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BOREL EXCEPTIONAL VALUES IN THE UNIT DISK 

L. R. SONS 

1. Introduction. Some time ago E. Borei [1] introduced for entire func­
tions the idea of a Borei exceptional value. The analogous idea for func­
tions meromorphic in the unit disk D has been considered by R. Nevanlin-
na [4, p. 144] (indirectly) and by M. Tsuji [6, p. 293]. Below we extend 
some of Tsuji's results and consider analogues of results of G. Valiron 
[7, p. 71-78] and S. Singh and H. Gopalakrishna [5] as well as some rela­
tions between Borei exceptional values and other types of exceptional 
values studied in value distribution theory. Contrary to the situation for 
entire functions, an analytic function in the unit disk may have a Borei 
exceptional value and not have regular growth. We shall use the notation 
of Nevanlinna theory (see, for example, W. Hayman [3]). 

For our purposes we define the order p of a meromorphic function / 
defined in D by 

p = lim sup l°fT
(\

rJ\, r
 r-i K - log(l - r) 

and the lower order X by 

i - l i m u r f X°f+T
(\

r>f\. r-\ - log(l - r) 

Let {an} be the zeros of f(z) — a for z in D. Define the convergence ex­
ponent jua ^ 0 of {an} as follows : 

(0 If 2 , 0 - M) < oo, then Ma = 0. 
(ii) If Z!»(l - M) = °°> then fjia = fi is that number such that for any 

e > 0 

2 ( 1 - \an\y+i-t = oo and 2 ( 1 - \an\)^^ < oo. 
n n 

Tsuji [6, p. 204] notes that 

J"1 N(r, a)(l - ry-idr and £ ( 1 - \an\y+\ À > 0, 

converge or diverge simultaneously. So 
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lim suo fog^fcg) - a um sup _ l o g ( 1 _ r) - fxa. 

Since N(r, a) ^ T(r,f) + 0(1), (r -• 1), we know that 0 ^ ^ ^ p. ^ is 
defined similarly. 

If p < oo, we say a is a Borei exceptional value for/if jua < p. If p = oo, 
we say a is a Borei exceptional value for/if (jta < oo. 

If the case p < oo the following theorem is in Tsuji [6, p. 293]. 

THEOREM 1. Let f be a meromorphic function in D such that f has order 
p <; oo. Then for every a in C U {oo} with at most two exceptions, fia = p. 

Suppose we define N(r, a) in a similar manner to N(r, a) where we con­
sider only the distinct a-values of/. Let 

r log+W(/% a) 
hl?4UP - l og ( l - r ) - * 

Then we have the following corollary. 

COROLLARY 1. Let f be a mer omorphic function in D such that f has order 
p ^ oo. Then for every a in C U {oo} wzï/z a/ most two exceptions, fia = p. 

The best possible nature of these two theorems is seen by considering 
the function/defined in D by/(z) = exp((l — z) -2). 

Turning to simple zeros, we define Ns(r, a) in a similar manner to N(r, a) 
where we consider only simple a-values of/ Let 

lim sup l Q g + ^ , f l ) - u nmsup _ l o g ( 1 _ r) p.,. 

Then the following theorems hold. 

THEOREM 2. Let f be a meromorphic function in D such that f has order 
p ^ oo. Suppose there are distinct elements a and b in C U {oo} which are 
Borei exceptional values for f Then for any c in C with c ^ a and c ^ b, 

THEOREM 3. Let f be a meromorphic function in D such that f has finite 
order p. If there exists an element a in C U {oo} such that fia < p, then 
jubs = p except for at most two distinct elements b in C U {°o} — {#}• 

COROLLARY 2. Let f be an analytic function in D with finite order p. Then 
Has ~ p except for at most two distinct numbers a in C. 

We may also define N12(r, à) in a similar manner to N(r, a) where we 
consider each simple and each double zero of/(z) — a counted once only. 
Let 
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Following a line of reasoning much like that used in the proof of Theorem 
3, we can prove Theorem 4. 

THEOREM 4. Let f be a meromorphic function in D such that f has finite 
order p. Let a and b be distinct elements ofC [} {oo} such that fia < p and 
fibi2 < P' Then for every c in C U {oo} such that c ^ a and c ^ b9 we have 

Vcs = P-

An entire function with finite order which has a Borei exceptional value 
a in C must have its order an integer. If / is defined in D by f(z) = 
exp((l — z)_3/2), we see / has zero as a Borei exceptional value and order 
1/2. Further, if we define 

u fsupi log+log+M(r,/) _ (p* 
ÎÎÎ? linf J - log( l - r) - U*> 

where M(r,f) = max|/(z)|, (|z| = r), t hen /has p* = 3/2 which is also not 
an integer. 

If an entire function of finite order has a Borei exceptional value a in 
C, the function must have regular growth (i.e., order and lower order are 
equal). The following theorem shows this need not be the case in the disk 
and also shows there are functions of irregular growth in the disk which 
need not take every value (i.e., no analogue exists of the result of J. M. 
Whittaker in [8]). 

THEOREM 5. There exist analytic functions f in D such that f(z) = 
exp(g(z))/tfr z in D, A* ^ p*,andX ^ p. 

Finally we give a theorem relating Borei exceptional values to other 
types of exceptional values studied in value distribution theory. 

THEOREM 6. Let f be a meromorphic function in D such that f has a as a 
Borei exceptional value. 

(i) If f has finite order p in D, then d(a,f), the Valiron deficiency of a, 
satisfies J(a, / ) = 1. 

(ii) Iff has p = A, then d(a, / ) , the Nevanlinna deficiency of a, satisfies 
ô(aj) = 1. 

2. Proofs of Theorem 1 and Corollary 1. Assume first that p < oo. 
Suppose there exist three distinct elements a1? a2, and a3 in C U {oo}, 

with fia. < p. Let X be a number such that fia. < X < p for / = 1, 2, 3. 
Then 

f1 N(r9 at)(l - ry-idr < oo, (i = 1, 2, 3). 

By the Second Fundamental Theorem of Nevanlinna theory (cf. [4, p. 
143-144]), we see 
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(2.1) T(r, f)<j] N(r, at) - Nx(r) + S(r) 

where N^r) = (2N(r,f) - N(r,f')) + N(r, 1//') ^ Oand 

£ 5(0(i - ty-w = o(£(iog+r(0)(i - 0*-1*),) 

(/• -> 1). Using (2.1) we then obtain 

J ro i=l J ro 

(2.2) + fr 5(0(i - ty-w 
J ro 

s c + 0(£ r(*,/)(i - ty-w), 

{r -> 1), where C is a positive constant. Hence, 

(1 + o ( l ) ) f J(f , /)(1 -ty-W< oo 
J ro 

which implies T(t)(l — t)x -* 0 as t -+ 1. However, s ince/has order p, 
there exists an increasing sequence {r^} which converges to one such that 
T(rk)(l — rk)P~£ > 1 for k = 1,2, . . . where p — e > X. We have a con­
tradiction. Slight modifications of the above give the theorem when 
p = oo. 

To prove Corollary 1 we observe that N^r) ^ N(r, 1//'), and 

£ tf(r, a,) - N(r, 1//') £ £ N(r, af). 
*=1 i = l 

So (2.1) implies that T(r,f) ^ 2?=i 7V(r, a,-) + S(r), and we may proceed 
as above to reach a contradiction if we assume fla. < p for three distinct 
elements a1? a2, and a3 in C U {°o}. 

3. Proof of Theorem 2. We may assume a ^ GO. Since/' and/— a have 
the same order (cf. Tsuji [6, p. 228]), we know that zero is also a Borei 
exceptional value fo r / ' . By Theorem 1 we know juc = p, but there is a 
number X < p for which 

2 ( 1 - |flJV+i+« < oo 

where {an} is the sequence of multiple zeros of/ — c (since each value an 

is a zero of/ ' ) . Thus fics = p. 

4. Proof of Theorem 3. We shall use the following lemma. 

LEMMA. Let f be a meromorphic function in D such that f has finite order p. 
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(i) If a is in C then /ua < p if and only if there exists a meromorphic func­
tion (j) defined in D such that no zero off — a is a pole of<fi and the order of 
(f — a)(j> is less than p. 

(ii) fXoo < p if and only if there exists a meromorphic function <j> defined in 
D such that no pole of fis a pole of(j> and the order of(j>lfis less than p. 

PROOF OF THE LEMMA. 

(i) Suppose there is a number a with fia < p. We may write the values of 
f — a as/(z) — a = zmes^)(P1(z))/(P2(z)) where the P{ are Tsuji products 
(cf. [3, p. 222 and 227]) with the order of P1 less than p and P2 containing 
all the poles o f / - a. We define ^ by <j>(z) = e~8{z)P2(z). 

On the other hand, if there is a meromorphic function <j> defined in D 
such that ( / — a)(j> has order p < p, we observe that N(r, a) f o r / i s less 
than or equal to N(r, 0) for ( / - a)(j). It follows that /ua < p. 

(ii) If juoo < p then zero is a Borei exceptional value for 1// So by (i) 
above there exists a function ^ meromorphic in D for which no zero of 
l//is a pole of (j) and the order of <j){\jf) is less than p. 

Finally, suppose there is a function <j> which is meromorphic in D such 
that no pole of / is a pole of <j> and the order of ^// is less than p. Thus no 
zero of l//is a pole of ^, so (i) implies zero is a Borei exceptional value for 
1// Hence //«, < p. 

To prove the theorem we first consider the case a = oo, so p^ < p. 
We assume there are three distinct numbers al7 a2, a3 in C such that jua.s 

< p for i = 1, 2, 3. Choose p such that p < p and p^ < p and jua.s < p 
for i = 1, 2, 3. For i = 1, 2, 3, let Pt{z) be the Tsuji product (cf. [6, p. 222]) 
formed with the simple zeros of f(z) — at>. Thus the order of P{{z) is less 
than p so 

(4.1) m(r, Pò = r(r , Pt) = 0((1 - r )V) , (r - 1), 

(/ = 1, 2, 3). We shall construct a function $ which can be employed with 
the Lemma to show aÌ9 a2, and a3 are Borei exceptional values f o r / This 
contradicts Theorem 1. 

Define ^ in D by 

At* - P1(z)P2(z)P3(z)(f(z)y 
Wz) - (f(z) - fll)(/(z) - a2)(f(z) - a3). 

Then ^ is a meromorphic function in D, and for / = 1, 2, 3, no zero of 
/(z) — a{ is a pole of <f>(z). We consider the order of ( / — a{)<fi. We have 

(4.2) (/(z) - aW?) - PMPWM (j^XjW^)-

Since / i s of finite order, we have 
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(4.3) m(r, j£—} = 0((1 - r )~0 , fr - 1), 

(i = 1, 2, 3). Using (4.1), (4.2), and (4.3), we then see 

™(r, ( / - fli)^) ^ m(r, Pi) + "ifo P2) + w(r, P3) 

<4-4) + 4 Ä)+4 A) 
= 0((1 - r ) - 0 , (r -> 1). 

By the definition of ^ we note that the poles of ( / — a{)<f) can occur only 
at the poles off. Further, each pole of fis a simple pole of (/')/(/— at), 
(i = 1, 2, 3). Hence, 

(4.5) N(r, (f- ö l ) 0 = 2 % , / ) = 0((1 - r )V) , 0" - 1), 

using our choice of p'. From (4.4) and (4.5) we conclude 

T{r, ( / - aM) = 0((1 - r ) " 0 , (r - 1), 

so the order of ( / — a ^ is less than or equal to p . Similarly the order of 
( / — a2)<j> and of ( / — a^)<f) is less than or equal to p. By the Lemma, aÌ9 

a2, as are Borei exceptional values for/, and Theorem 1 is contradicted. 
We now consider the case a ^ oo. We define g in D by g(z) = 

l/(/(z) — a). Then g has order p, and we may apply the above result to g. 
Thus there are at most two distinct values in C which are exceptional for 
simple values of g. If 6 is in C U {°o} - M , then 1/(6 — a) is in C, and 
f(z) = è if and only if g(z) = 1/(6 — 0). Hence /^5 = p except for at 
most two values of 6 in C U {°o} — {0}. 

5. Proof of Theorem 5. The construction given is an adaptation of J. 
Clunie [2]. 

Fix a and /3 as non-negative numbers for which a + 2 < ß, and let <j> 
be an increasing, convex, continuous function defined on 0 ^ r < 1 such 
that 

and 0 (1/2) < 1. 
Using A. Zygmund [9, p. 69] we may assume 

(5.2) # r ) = f ^p-dt + 0(1/2) 
J1/2 * 

where ^ is continuous, strictly increasing, and unbounded. 
Let rx < r2 < r3 < - b e the sequence in the unit interval for which 

c/j(rn) = n. We define a function G by G(z) = 2^=i cinz
n where a„ = 
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IA/V2 ' • • r»)> (n = !)• Then G is an analytic function in D and /i(r, G) 
= anr

n, (rn ^ r < rn+1), where ju(r, G) = maxÄ akr
k. From (5.2) we see 

0(1/2) + log rfr, G) <, flr) ^ log //(r, (?) + log r - log 1/2 + 0(1/2), 

and hence 

(5.3) log ^(r, (?) ~ flr), (r - 1). 

Thus the sequence {anr%} for n = 1, 2, . . . is strictly increasing and un­
bounded. 

Define now a sequence {Xn} as follows: Take ^ = 1 and assume X\, 
X2, . . . , Xn have been selected. If 

V i rfctt > 2<V& 
take >l„+1 = Xn + 1. Otherwise take ^w+1 to be the largest integer m for 
which 

Set 

oo 

g(z) = 2 «-2 fl^Z**. 
"=1 

Then as in J. Clunie [2] we may conclude 

(5.4) log M(r, g) ~ log rfr, G), (r -> 1). 

Thus, defining/by/(z) = exp g(z), we see 

M(r,f) = max exp(Re g(z)) = exp M(r, g). 
\z\=r 

From (5.1), (5.3), and (5.4) we have a = X* and /3 = p*. Consequently, 
the inequality 

T(r , / ) ^ log+M(r,/) g *J±-L T{RJ\ (0 £ r < R < 1), 

(cf. [3, p. 18]) implies ^ g ^* ^ p* ^ p + 1 ^ p* + 1, and our choice of 
X* + 2 < p* clearly gives ^ p . 

6. Proof of Theorem 6. To prove (i) we observe that the First Funda­
mental Theorem of Nevanlinna theory gives 

T(r9f) = m(r, a) + N(r, a) + 0(1), (r - 1). 

Hence 

"m sup kjffi'L1!-fl. - : r - iog(i - r) 
with/ia < p implies 
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J ( f l , / ) = 1 - l i m i n f % ' g = 1. 

In a similar way the conditions in (ii) show 

ö(a,f)=l - lim sup ^ # = 1. 
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