by 
U=ZtaJUj, {Uj} a basis for Sh and IQSIU^V dx = -\QfVdx 
WeSh. 

THE ERROR BOUNDS OF BARNHILL AND GREGORY [2, 3, 4, 5]. 

(*) \u - U\x ^\u- ü\x ^ Kh\u\2, 

where ü is an interpolant in Sh. Barnhill, Gregory, and Whiteman have 
given computable expressions for K for various families Sh. 

THE COERCIVENESS THEOREM. If dû is smooth, then IM > 0 such that 

(**) \u\2 ^ M \Au\o = M\f\0. 

More generally, if dû is piecewise smooth with a finite number of corners 
xW having interior angles ccj, 0 < cCj < n, then the same estimate holds [8]. 

ERROR BOUNDS. Combining (*), (**) gives \u - £/|i ^ KMh | / |0 . 

PROBLEM. Determine computable estimates for M. Combining this with 
the Barnhill-Gregory results will give computable error bounds for the 
approximate solution U'm terms of the prescribed data/. Convex polygons 

file:///Au/o
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are the domain of definition û for most practical problems. The boundary 
of a polygon is not smooth, because of the corners, and so the Miranda— 
Talenti Theorem [11, 12, 14] does not apply directly. It is the purpose of 
this paper to extend the Miranda—Talenti Theorem to the case of convex 
polygons. 

Natterer [13] has recently developed computable error bounds for piece-
wise linear finite elements over triangles. He assumed that the Miranda— 
Talenti Theorem is true for convex polygons. However, as noted above, 
this proof is the objective of our paper. Natterer's analysis applies only to 
piecewise linear finite elements. (Hence his analysis cannot be applied to 
the bilinear example in §5.) For the linear case, Natterer obtains the con
stant 0.81, whereas Barnhill and Gregory obtain 1.207 for this case. Hence 
Natterer's error bounds are about 2/3 of Barnhill and Gregory's, for the 
one case to which Natterer's apply. 

OUTLINE OF THE REMAINDER OF THE PAPER. 

2. The Miranda-Talenti Theorem and its applications. 
3. Extension of the Miranda-Talenti Theorem to domains with corners. 
4. Computable error bounds for domains with corners. 
5. Numerical results. 

2. The Miranda-Talenti Theorem and its applications. The following 
result is due to C. Miranda and G. Talenti [11, 12, 14]. 

THEOREM 5. / / dû is smooth, then V/e L2(Q) the weak solution of the 
Dirichlet problem satisfies \u\\ = |/|g — \dQ k(du/dn)2 ds where k is the 
curvature of dû. 

REMARK, k, the "signed curvature" of dû, is positive for convex domains 
£?. It may be defined as follows. Let x = x(s) = (xx(s), x2(s))> O ^ g 1, 
be a parametric representation of dû in terms of arc-length s. Then t(s) = 
dx(s)/ds = {dxi{s)lds, dx2(s)/ds) is the unit tangent vector to dû. Choose 
the positive sense of s so that Û always "lies to the left of t(s)". 

n(s) 

t(s) 
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Then n(s) = (dx2(s)/ds, - dx^/ds) is the exterior unit normal vector to 
dû. Moreover, 3 a unique scalar function k(s) such that dt(s)/ds = 
- k(s)n(s). It is this k(s) that appears in the Miranda-Talenti Theorem. 

APPLICATION TO CONVEX DOMAINS. It is known that a domain Û with 
smooth dû is convex if and oniy if k(s) ^ 0. Thus Û convex implies 
\u\2 ^ | / | 0 ; that is, M ^ 1. 

REMARK. Actually, M = 1 in this case since Theorem 5 holds for every 
u G Co°(0) and these functions satisfy du/dn = 0 on dû. 

APPLICATION TO NON-CONVEX DOMAINS. In this case k(s) can change sign 
and the estimates are more complicated. Suppose that k(s) ^ 0 on F cz dû 
and k(s) ^ - fx on F where /a > 0. The Miranda Talenti Theorem im
plies that 

Mi 2 J do \dnj ^ , Jr \dnj 
= 1 - "™ ,\»V ^ 1 -

\Ml ~ \Ml = \Ml 
2ds 

\Au 

Consider the functional 

f (¥fd° 
•/(«) = Jr]°^ ,ue WKQ) fi W^Q). 

Standard techniques of the calculus of variations show that / is stationary 
at the solutions of the following eigenvalue problem (eigenvalue X): 

(2.1) A2u = 0 in Û, V | j - = lAu and u = 0 on dû 

where %r is the characteristic function of T7. Moreover if uj is a solution of 
this problem with eigenvalue Xj, then J(uj) = Xj. Thus if Amax is the largest 
eigenvalue, then J(u) ^ Amax, Vw G # i ( û ) fi W&Û\ and hence |w|il/Jw|§ 
^ 1 + M >lmax> i.e., M2 ^ 1 + //Amax. 

3. Extension of the Miranda-Talenti Theorem to domains with corners. 
For many problems of practical interest dû is not smooth but is piecewise 
smooth with a finite number of corners. If the interior angles at the corners 
are all less that TT, then the Sobolev 2-norm of solutions of the Dirichlet 
problem is still finite and the coerciveness Theorem holds [8]. However, 
the Miranda-Talenti Theorem is known only for domains with smooth 
boundaries. The purpose of this section is to extend the Miranda-Talenti 
Theorem to a class of domains with corners. 
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DOMAINS WITH CORNERS. A bounded domain û c R 2 will be said to be a 
C»+s -domain with corners if and only if 

1) dû = (J7=1 rj9 m a positive integer; 
2) rj = {(*i, x2) = (#»(*), $ % ) ) : 0 ^ r ^ \}J = 1, 2, . . . , m; 
3 ) ^ 6 C ^ ( [ 0 , 1 ] U = 1,2, y = 1,2, ...,™,<? > 0(a = 0, 1,2, . . . ) ; 
4) ^ ' ( r ) 2 + W(TY > 0 for 0 ^ T ^ 1 and y = 1, 2, . . . , m; 
5) the arcs Tj intersect only at their end-points and the set of boundary 

points so determined forms a set (xa\ xi2), . . . , x(m)) where x(fl 
= W\ X&); and 

6) The internal angles a, at the points x^ satisfy 0 < <xj < TC, j = 1, 
2, . . . ,m. 

REMARK. If aj ^ AT, then u $ W%(0), in general, and the M-T Theorem 
does not hold. The points xW will be called the corners of Q. The notation 
A = {(*i> *2> = ( $ % ) , $ % ) ) : 0 < T < 1} will be used to denote the 
open boundary arcs. The closure of Q, denoted by Û, is the disjoint union 
of the sets Q, fl9 . . . , Pm and {x(1>, . . . , x^ }. 

PROOF OF THE MIRANDA-TALENTI THEOREM FOR 0+*-DOMAINS WITH 

CORNERS, n H . The Miranda-Talenti Theorem relates the quantities 
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and 

=JiH)'+2!lfHH)V^ 
Hence the theorem is equivalent to the equation 

Moreover, the two integrals in (*) can be transformed into one another 
by two integrations by parts, using Gauss's Theorem 

I ^— dxidxo = I Jtjvds (j = 1, 2). 
JoOXj JdO 

This will be carried out and the boundary terms will be shown to yield 
precisely the last term in (*). Gauss's Theorem cannot be applied directly 
to derivatives of u in Û because of possible singularities at the corners. To 
avoid these the integration will be carried out in the subdomain Q£ = 

o - Ur=i N&)> NJ& = {*: i* - *(y)i ^ *}• 
If Q is a C3+<5-domain with corners a n d / e C1+8(Q), then the Schauder 

estimates imply that u e C3+Ô(Q — {xa\ . . . , jc(m)}). Hence Green's for
mula can be applied in Qe (e > 0) with v replaced by any derivative of u of 
order ^ 3. Thus the following relations are valid: 

J0^3x^X2) l 2 ) o\dx1\dx1dx2 dx2] \dx\dx2 dx2))
 l 2 

= _ f ( d3u \ du j x j x C n d2u du ^ 
JoSdx2dxl)dx2 l 2 )do(

 1dx1dx2 dx2 

-i d2u d2u, , 

JdoX 1dx1dx2 dx2
 2dx\ dx2) 

Now ( — n2, rti) = (xfo), x^s)) = t and hence 

d2u , „ d2u „/,„•. d2u . if s d2u d du d2u , d2u i, \ d2u , if % 
•dx\ T 1dx1dx2 ~^>dx\ ^^°,dxj»xl ~ as dxt-

Thus 
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Consider the integral of (duldx2)(d(du/dxi)lds over T) = .T, - [jf=1 Nfe). 
On rej the boundary condition u = 0 implies that yw = (du/dx^ du/dx2) = 
^(nh nò = ^ where A = yw-w = 3w/3«. Thus on T) 

Combining this with Frenet's formula dnjds = kt gives 

= X—r-niti2 — X2kn\ = -y —3—«i«2 — A2fcn2. 

Thus 

f 9« d ( du \ , 
J^3x2 ds\dXlr 

where x^~(e) and xì+{è) are initial and final end points of the oriented 
arc T). 

Now d(n1n2)/ds = n^dn2\ds) + n2(dn1/ds) = k(nxt2 + w2*i) = ^("ï — WD 
by Frenet's formulas. Thus 

f 3i/ J / du \j 
)r)dx2 ds\dxj 

because A2 = |V"I2 = (du/dn)2. Combining these results gives 

. 1W* )Tw+s f * -f ( * > . 
2Pl \dn) J»y-(e) £ i J 3ß.rWy(e) 3*2 * V 9*1 / 
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To complete the proof of the Miranda-Talenti formula for Cn+Ô-
domains with corners it is enough to make e -• 0 and show that the terms 
on the right-hand side of (3.1) have the limit zero. For this it is necessary 
to examine the next topic. 

BEHAVIOR AT CORNERS OF SOLUTIONS OF THE DIRICHLET PROBLEM. The 

results of N. M. Wigley [15] will be used. To state them let z = Xi + 1X2, 
z</> = x[j) + ixtf*. The following is a special case of [15, Th. 5]. 

THEOREM 6. Let Q be a C*+8-domain with corners and let fe C2+8(Q) 
(so that u e C*+8(Q - {xa), . . . , x(w)}) by the Schauder Theorems). Two 
cases are distinguished. 

CASE 1. CCJ\IZ irrational. Then to each (j, > 0 there corresponds a poly
nomial Pj = Pf in z - z(>\ z~^z~^, (z — zW)*f"t and (z - z^y,a> such 
that for all x = (xl9 x2) e Q [j (J?=i A 

( + ) u(x) = Pj + o(\x - xW\*-r), x-> JCV). 

CASE 2. GCJIIC = p/q rational, (p, a) = 1. Then to each // > 0 there 
corresponds a polynomial Pj = Pf in z — z{J\ z — z(>\ (z — z^Y,ai, 
(z _ z </>*/«/, (z - z</>)«log(z - z^) , (z - z</>)«log(z - z(/>) such that( + ) 
holds. 

Moreover, expansions for the derivatives of u(x) of order ^ 2 may be 
obtained from ( + ) by formal differentiation, i.e., if 

then 

Dau(x) = DaPj + o(\x - JC(/>|3-I«I-^)? * -* *(y) 

/orO ^ |a| = ai + a2 ^ 2. 

REMARK. In [15] Theorem 6 is proved under the additional hypothesis 
that u(x) = o(\x — x^1 \P),p > Max(— 1, —%\CCJ)> However, here u e C(Q) 
and hence this hypothesis can be omitted. To prove this recall that we 
know that u e Wl(Q). Moreover, Sobolev's embedding theorem holds for 
C4+5-domains with corners. It follows that u e C(Q) (and, in fact, that 
u = 0 on 90). 

COROLLARY 7. Under the hypotheses of Theorem 6 3 a number ß > 1 
such that u(x) = 0(\x - x^\ß),du(x)/dxk = 0(\x - x^\ß~l) andb^ujdx^x, 
= OQx - x^\ß-2)forj = 1, 2, . . . , m, x -> jc<». 

PROOF. It is enough to show the existence of an exponent ßj > 1 for 
each corner. Then ß = min(/3i, /fe» • • •> ßm)- Introduce polar coordinates 
xi = xiJ) + r c o s 0 and x2 = x\j) + A* sin 0. Then by Theorem 6, in the 
worst case (Case 2), 
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u(x) = plr cos 0, r sin 0, r«/a cos — , r*'« sin — , 

( 1 ) \ 
w'9ö(ln r + id), r^-'^(ln r - ifl) J + o(r3~^) 

where Py is a polynomial and a = ay. Note that # ^ 2 because 0 < a < % 
and a/flr = />/#• It will be assumed that 0 < // < 1.(1) may be written 

Û ß 

u(x) = c0 + cxr cos 0 + c2r sin 0 + c3r*/a cos — + c4r*/asin — 
a a 

(2) + r?{c5(ln r) cos qd + c6(ln r) sin qd + c70 cos qO -f c80 sin #0} 

+. terms with products of 2 or more factors + ö(r3~^). 
Note that the product of two or more of the factors r cos 0, r sin 0, r*/flf 

cos(tf0/a), J**7« sin(#0/a), A*9 In r cos qd, rûn r sin qd, r*0 cos #0, r*0 sin qd 
will also be 0(r2~v) for any v > 0, because q ^ 2 and ;r/a > 1. Thus 

u(x) = c0 + ci(*i - *iy)) 4- c2(x2 - lof) + O^*^) 
( 3 ) + 0(r2-^) + o^-v). 

It follows that u(x) has a unique limit c0( = cJ
0) when x -* x(>} through 

ÛU Uf=i A- B u t w e k ? o w t h a t M e C(Û U [jf=i A ) and w = 0 on / y 
Thus c0 = 0 and u e C(Q). Now differentiate (2), using 

9 =«**-£-- sinö 9 
3*! 3r r 30 

0 - a n / ) 3 4- COS0 3 -= = Sin (7̂ s 1 -^a-
dx2 or r 30 

These operators, applied to the terms in (2), yield finite sums of similar 
terms with the powers of r reduced by 1. Thus 

(4) OIL = ck + 0(r*/«-i) + 0(r*-v) + 0(r2-^. 
oxk 

It follows that V" = (du/dxi, du/dx2) has a unique limit (cx, c2) ( = (c{, c£)) 
when *->*<» through Q U U7=iA- B u t weknow that ueC^Q \J 
[JT=i A)- ^Thus u G C^Ö). Moreover, u = 0 on /y implies yw = IVWIW o n 

pj. Thus at x(» (ch Co) = |Vw(x(y))l«+ = IVw(*(y))l«- where «+ and «_ 
are the unit normal vectors at x^ to the two boundary arcs that meet 
at x{J\ Since by assumption n+ # «_ (0 < ay < %\ it follows that 
|V"(*(y))l = 0, i.e., ex = c2 = 0. Thus (4) becomes 

(5) - |^- = 0(r*'«-i) + 0(ri-^) + o ^ ) . 
oxk 
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Finally, differentiating (2) twice gives a finite sum of terms in which each 
power of r is reduced by 2. Thus 

(6) ä Ü ^ = 0(r«'«-2) + 00-") + oO-i-/-). 

To complete the proof of Corollary 7 we need only take ß = ßj = 
Min(ff/a, 2 - v). 

THEOREM 8. (MIRANDA-TALENTI THEOREM FOR DOMAINS WITH CORNERS). 

Assume that Q is a CA+ô-domain with corners, and fe C2+Ô(Q). Then the 
solution of the Dirichlet problem satisfies 

M - I ^ - T L ^ ) 8 * -
PROOF. Returning to equation (3.1) it must be shown that when e -> 0 

the terms on the right have the limit 0. By Corollary 7, du/dn = yu-n = 
0(\x - xW\P-l)9 x -> xW9 where /3 - 1 > 0. Since x'm±(e) -+ x& when 
e -* 0 it follows that 

lim S W - ^ J | =0. 

Moreover, dQ£ fl <W/(e) is an a r c of a circle of radius e. Thus, using polar 
coordinates (r, 0) with origin at x^\ ds = edd and 

9t/ d / du \ __ du J 32a _ _ 3 2 w \ 
3x2 ds \ 3xx / dx2 I 1 3*f 2 dx^x2 J 

where / = (/l9 /2) is the unit tangent vector to the arc. Hence, by Corol
lary 7 

du d ( du 
dx2 ds 

and therefore 

/ J M = O(^-i) 0(^-2) = 0(A-2/3-3), r _ o, 

f * ^_( 9̂ .U . r^C^-s), rffl = 0 ( ^ - 2 ) 

since 0 ^ öi(s), 02O) ^ 2%. Since /3 > 1 it follows that 

l i m f 3^ d f du \ , _ Q 
e-o J oerw/e) 3x2 öfc \ 3^! / 

4. Computable error bounds for domains with corners. 

THEOREM 9. If the hypotheses of Theorem 8 hold and the arcs Tj are all 
convex (k ^ 0) then M = l,/.e., \u\2 ^ |Jw|0. 
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COROLLARY 10. M = 1 for all convex polygons. 

THEOREM 11. Under the hypotheses of Theorem 8, M ^ (1 - (&min)/lmax)
1/2 

where kmin g Ois the minimum ofk on dû and Xmax is the largest eigenvalue 
°fproblem (2.1). 

5. Numerical results. Numerical experiments to test the sharpness of 
these bounds appear in [6, 7]. We illustrate these numerical results with 
an example. Let R = [0, 1] x [0, 1] and - Au = / i n R, u = 0 on dR. 
Let/(x, y) = 2[x{\ — x) + y (I — y)]. Consider piece wise bilinear finite 
elements and let h = 1/2. Then the finite element approximation U is 
U(x, y) = (5/l6)xy on [0, 1/2] x [0, 1/2] and symmetrically defined on 
the rest of R. The error bound of Barnhill and Gregory for this problem 
and approximation is 

( + ) \u - U\x S KMh | / | 0 = 0.7906 h\f\Q 

since K = 0.7906 [7] and M = 1 (Corollary 10). | / | 0 = 0.6992, so ( + ) 
becomes \u — U\i ^ 0.2764. The solution of this Dirichlet problem is 
u(x, y) = x(l — x)y(\ — y\ so the actual error can be computed. It is 
\u — U\i = 0.07711. Thus the error bound is 3.58 times the actual error, 
in this example. For completeness, we remark that Nitsche's trick enables 
one to change the error bound \u — U\i ^ c | / | 0 t o \u — U\0 ^ c21/|0. 
That is, the L2 error can be estimated from the energy norm error. Of 
course, this magnifies the conservativeness of the error bound. For this 
example, Nitsche's trick applied to ( + ) yields \u — U\0 ^ 0.6250 h2 \f\0 

= 0.10925. The actual L2 error is \u - U\0 = 0.009709. Hence the L2 

error bound is 11.25 times the actual L2 error in this example. 
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