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ADDITIONS COMPATIBLE WITH MULTIPLICATION 

H.K. FARAHAT 

1. The study of multiplications compatible with a given additive abelian 
group is already well established ([3], §118). The opposite problem ap­
pears to have received little attention, and is probably intractable in its 
general form. Given a commutative ring (with identity) A, we call an 
addition * on A compatible with the multiplicative structure of A if (A, *) 
is an abelian group whose endomorphisms are precisely those of (A, + ) . 
Since, for each a e A, the map (a-): A -• A given by b -^ ab is an endo-
morphism of (A, + ) , it follows that (A, •, *) will be a ring whose multipli­
cative structure is the same as that of A. Our problem may therefore be 
formulated more conveniently as follows: to determine the class [A] of 
rings R whose multiplicative structure is isomorphic to that of A, such that 
every endomorphism of the additive structure of R is multiplication by 
some element of R. 

This question was first brought to my attention by M.G. Stone (Cal­
gary) who referred to it, in the case A = Z, as a problem of S. Ulam. 
Various forms of this question are to be found on p. 552 of [7]. For this 
reason, we shall call a ring R an Ulam domain if it is a member of the 
class [Z] corresponding to the ring of integers Z. The main purpose of 
this paper is to initiate the study of the general question by proving the 
following : 

MAIN THEOREM. IfR belongs to [Z] and the additive structure ofR is of 
finite rank then R = Z1R ^ Z. Consequently, the only additions * on Z 
which are of finite rank, and are compatible with multiplication, are those 
given by (a*b) = 0~l(6(a) + 0(b)), a, b e Z, for some automorphism 0 of 
the multiplicative structure ofZ. 

2. The ring of integers Z is, of course, a countable unique factorization 
domain (U.F.D.) of characteristic zero with only two units. Accordingly, 
the Ulam domains are precisely the countable unique factorization do­
mains R of characteristic zero with exactly two units, such that every 
endomorphism of (R, + ) is a multiplication. This last condition implies, 
in particular, that (R, + ) is an indecomposable torsion-free abelian group. 
Since the classification of unique factorization domains and indecompos-
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able torsion-free abelian groups is still rudimentary (see [2] and ch. VIII 
of [3]), the determination of all Ulam domains is probably very difficult. 
We have failed to find an example of an Ulam domain of infinite rank; 
in every case either there were too many units, or the additive group was 
decomposable or uncountable ! 

Let R be a unique factorization domain of characteristic zero. We may 
identify Z with the prime subring Z\R of R. Let K be the field of fractions 
of R. Then, of course, K is a field extension of Q, the rational field. It is 
easy to see that K has a transcendence base X whose elements belong to 
R, and then K will be an algebraic extension of Q(X), the field of rational 
functions in the elements of X with coefficients from Q. The polynomial 
ring Z[X], a unique factorization domain (by p. 7 of [2]), is a subring of 
R, and every element of R is algebraic, not necessarily integral, over Z[X]. 
Let J always denote the integral closure of Z[X] in K. Since R is a U.F.D., 
it is integrally closed in K (see Prop. 6, p. 240 of [4]), and therefore R 
contains J. Both R and J have K as a field of fractions, and Q(X)J = 
Q(X)R = K. We shall deal with the situation Z[X] g J g R g ^through­
out this section. Also, we shall use the standard notation for localization 
at prime ideals, namely : 

j p = !±:a, beJ, b$p\ 

RM = ÎILiu, veR, V ^ M } 

where P, Mare prime ideals of/, R respectively. 

If R has finite rank n then obviously X must be empty, and K must 
be an ^-dimensional extension of Q, while J must be the ring of algebraic 
integers of K. The Dirichlet Unit Theorem (see, e.g., Theorem 38, p. 142 
of [6]) gives complete information regarding the group of units of J, 
namely, it is the direct product of a finite cyclic group and ri + r2 — 1 
infinite cyclic groups, where n = rl + 2r2, rx is the number of real con­
jugates of K and 2r2 is the number of non-real conjugates. Accordingly, 
if R has only two units, then rx + r2 = 1 and so n = 1 or 2. We have 
proved the following result. 

LEMMA 2.1 Let R be a U.F.D. of characteristic zero having finite rank 
and only two units. Then R is either isomorphic to a subring of Q, or to a 
ring lying between an imaginary quadratic field extension ofQ and its ring 
of algebraic integers. 

At this stage it may appear that we have the problem (of Ulam domains 
of finite rank) just about licked. However, there is a great deal to the 
subject of rank two rings (see, e.g., [1]). We shall use the method of 
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localization in order to rule out the rank two case. The specific technique 
is an adaptation of that by Larsen and McCarthy in the study of "over-
rings" (see [5], Chapter VI). 

LEMMA 2.2. Let R be an Ulam domain of rank 2, and P be a maximal 
ideal of J such that RP is not all ofR. Then R ü J p. 

PROOF. Suppose that R £ JP, and choose any element r in P, not in 
J p. Let r = a\b with a, b e / , b •=/=• 0, and consider the exact sequence of 
/-modules : 

( ) - • Ker 0 -> J® J-^J, 

where 0(w, v) = ub — va (w, v e / ) . Since / is a Dedekind domain and R 
is a torsion-free /-module, P is a flat /-module, being the direct limit of 
its finitely-generated (hence projective) submodules. Consequently the 
following sequence is exact. 

0 -> Ker 0 ® ; R -* ( / 0 / ) ® 7 R — / ® 7 P. 

But (0 ® 1) [(1, 0) ® r + (0, 1) ® 1] = b ® r - a ® 1 = 0 because of 
the isomorphism / ®y R ^ R in which x ® y -> xy. Exactness now 
implies that 

(1, 0) ® r + (0, 1) ® 1 = £ (cyl, cy2) ® ry 

for suitable elements ry e P, (cyl, cy2) e Ker 0. It follows that c^b — cj2a = 
0, i.e., r = cyl/cy2 (1 S J ^ /), and r = %jcnrj9 1 = L y ^ O - s i n c e r<£ ^ 
we have cj2 e P for ally, whence 1 e P and RP = P. 

LEMMA 2.3. Le/ P òe Û/Î Ulam domain of rank 2, <2«d M be a maximal 
ideal of R. Then M f| / ^ 0 and RM = /^n/-

PROOF. If Af f| ^ = 0 ^ e n Af + / has rank (as abelian group) equal to 
Rank(M) 4- Rank(/) > 2, whence R has rank greater than 2, a contradic­
tion. Hence M f| / is a non-zero ideal of / , and in fact a prime (hence 
maximal) ideal of/. By definition we have the trivial inclusion JMnJ E RM-
On the other hand, let w = r/s e RM where r, s e P, s <£ M9 and define 
C = {we / : wr e J, us e / } , an ideal of/. If C = P ^ • • • Pk is the factori­
zation of C as a product of prime ideals of / then RC = RPX • RP2 • • • 
• RPh and we claim that RC is all of P. Otherwise, P P is not all of P for 
some P e {Pb P2, . . . , /%}, whence by (2.2), P g / F . But then r = a/c, 
s = b/c where a,b,ceJ and c $ P, and yet cr e J, cs e J forces c e C i P , 
a contradiction. Thus PC = P. This implies that C $ M f| / , since 
P(Af p «/) ^ ^ ^ P- Choose c £ C, e e M f| / . Then w = r/s = cr/cs e 
JMc\j- This completes the proof. 
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Observe that the above two lemmas have not utilized the full hypothesis 
defining Ulam domains. 

We now proceed to show that no Ulam domains of rank 2 exist. Let 
R be such a domain. If a, b e R, b ^ 0 and a/b $ R then Rb is a proper 
ideal of R, hence Rb is contained in some maximal ideal M of R and so 
a/b $ RM. This argument shows that R = Ç\MRMI

 t n e intersection being 
over all maximal ideals M of R (this is a standard fact). By (2.3) we con­
clude that 

(2.4) R = n«w 
M 

Hence every non-unit of / belongs at least to one of the "contracted" 
ideals M f| / (because R has only the units ± 1). In our situation this 
forces every prime ideal of J to be a contracted ideal. To see this, let P 
be any prime ideal of / . By finiteness of the class number [6], Ph = gj 
for some positive integer h and some g e P. By hypothesis g belongs to 
some "contracted" ideal, which must coincide with P by unique factoriza­
tion of ideals of / . It now follows from (2.4) that R = J. But J is free of 
rank 2 as abelian group, hence decomposable. Thus R is not an Ulam 
domain. This proves that Ulam domains of rank 2 do not exist. 

COROLLARY 2.5. IfR is an Ulam domain of finite rank, then R = Z\R ^ Z. 

PROOF. We have seen that every Ulam domain R of finite rank must 
have rank 1. If x e R then bx = a\R for suitable relatively prime integers 
a,b,b =£ 0. Write ad + W = 1 with a\ V G Z. Then b{a'x + b'\R) = lR, 
and, since R has only two units, b — ±\R and x e 7AR as asserted. 

Finally, let us complete the proof of the main theorem. Let * be 
an addition on Z which is compatible with multiplication. Then R — 
(Z, -, *) is an Ulam domain, and so by the above Corollary, R — TAR, 
that is, the structure of R as a Z-module which arises from the addition * 
is free with \R = 1 as generator. In order to avoid confusion of this 
module multiplication with ordinary multiplication, let 7){k) denote the 
module product of k e Z with 1^. For example, if k > 0 then TJQC) = 
1 * • • • * 1 (k terms). The map yj: (Z, + , • ) - * (Z, *, •) = R is then 
the standard ring imbedding of Z in R whose image is Zl^ = î  in our 
situation. It follows that rj is a ring ismorphism, and that if 6 = TJ'1, a, 
i e Z , then a * b = Or\0(a) + 6(b)). 
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