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INDUCED SHAPE FIBRATIONS
AND
FIBER SHAPE EQUIVALENCE

MAHENDRA JANI*

ABSTRACT. In this paper we prove that a map induced from a
shape fibration is a shape fibration. We define a fiber shape equi-
valence relation between shape fibrations. Also, generalizing the
homotopy relation, we define a strong equivalence relation in the
set of maps between compact metric spaces. Then we prove that
two strongly equivalent maps induce fiber shape equivalent shape
fibrations. As a corollary we show that the fibers over two points
connected by a strong shape path are of the same shape. Finally, we
prove that a fiber shape equivalence induces a relative shape map
which induces an appropriate isomorphism on relative shape
groups.

1. Introduction. In a recent paper [11] S. Mardesi¢ and T.B. Rushing
have defined an important notion of ‘shape fibration’ by generalizing an
approximate fibration of Coram and Duvall [4]. One expands a map
p: E - B between compact metric spaces into amap p: E = (E,, r,,) —
B = (B,, ¢.») of inverse sequences of compact ANR’s. The map p is a
shape fibration if p has the following approximate homotopy lifting
property: each n and each ¢ > 0 admit an index m = n and ¢ > 0 such
that for any topological space X, whenever the maps #: X — E,, and
H: X x I - B, satisfy d(p,h, Hy) < 0, then there is an homotopy G:
X x I - E, satisfying d(Gy, r,,h) < eand d(p,G, q,,H) < .

Analogously to fibrations, one may ask the following questions for
shape fibrations. Is a map induced from a shape fibration a shape fibra-
tion? Is there a notion of a fiber shape map? In what sense are two shape
fibrations fiber shape equivalent? Is it true that two homotopic maps
induce equivalent shape fibrations?

In this paper we have studied all these questions and have found
satisfactory positive answers. §2 contains basic definitions and some
basic results that we need. In §3 we prove that a map induced from a
shape fibration is a shape fibration. §4 contains the definition of a fiber
shape equivalence.

*This paper is essentially the author’s Ph.D. thesis written under the direction of
Professor Eldon Dyer at the City University of New York, 1978.

Received by the editors on October 20, 1978, and in revised form on October 3, 1980.
Copyright © 1982 Rocky Mountain Mathematics Consortium

305



306 M. JANI

Let p: E— B and p’': E' - B be shape fibrations expanded to maps
p:E=(E,r,,) »B=(B,q,,)andp: E = (E,, r,,) — B of inverse
sequences of compact ANR’s respectively. Roughly, a fiber shape map
f: p—> p' is an equivalence class of a map f: E — E’ of ANR-sequences
satisfying the following condition: for every n and for every ¢ > O there
is n* = n such that for all # = m = n* there is a homotopy H: r, f, =
S atma( SUCh that for every ¢ €I the maps q,,p,H, and G, P, are
e-close.

Two such maps f, g: E — E’ are said to be equivalent if for every n
and for every ¢ > 0 there is 7 = n such that for all m > 7, there exist
7/ Z a(m) and an homotopy L: f,.Fuwmy, = &m'ewm. Such that for every
t € I, the maps q,,,p, L, and q,,p, are e-close.

Finally, two shape fibrations p and p’ are fiber shape equivalent if
there are fiber shape maps [f]: p — p’ and [g]: p" — p such that gf ~ 1,
and fg ~ 1,.

For example, the shape fibration p: W — W/A4 ~ S, where W is the
Warsaw circle and A is its limit arc, is fiber shape equivalent to the obvious
shape fibration 1g5: S — S1,

In §5 we prove the main result that strongly equivalent maps induce
fiber shape equivalent shape fibrations.

Two maps fand g: C — B between comapct metric spaces are strongly
equivalent if there are maps f, g: C — B of inclusive inverse sequences
of compact ANR’s such that (i) for every n there exist n(*) such that for
all m = n(*) there is a homotopy H™: ¢,,f,n = qum&» and (ii) for m’ =
n'(*) where n’ = n there is a homotopy g, H" = H™(g,,, x 1;) (rel I).

Two homotopic maps are strongly equivalent. Hence, in particular two
induced shape fibrations by homotopic maps are fiber shape equivalent.

One immediate corollary of the theorem is that if B is of a trivial shape
then a shape fibration p: E — B is fiber shape equivalent to a trivial shape
fibration 7g: F, x B —» B where F, = p~!(x) for x € B.

The strong equivalence notion leads naturally to a notion of strong
shape path connectedness which we have discussed in §6.

Two points x and y of a compact metric space B are connected by a
strong shape path if for any ANR-sequence B = (B,, ¢,,) with inj lim
B = B there is a family of paths @ = {w: I - B,lwy = X, w1 = y} such
that for all m = n, q,,0, = o, (rel ).

A space is strongly shape path connected if any two of its points can
be connected by a strong shape path. Clearly, path connected spaces are
strongly shape path connected. Moreover, plane compact connected
metric spaces and pointed 1-movable compact connected metric spaces
are strongly shape path connected. But the fact that the dyadic solenoid
is not strongly shape path connected shows that, unlike Borsuk’s ap-
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proximate O-connectedness [2], not all compact connected spaces are
strongly shape path connected.

S. Mardesi¢ and T.B. Rushing have asked the following question in
[11]. For a shape fibration, is it true that two fibers over points lying in
the same component are of the same shape?

We have partially answered this question by the following corollary of
the main theorem: for a shape fibration, two fibers over points connected
by a strong shape path are of the same shape.

Finally, in §7 we have proved that a fiber shape equivalence [f]: p — p’
induces a pointed relative shape map f: (E, F, e) —» (E’, F’, ") which
induces an appropriate isomorphism f,:7%(E, F, e) —» %,(E’, F', ¢') of
shape groups.

I gratefully acknowledge useful and inspiring conversations with
Professor A. Heller and I thank Professor H. Hastings for keeping me
aware of recent developments in Shape Theory.

By private correspondence the author came to know that A. Matsumoto
has proved the theorem 3.1 independently in [13] and J. Krasinkewicz
and P. Minc [7] have defined a notion called ‘generalized paths’ similar
to the notion of ‘strong shape path’. Also, the referee pointed out that
the authors in [7] have proved Theorem 6.1 for ‘generalized paths’ and
have described the example of Proposition 6.3.

2. Preliminaries. All spaces considered will be metric spaces. Denote
by d(x, y) the distance between two points x and y. For a number ¢ > 0,
two maps (continuous functions) f, g: X — Y are g-close if for each
x € X, d(f(x), g(x)) < 0. For such f and g we will write d(f, g) < 0. The
maps f and g are §-homotopic if there is an homotopy H: X x [ - Y
such that Hy = f, H; = g and for each xe X, d(H(x, t), H(x,t")) <0
for all ¢, t' € I. For the interior of a space X we write int X. Let 4, Y be
subspaces of the space X. Then Y is said to be a neighbourhood of 4 in
XifAcint?Y.

By an ANR we mean absolute neighbourhood retract for metric spaces.
It is well-known that if Y is a compact ANR, then for every ¢ > 0 there
exists a § > 0 such that any two §-close maps from a space X to Y are
e-homotopic [5]. We use this result freely without mentioning it further.
For a map f: X —» Y between compact ANR’s and a number ¢ > 0,
A(f, €) denotes the set of all §’s such that d(x, y) < & implies d(f(x), (y)) <
e and (Y, ¢) denotes the set of all 7’s such that two y-close maps from
a metric space to Y are e-homotopic. Note that if 0 < ¢’ < d and 0 <
7' < 1, then &' € A(f, €) and 5’ € I'(Y, ¢) if d€ A(f, ¢) and pe I'(Y, ¢). By
convention if ¢ € A(f, ¢) and pe I'(Y, ¢), then 0, 5 < ¢.

A space E is a convenient ANR if each compact metric space X in E
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has the following property: for each neighbourhood U of X in E there
is a compact ANR M < U with X < int M. Every polyhedron is con-
venient and by the triangulation theorem [3] every Q-manifold is con-
venient where Q is the Hilbert cube. Also if E is a locally compact ANR,
then £ x Q is convenient [4].

An ANR-sequence E = (E,, r,,) is an inverse sequence of compact
ANR’s. A level map p = (p,): E - B = (B,, ¢,,) of ANR-sequences is
a map of inverse sequences, i.e., p is a family of maps p,: E, — B, such
that for m = n, p,¥,m = qumPm- Let inj lim E = (E, r,) and inj lim B =
(B, q,). Then the unique map p: E — B is said to be the limit map of the
level map p if for each n, q,p = p,r,-

Generalizing Coram and Duvall’s approximate fibration [4] S. Mardesi¢
and T.B. Rushing [11] have defined shape fibration. A map p: E — B
between compact metric spaces is called a shape fibration if it is a limit
map of a level map p: E - B of ANR-sequences which has the following
approximate homotopy lifting property(AHLP): each n and each ¢ > 0
admit an m = n and a ¢ > O such that for given maps 4: X — E,, and
H: X x I - B, with

0] d(pnh, Ho) =0
there is a homotopy G: X x I —» E, such that
@ d(Go, rmh) < €
and

3 d(p,G, 4,mH) < e.

Every such m is called a lifting index for (n. ¢) and ¢ is called a lifting
mesh for (n, ¢). We refer to (m, 0) as a lifting pair for (n, ¢). It has been
shown in [11] that if a map p: E — B between compact metric spaces is
a limit map of level maps p: E - B and p’: E' -» B’ of ANR-sequences
and if p has AHLP, then so does p’. Also in [11] the authors have defined
a homotopy lifting property (HLP) for a level map as follows: a level
map p: E - B of ANR-sequences has the HLP if each n admitsanm = n
such that for given maps #: X - E,, and H: X x I - B,, with

4 Hy = pnh,
there is a homotopy G: X x I — E, such that
(%) Go = rumh
and

(6) PrG = qumtl.

For a level map p: E — B of ANR-sequences, we will state two results
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from [9] which relate the stronger lifting properties with the weaker
properties.
(D) If p has the AHLP, then it has the stronger lifting property obtained
where (2) is replaced by (5).
(II) p has the AHLP if it has the weaker lifting property obtained where
(1) is replaced by (4).
The following proposition follows immediately from (II).

PROPOSITION 2.1. Let p: E— B be a level map of ANR-sequences. If p
has the HLP, then the limit map p: E — B is a shape fibration.

The reader is advised to refer to [10] for maps of ANR-sequences and
the equivalence relation between them, to [15] for the shape groups and
to [8] for the category pro-# and to [6] for the detailed proofs of the
results of this paper.

3. Induced shape fibration. In this section we will prove that a map
induced from a shape fibration by a map is a shape fibration. First we
need the following proposition.

PRrROPOSITION 3.1. For maps p: E — Band f: C — B between compact
metric spaces, there are level maps p: E-»B andf: C - B of ANR-sequences
with limit maps p and f respectively.

Proor: Embed E, B, C in the Hilbert cube Q. Since Q is an AR and E,
C are compact, maps p and f can be extended to p: Q—Q and f: Q0 —» Q
respectively. Choose for B a decreasing sequence of compact ANR-
neighbourhoods B, of B with (),B, = B.

By induction we can choose a decreasing sequence of compact ANR-
neighbourhoods E, of Eand C, of Cwith (\,E, = E,(),C, = C,p(E,) €
B, and f(C,) € B,. For m 2 n, let r,,: E, - E, and ¢,,:C, & C, be
inclusions and for each n, let p, = p|E, and f, =f|C,. Hence p = (p,):
E - Band f = (f,): C — B are level maps of ANR-sequences with limit
maps p and f respectively.

For maps p: E— B and f: C— B between compact metric spaces, a
triple (Z; p', f') is a pull-back of (B; p, f) in the category of compact metric
spaces and maps where Z = {(e, c) e E x C | p(e) = f(c)} and p’: Z — C
and f': Z — F are the projections. Note that Z is also compact. We say
that p’ = p.(f)is a map induced from p by f.

We now have the main theorem of this section.

THEOREM 3.1. Let p: E— B be a shape fibration and f: C — B be a map
between compact metric spaces. Then the map p.(f)induced from p by f is
also a shape fibration.

ProoF. Let (Z; p’, f") be the pull-back of (B; p, f). We want to show that
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p’ is a shape fibration. Let p: E— B and f: C — B be level maps of ANR-
sequences with limit maps p and f respectively. Without loss of generality
we can assume that for each n, E, x C, is a compact convenient ANR.
If this is not the case, then consider an ANR-sequence Q = (Q,, &,m)
where for each n, @, = Q, the Hilbert cube and inj lim Q is a point. Then
inj lim E x Q = E. Also, for each n, let z,: E, x Q, — E, be the pro-
jection map. Then 7p = (p,z,): E x Q — B has AHLP [11] since, for each
n, E, x Q, is a Q-manifold and, therefore, is a convenient ANR. Note
thatinjlimE x Q x C = E x C.

Consider an ANR-sequence of compact convenient ANR’s E x C =
(E, x C,, r,,) where r, =r,. xq,.:E,xC,—E, x C, Then
iNjlimE x C = injlimE x injlimC = E x C. Let for each n, (Z,;
Po\Z,, f2|Z,) be the pull-back of (B,; p,.f,) where p,: E, x C, — C, andf,:
E, x C, - E, are projections. Thus Z = (Z,; r,,|Z,) is an inverse
sequence of compact spaces with inj lim Z=Z and the limit maps of p’|Z
and f'|Z are p’ and f* respectively.

Now by induction, for each n = 1, 2, 3, ... we will define a closed
ANR-neighbourhood E, of Z, in E, x C,, numbers ¢, > 0 and §, > 0
and an integer m such that (m, g,) is a lifting pair for (n, ¢,) with respect
to p. Also we require

(1) 7u(E,) < E, Wherer,, = Fyp X qumlE,,

(2) inj lim E’' = Z where E' = (E,, r,,,),

(3) d(fPmlEps PmSfwlEy) < 8, and

(4) for each n, d(p,(e,), f,(c,) < e, implies (e,, c,) € E, where (e,,

c,)eE, x C,.

For each n, let d, be the composition d,: E, x C, - B, x B, » R
where d is the distance function and R is the set of reals. Note that Z, =
d;1(0). Choose a sequence of ¢'s, 0 < ..... <e,<éy<éyy1<...,and
compact ANR-neighbourhoods E, of Z, in E,, x C, such that

Z, < d;}[0,¢,) cintE, c E, < d;'[0, ¢).

Also we want d;X(x, y) < e, to imply d™(q,m(X), ¢.m(»)) < &, Clearly
E' = (E,,r,,) is the required ANR-sequence.

To show that p’ is a shape fibration, by Proposition 2.1, it is enough to
show that p’ has HLP.

By I of §2, we can assume that p has the stronger lifting property where
(2) is replaced by (5). Let (m, 0, = ¢,,) be the lifting pair of (n, ¢,). Let
h: X — E, and H: X x I - B, be the maps such that

&) Hy = pyh.
See Figure 1. By (3) and (5),
(6) d(pmfr,nh, meO) < 5,,
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Since (m, 6,) is a lifting pair for (n, ¢,), there is a map G': X x I —» E,
such that

@ Gy = Pumfuh
and
(3) A(PrG’s GumfuH) < ey

Define G: X x I — E, by G(x,t) = (G'(x, 1), q,,H(x, t)) for (x, 1) € X x
I. Note that by (8) and (4) and q,,.f,, = f.qmm fOT every (x, ) e X x I,
G(x, t)eE,. Hence G(X x I) c E,. Also by (8) and (6) G, = (G,
TomH0) = Camfuhs QumPrh) = rophand p,G = p(G', q,,H) = q,,H.

Thus P’ has HLP, which shows that p’ is a shape fibration. We will
refer to p’ = p,(f) as a shape fibration induced from p by f.

h £
] M
Xx0 YE, B
n
! r
nm nm
f'
t n
E E
p!;l //2 n ’_//“? n
// ’/,"
— P
. /// -
- ' ,"’
- _&- ' P
- ’_,_v” Py
N — f v P
xxI/’/ i » C m —> B n
m m
' q
Inm nm
v f N
c < =3
n n
Figure 1

4. Fiber shape Equivalence. Analogous to fiber homotopy equivalence,
we will define in this section the concept of a fiber shape equivalence.
First we define a fiber morphism.

DEFINITION 4.1. A fiber morphism F = (f, h): (E, p, B) -» (E/, p’, B)
between two level maps of ANR-sequences is defined to be a pair of maps
f=(a f):E=(E, r,,) > E' = (E, r,,) and h = (8, h,): B = (B,
4»m) = B = (B,, q,,) of ANR-sequences such that for every n and for
every ¢ > 0 there is an index n* = F(n, ¢) satisfying the following condi-
tions:

(A) for all m Z n*’ d(qr’;mp"nfmra(m)/’ q;:mhmqﬁ(m)/p/) < ¢ where 7 2
Max(a(m), f(m)); and
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(B) if m" = m, there are homotopies K:f,Iymaim’y = Fom [ and
H: hydgompon’y = q,:,m,hm,, such that for every ¢t € I

(l) d(qztmhmqﬂ(m)ﬁ(m’ ) qnm,H t) < eand

(1) d(GumPrKiramyers DmHGsmn D) < € where ¢’ =z Max(a(m'),
B(m").

ReMARK 4.1. Cleary, 1, = (1g, 1g): (E, p, B) — (E, p, B) is a fiber
morphism.

REMARK 4.2. Let E, E’, B be compact ANR’s, p: E— B, p': E' - B be
maps and f: E— E’ be a map over B (i.e., p’f = p). Then the trivial mor-
phism f = (f): E —» E’is a fiber morphism.

Now we will define an equivalence relation in the set of fiber mor-
phisms between level maps of ANR-sequences.

DEFINITION 4.2. Two fiber morphisms F = (f, h), G = (g, k): (E, p, B) —
(E', p', B) where f = (a, f,), h = (3, h,), g = (7, &), k = (6, k,) are said
to be equivalent (in symbols, F ~ G) if for every n and for every ¢ > 0
there is an index ' = (F, G)(n, ¢) with the following property: for every
m z n' there is an index 7/, /= Max(a(m), G(m), r(m), d(m)) and there
are homotopies L: f 7 yims = &l yomye a0d M2 By, = KouGsm), Such that
for every ¢ € I, d(@hnGsoms GmM ) < € and d(qumPples umMep,) < e

REMARK 4.3. Denote the set of all such < by (F, G)(m; n, ¢). Clearly, if
/" =z ¢, then /" € (F, G)(m; n, ¢)since p,r,,, = q,,/p,.

REMARK 4.4. If F = (f,h) ~ G = (g, k), thenf =~ gand h > k

PROPOSITION 4.1. The relation ~ of Definition 4.2 is an equivalence
relation.

PrOOF. Only transitivity requires a proof. Let F = (f, h), F’ = (f’, h'),
F"=({", h"): (E, p, B) — (E', p’, B’) be morphisms of level maps such
that F ~ F’ and F’ ~ F". For given nand ¢ > 0, let /" = (F, F')(m; n,
¢/2) and /" e(F', F")(m; n, ¢/2). There are homotopies L': f, 7y, =
Solaromers M My = hueoms a0d L2 folwmr & folamm M
h,q oo = = M, qgm» satisfying the required conditions. For ¢/ =
Max(/’, /"), define the required homotopies L: [, Fyim, = ftarim, and
M: h,qgem, = hyGgimy, by composing homotopies L' with L” and M’
with M" respectively.

REMARK 4.5. Let F = (f, h): (E, p, B) — (E’, p’, B) be a fiber morphism
of level maps where f = (a, f,) and h= B, h ) Deﬁne an index function
& = Max(a, f): N - N and maps f= (&, £, b = (&, h,) (with the same
index function) by Fu = filatmaon and A, = = huGpomam for every n. Then
clearly, F (f h): (E, p, B) > (E, P, B’) is a fiber morphism of level
maps and is equivalent to F.
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By this remark, from now on we will always consider fiber morphisms
with one index function.

Selecting appropriate indices, composing homotopies that are given by
hypothesis and using well-known properties of ANR’s, one can prove
the following propositions. The proofs are complicated in details but the
arguments are straightforward and so we omit them.

PRrROPOSITION 4.2. The composition of two fiber morphisms of level maps
is a fiber morphism of level maps. In other words, if F = (f, h):(E, p, B) —
(E,p,B)and G = (g, b): (E', p’, B') - (E", p’, B") are fiber morphisms
of level maps of ANR-sequences, then GF = (gf, kh): (E, p, B)— (E", p’,
B") is a fiber morphism of level map of ANR-sequences.

ProrosiTion4.3. Let F, F': (E,p, B)—»(E’,p’, B)and G,G': (E', p’, B") —
(E", p", B") be fiber morphisms of level maps. Then F ~ F' implies GF ~
GF' and G ~ G’ implies GF ~ G'F.

We will define an equivalence relation in the set of level maps.

DEFINITION 4.3. Two level maps (E, p, B) and (E/, p’, B’) are said to be
equivalent (in symbols, (E, p, B) = (E', p’, B')) if there are fiber morphisms
F:(E,p,B) » (E,p’,B) and G: (E', p’, B') — (E, p, B) such that GF ~
](E,p,B) and FG ~ I(E’,p’,B)'

By Propositions 4.2 and 4.3 the following result is clear.

PROPOSITION 4.4. The relation = is an equivalence relation in the set of
level maps of ANR-sequences.

Now we are in a position to define the concept of fiber shape equival-
ence.

DEFINITION 4.4. Let E, E’, B be compact metric spaces. Two shape
fibrations p: E— B and p’: E’' — B are said to be fiber shape equivalent
if there are level maps (E, p, B) and (E’, p’, B’) with limit maps p and p’
respectively such that (E, p, B) =~ (E/, p’, B').

The following theorem justifies Definition 4.4.

THEOREM 4.1. Let p: E— B be a map between compact metric spaces.
If (E, p, B) and (E', p’, B’) are level maps of ANR-sequences with limit
map p, then (E, p, B) =~ (E', p/, B)).

First we will state an useful lemma from [11].

LEMMA M. (MARDESIC). Let X = (X,, r,,,) be an ANR-sequence with
injlim X = (X, r,) and let Y be a compact ANR. Then the following asser-

tions hold:
(i) for every ¢ > 0 and for every map f: X — Y there is an index n* such
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that for eachn = n* thereisamap f,: X, — Y withd(f,r,,f) < ¢; and
(iiyife > 0 andf,, g,: X, — Y are maps such that d(f,r,, g.r,) < é&
there exists i = n such that d(f,1 ums &ul'um) < €fOr everym = A.

PRrOOF OF THEOREM 4.1. Foreverym = 1, 2, 3, ... we will select positive
numbers (&, 0> &m> O,,) Where ey =1, ¢,, > 0 as m - 0, §,, < ¢, for
m =1, 2, ..., and by induction on m, we will construct maps f = («,
f):E-E and h=(a, A,): B—> B’ of ANR-sequences such that the
following conditions are satisfied :

(a) for every n and for every ¢ > 0 there is an index n* such that for
all m = n*, ¢,, € A(q,, €); and

(®) () s S aim) < Oml2, AGs hnGaiom) < Ol2

(") d(pr,nfm’ hmpa(m)) < 5m

(iii) for every m’ = m there are ¢&,-and ¢,/3-homotopies K:
Tl atmyaim”y = Fromt St A0A H: Bootmram’y = QP TESPECtively such that
forevery t € I, d(p, Ky HiPoimr)) < Eme

Since ¢,, € A(q,m €), by (i) and (iii), for every m = n* d(q,,,prfom
GrmPmPaimy) < € and for every tel, d(q,,pmK: GumH Pam) < €. Hence
F = (f,h): (E, p, B) - (E', p’, B') is a fiber morphism of level maps.

Let m = 1. Select ¢; = 1,8, € I'(Bi, €1/3), & € A(p1, 01/3) and 6, € ['(E1,
&/2). By lemma M(i) there is an index n; and there are maps fi: E, — E{
and #;: B, — Bjsuch that

M d(r}, fir,) < 81/2and d(g;, ng,,) < 61/2.
By the choice of 6; and by pir; = q1p, gup = Ppln,
(2) d(p{flrnla ﬁlpnlrnl) < 51'
By the lemma M(ii), there is an index a(1) = n; say, such that
3 d(P1f 1 matty MmayPac) < 01
Write fr may = f1 and i’lqma(l) = h;. Now by (1) and (3)
C) d(ry, firaw) < 01/2, d(q1, Mgaq) < 61/2
and
&) d(p1fi» pay) < 01-

Let m = 2. Select ¢,, 0y, & and 0, as follows: &, € A(gys 61/22), 0 €
T'(B;, €3/3), & € A(ps, 62/3) () A(riz 61/22) and 63 € I'(E3, &/2). As in the
case m = 1, by the lemma M(i), there is an index n, = a(1) and there are
maps f: E,, » E; and hy: B,, - Bj such that

(6) d(’é,f.zrnz) < 6/2, d(g>, ﬁzqnz) < 0p/2

and
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@) d(Pz;f. 2 ﬁZPnz) < 03

By the choices of 5, and §, and by the equalities r{rs = 11, q12g5 = 41,
(6) implies

® d(ri, riafara) < 63/22 and d(qy, q1ohad,,) < 01/22.
By (4) and (8),

d(firaw» T 12 o) < 04/2 + 01/22

d(Mqaq) Giktad,,) < 31/2 + 81/22

Since 7,1y = Fatymn, 304 Gaty = Gatynny»

d(flra(l)nzr nps ¥ fzf or nz) < 01

d(MGeyndms ‘11'2’;2‘1,;2) < 01

By the lemma M(ii), there is an index n§ such that for all indices a(2) =
n¥ we have

®

(10)

(1 1) d(flr aDa2) T 1,2f or nza(z)) < 31
and
(12) d(hlqa(l)a(z)’ q{Z};anza(Z)) < 51'

Write /o a2y = f2 and hag,,,.2) = hy. Now, by the choice of §; and 6,
there are &/2- and ¢;/3-homotopies K: firyqyae = Fiafo and H: higumyae) =
q1ohs. Hence

(13) d(firaayey K) < &

and

(14) d(Mqayazy H) < €1/3

for every ¢ € 1. By the choice of &,

s d(p1fi7 a2 PIKD) < 01/3 < /3

for every ¢t € I. Therefore by (14), for every t € I,

(16) d(Mq e Pa> HiPaw) < €1/3.
By (5), we have

(17) d(PLA aatzy MPa ara@) < 01 < €1/3.
Since p,ayaa@ = daa@Pae» Y (15), (16), and (17)

(18) d(piK,, Hpae) < €

forevery tel
Let m 2 3. Select e, € (25 AW 34/27D), 3, I'(Byy epl3)s 6 €
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APrys 0,/3) N (V2L At pys 05/27~11) and 6, € I'(E,,, &,/2). The rest of
the construction follows as above.

CONSTRUCTION OF G. For everyn = 1, 2, 3, ..., similar to the numbers

(&n> Ops &y 0,,), We can select numbers (4,,, g, A 1) satisfying the following
additional condition:

la(m) € A(hrm 5m/2)a Ha (m) € ['(Ba(m), /Ia(m)/?’)s

() - - -
Aa(m) € A(fma 5m/2) and ,aa (m € ['(Ea(m)’ }a (m)/2)~

Similar to the maps f, h, we can construct maps q: E' > E andk: B'—» B
of ANR-sequences such that G = (q, k): (E’, p’, B') — (E, p, B) is a fiber
morphism of level maps. See Figure 2. To show that FG ~ 1, for given
nand ¢ > 0, let n’ be such that for allm = n’, ¢,, € A(q,,. €).- By construc-
tion of Fand G we have

(13) d(rr’m fmra(m)) < 5,,,/2, d(qum hmqa(m)) < 5m/2
and

drams amr’m <-am27
(14) (<)g(>,3a()) faom/

d(qa (m)s ka(m)q;;a(m)) < ﬂa (m)/z'
By the choices of fi, ¢ and iy om

d(q;nﬁa(m) q/;a(m)’ hmka(m)q;Sa(m)) < 5m7

(15) , , ; -
d(r mBa(m) /sa(m)sf m8am ¥ ﬁa(m)) < O

By lemma M(ii), there is an index m* such that for all 7 = m*

d(ryln/s fmga(m)réa(m)/) < gms

(16) , ,
d(qm/’ hmka (m)qBa(m)/) < 5m-

By the choices of §,, and §,, there are &,,/2- and ¢,,/3-homotopies L: r,,, =
Jn8aim ¥ batmre a0 M2 Gy = Ry (o Ggamy, SUCh that

amn d(rpss L) < &n/2and d(g,,, M) < &,/3

for every ¢t € 1. But, by the choice of &,,, d(q,,,P.,L:» 4,mM;p,) < ¢ for every
t € 1. Since this is true for allm = n', FG ~ 1.

Now, if GF is not equivalent to 1, then similar to the fiber morphism
G we can construct a fiber morphism F’ = (f', h'): (E, p, B) - (E’,p’, B')
satisfying the conditions (a), (b), (c) and such that GF’ ~ 1,. From these
conditions it is clear that F ~ F'.

Note that (FGF')-G ~ FG ~ 1, and G-(FGF') ~ GF’' ~ 1, which
shows that (E, p, B) ~ (E’, p’, B).






