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ON AUTOMORPHIC FORMS FOR THE GENERAL 
LINEAR GROUP 

AUDREY TERRAS* 

ABSTRACT. Properties of Hecke operators for GL(3, Z) are in
vestigated as well as the analytic continuation of Eisenstein series 
for GL(n, Z). The results described arose in the investigation of 
harmonic analysis of GL(n, Z)-invariant functions on the space of 
positive n x n real matrices. 

1. Introduction. Automorphic forms for the general linear group, 
GL(n, Z) of n x n integer matrices of determinant ± 1 , can be viewed as 
relatives of the trigonometric functions—relatives which play a role in 
harmonic analysis on the Minkowski fundamental domain of positive de
finite n x n real matrices g?n modulo GL(n9 Z). Automorphic forms for 
GL(n, Z) can also be considered to be related to Siegel modular forms 
which appear in the study of abelian integrals. The present paper is intended 
to be an expository discussion of some of the results needed to derive har
monic analysis on the fundamental domain Mn = 0*JGL(n, Z) from that 
on J(n-\- In order to remain at an expository level it will be considered 
legal to restrict to the case n = 3 (the case n = 2 being assumed known). 
For similar reasons the adelic interpretation will not be considered. §1 
gives the properties of Hecke operators Tm for GL(3) mostly. This includes 
the analytic continuation and Euler product of the L-function correspond
ing to an automorphic form for GL(3, Z) which is an eigenfunction for all 
the Hecke operators. The analytic continuation of the L-function works 
for GL(n), for all n (not just n = 2, 3), and is just a re-interpretation of 
work of Maass and Selberg. §2 studies the explicit analytic continuation 
of the L-functions and Eisenstein series for GL(3) by a method which 
differs from that of Maass and Selberg in that it does without the differenti
al operators introduced by Selberg. The method is close to one used by 
Arakawa, as well as to the adelic ideas of Jacquet and Shalika which ap
pear in Inventiones Math. 38 (1976), 1-16. Helen Strassberg has also 
obtained such analytic continuations by adelic means, in [20]. §1 and §2 are 
closely related, since the Hecke operators for GL(n) relate the two basic 
types of Eisenstein series for GL(n). There is also a connection between 
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the method of analytic continuation of Eisenstein series for GL(3) 
and Fourier expansions of automorphic forms for GL(n). The arguments 
presented here involve nothing more than matrix multiplications and some 
simple integral formulas for the symmetric space g?n, 

A number theorist is motivated to study harmonic analysis on g?n in 
order, for example, to generalize Hecke's correspondence between mod
ular forms and Dirichlet series to Siegel modular forms (i.e., modular 
forms for the symplectic group Sp(n, Z)). Recently Kaori Imai achieved 
this generalization in [9]. A brief introduction to her work can be found 
in [10]. One hopes that the generalization of this result to congruence sub
groups of the Siegel modular group will help to unravel the behavior of 
some of the more mysterious number-theoretic L-functions. And there 
are recent results of Winnie Li in [14], which suggest how to proceed with 
congruence subgroups in a way which most nearly resembles the method 
used for Sp(n, Z) itself. 

Before proceeding further, one needs some definitions. More details on 
harmonic analysis on symmetric spaces can be found in [22]. The sym
metric space under consideration here is &>n, which can be identified with 
0(n)\GL(n9 R) via the mapping 

0(n)\GL(n, R) -> &H 

0(n)g -> <gg, 

where *g is the transpose of g e GL(n, R). And the action of A in GL(n, R) 
on Y in 0>n will be denoted 

(1.2) Y[A] = *AYA. 

It will also be useful to define the symmetric space 

(1.3) y&n = {We0>n\det W = 1} s SO(n)\SL(n, R). 

We will use | Y\ to denote the determinant of the matrix Y in 0>n. 
The GL(n, R)-invariant integral on 0>n is 

(1.4) $AY)\Y\-«+»'*dy9 

where dY is Lebesgue measure on Rw(»+i)/2< And measures can be nor
malized so that the SL(n, R)-invariant measure dW on Sf&n is given by 
setting 

(1.5) Y = tl/nW9 Ye0>n,t > 0, We 9>0>n, |y|-<»+i>/2 dY = t^dtdW. 

Thus analysis on @>n is essentially a product of analysis on the multiplica
tive group of positive reals times analysis on ¥&„. 

When n = 2, one can identify £ ^ 2
 w ^ h the non-Euclidean, Poincaré or 

Lobatchevsky upper half plane tf = {z e C | Im z > 0} via the map: 
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tf ><^2 

>\[ì -X 
>) |_o ì 

x + iyt Jl/yQ 
y>0 « > x 

Harmonic analysis on J4?/SL(2, Z) means the expansion of fe 
L2(j^/SL(29 Z)) in a mixed Fourier series/integral of eigenfunctions of 
the noneuclidean Laplacian A = y2(d2/dx2 + d2ldy2). This result was 
obtained by Roelcke and Selberg in the 1950's (cf. [12], [17], [22]). 

Harmonic analysis on 0>JGL(n, Z) for n larger than 2, is still in its 
infancy. References include the work of Langlands, Harish-Chandra, 
Selberg, Maass, Arthur, Venkov, and the author (cf. [13], [5], [17], [4], [22], 
[25]). The Laplacian in the case of Jf is replaced by the polynomial algebra 
in n indeterminates of GL(n, R)-invariant differential operators L on 0>n. 
To say that L is (/-invariant is to say that L commutes with the action 
of the group G on functions on the symmetric space. An example of a 
GL(n, R)-invariant differential operator L on 0>n is 

(1.6) L = \Y\ d 
dY 

where ^ = (Ul + d0)^-) 
oY \2 J oyijh&j&n 

Here 5,-y is Kronecker 's delta and \d/dY\ is the determinant of the matrix 
d/dY of differential operators. Selberg gives an explicit basis of the poly
nomial algebra of GL(n, R)-invariant differential operators on £Pn in [17]. 

The space g?n is a symmetric space because it is a Riemannian manifold 
with a geodesic-reversing isometry at the identity given by u(Y) — Y~l 

(cf. [22]). There will be a use for the operator Lu, where L is a GL(n, R)-
invariant differential operator on 0>w with Lu defined by 

(1.7) L"f(Y) = L(foü)(u-KY))-

It is shown in [15] and [22] that Lu is the conjugate-adjoint L* of L, with 
respect to the inner product of functions/, g: 0>n -• C 

(1.8) (/, g) = f f(Y)g(Y) |7|-(«+D/2 dy. 

Tbatis(Lf,g) = (f,L*g). 
An automorphic form v for T7 = SL(n, Z) or GL(n, Z) is a function v : 

¥&„ -+ C such that the following three properties hold : 
(1) v is an eigenfunction of all the SL(n9 R)-invariant differential 

(1.9) operators L on £?&>„ Lv = X(L)v, for some X(L) e C = 0, 

(2) v(Y[A]) = v(Y) for all Y in ¥&n and A in T7, 
(3) v satisfies some growth condition which will not be specified. 

For the present purposes (3) might as well be taken to be that v must lie in 
V>(Sf&nir). If one could say more about Fourier expansions of auto-



126 A. TERRAS 

morphic forms v for GL(n, Z), the third condition ought to be a weaker 
one—excluding exponentially growing Fourier coefficients at infinity (cf. 
[22]). In the case that n = 2, for example, condition (3) requires that 
\v(x + iy)\ <; CyP for some positive constant C and some power/?, uni
formly in x as y goes to infinity. Automorphic forms as in (1.9) were first 
discussed in the case n = 2 by H. Maass during the late 1940's. Maass 
considers the general case in [15, §10], using the name grössencharacter, 
rather than automorphic form for SL(n, Z). The name grössencharacter 
is justified by the fact that the Hecke grössencharacters play the same 
role in inverting Hecke's correspondence between Hilbert modular forms 
and Dirichlet series that automorphic forms for GL(n, Z) play in inverting 
Hecke's correspondence between Siegel's modular forms and Dirichlet 
series. The Hilbert case has been discussed by Weil, Jacquet, Langlands, 
and Stark. The Siegel case has been discussed by Imai in [9] and [10]. 

A cusp form is defined to be an automorphic form v as in (1.9) with 
vanishing constant term in all of its Fourier expansions with respect to 
the maximal parabolic subgroups PK n_k defined for 1 ^ k ^ n — 1 by 

(1.10) Pktn_k = {(nn)\Ae GL(Jc, Z), D e GL(n - k9 Z), Be Z**<»-» 
.P D 

This makes sense, because one can use the partial Iwasawa decomposition 
of Fin 0>n 

(1.11) Y=(™ IQ 
0/ 

, with Te&>k, Ve0>n_ki Q e R*x(»-», 

and see that v(Y) must be a periodic function of Q if v is invariant under 

Pk, n-k' 

The main example of an automorphic form for GL(n, Z) is the Eisenstein 
series, which comes in several guises, and is not a cusp form. The first type 
of Eisenstein series is defined by 

(1.12) eJLY,s)= E PS(Y[A]), 
A^r/p 

for Ye0>n, seCn, Re Sj > 1, 1 è j ^ n - l . Here ps(Y) denotes the 
power function, defined for Y e 0>n, s e Cn, by 

(1.13) Ps(Y) = ft \Yj\", if Y = (?>'iy Yje&j9 

and the sum in ( 1.12) is over representatives A of GL(n, Z) modulo P equal 
to the minimal parabolic subgroup of upper triangular matrices. Since the 
power functions are eigenfunctions of the GL(n, R)-invariant differential 
operators on ^w, the Eisenstein series automatically satisfies (1) and (2) of 
definition (1.9). 

It is shown in [22], [24], [15] that the series (1.1) converges for Re Sj > 1, 
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j = 1, . . . , « — 1. It is also possible to obtain the analytic continuation 
of en(Y9 s) to a meromorphic function of the n complex variables s e Cn 

(cf. [15], [22]). The case n = 2 is Epstein's zeta function divided by Ç(2s). 
It gives the continuous part of the Roelcke-Selberg spectral decomposition 
of the Laplacian on j^/SL(2, Z). The discrete part of this spectral de
composition comes from the residue at s = 1 and the mysterious cusp 
forms (cf. [7], [22], [12]). Note that e2(Y, (s, 0)) = e2(Y, s) will only be in 
L\^^2\SLÇL, Z)) if 0 < Re s < 1. The cusp forms and constants are also 
in Ll(£f0>2lSL(29 Z)), since both are bounded on the fundamental domain 
&>&>2/SL(2, Z), which has finite volume. 

Harmonic analysis on the fundamental domain Mn = ^JGL(n9 Z) or 
¥Jtn = y^JGL(n, Z) is probably best done inductively. This leads one 
to define the second type of Eisenstein series. Let 2m denote the set of 
eigenvalues A(L) of SL(n, R)-invariant operators L on 6^^m corresponding 
to a total orthonormal set of automorphic forms vx necessary for harmonic 
analysis of functions fin L2(yj?n). By this we mean that 

(1.14) f(W) = f (/, v,) v,(W) dh Lvx = X(L)vx. 

Here (/, g) denotes the usual L2-inner product on £fj{n using the invariant 
volume, where dl is the spectal measure, which is some mixture of con
tinuous and point measures. For example, the work of Roelcke and Sel-
berg shows that 

22 = {AJ/i e Z, w è 0} U {s(s- l ) | R e * = 1/2}, 

where the discrete part of the spectrum consists of 0 and the eigenvalues of 
the cusp forms, some of which have been tabulated by Hejhal in [7]. And 
the continuous part of 22 consists of eigenvalues of A for the Eisenstein 
series e2(Y, s). The measure dl is (\.\Aiz)dt on the continuous part, if X 
= s(s — 1) and s = 1/2 + it. Considering this as well as the description of 
harmonic analysis on 8Pm itself which is contained in the work of Harish-
Chandra and Helgason (cf. [22]), one expects that 2m arises from a subset 
of O " 1 in the same sort of way. That is, one believes that the eigenvalues 
À in 2m arise as specializations of those of the power functions ps(Y), s e 
O , 7 e ^ w , with the Eisenstein series em(Y, s) representing the highest 
dimensional part of the spectrum. The present work was motivated by a 
search for an elementary discussion of these matters. 

The second type of Eisenstein series is defined for X in 2m, s in C with 
Res > n/2, Ye0>nby 

(1.15) EUY) = S ÌYlA^v^YlA^o), 
A=(A-L*)eGL(n, Z)/P(m, n-tn) 
Ai^Z»Xm 

if 1 ^ m S n — 1, where vh X e 2m, denotes a complete orthornormal set 
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of automorphic forms for SL(m, Z), as in (1.14), the parabolic subgroup 
P(m, n - m) is as in (1.10), and Y° = \Y\~1/mYe S?0>m, for Y in 0>m. One 
would conjecture that the EsfX for m = 2, their residues at poles in s, 
and the cusp forms for SL(3, Z) should give a complete orthonormal 
decomposition of the invariant differential operators on ygP3/SL(3, Z), 
using methods analogous to those in Kubota's book [12] in the case n = 2. 

Applying the integral test from [24] to study the convergence of Es> x, one 
sees that the sum (1.15) can be compared with the integral 

f vx(Y<>) |y|-»-o«+i>/2 dY = c f vx(W)dW f°° *-*-i+«/2 dt^ 
J 0>m/GL(m,Z) J W^$TJ(m J t=\ 

iri^i 

for some positive constant c. Assuming that vx is in D-i^Ji^ it follows 
that ESt x converges for Re s > n/2. There is another way to prove this when 
vx is bounded, since then ESi x can be bounded by 

ESt o(F) = Z I Y[B{\ | - , Bx 6 ZT«™\ 
B&GUn, Z)/P(m, n-m) 
B=(Bi*) 

This is essentially Koecher's zeta function studied in [11] and shown to 
converge for Re s > n/2. 

When m = 2 and A lies in the continuous part of the spectrum 22 of A 
on ^Jt2, then vx(W) = e2(W, u), with X = u(u — 1), and e2 edfined by 
(1.12). Then it is easily seen that the two types of Eisenstein series coincide 
in this special case, since 

ES,X(Y) = *s(Y> ("> s - w/2> 0)), if n = 3, m = 2, 

e2(W, u) = vA(J*0, A = «(fi - 1). 

In §2, the relation between the L-functions associated to Hecke opera
tors and the Eisenstein series will be explored. In §3, it will be shown that 
Riemann's method of theta functions leads to a method of analytic con
tinuation for the Eisenstein series ES) x( Y) defined by (1.15) which bares the 
connection between the integrals involving lower dimensional terms of 
theta and the constant terms in the Fourier expansions of v .̂ Thus there is 
no problem at all if v̂  is a cusp form. These methods allow the analytic 
continuation of the L-functions associated to an automorphic form for 
GL(n, Z) which is an eigenfunction of all the Hecke operators. Many re
sults in the following sections will only be described for GL(3, Z). 

2. Hecke operators for GL(n, Z). Suppose tha t / : &>&>„/GL(n, Z) -• C. 
Then for any positive integer m, the ra-th Hecke operator Tm is defined by 

(2.1) TJ(J) = 2 f((Y[A])0), if Ye0>„, yo = |r | - i /»y. 
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Here Vm denotes any complete system of representatives for OJGL(n, Z), 
where Om = {A e ZnXn\ \A\ = ±m}. And we can take 

Vm = I di d12'" dln\ 
0 d2 : 

0 0 . . . d 

n 

I ] dj = m, dj > 0, ^y(mod dt)\ 

This is easily proved by induction. Note that the center of GL(n, R) will 
cancel out when one computes (Y[A])° for Ye 0>m A e GL(n, R). 

Hecke operators for SL(2, Z) were used by Hecke in [6] to study Euler 
products of L-functions corresponding to modular forms for SL(2, Z) and 
similar groups. Such things also appear earlier in work of Hurwitz [8]. 
Maass studied the Hecke operators for the Siegel modular group Sp(n9 Z) 
in [16], A good reference for the Hecke ring of a general group is Shimura's 
book [18, Ch. 3]. Here one finds an exposition of some work of Tamagawa 
(cf. [21]) connecting Hecke operators with combinatorial results about 
lattices as well as /7-adic convolution operators and a /?-adic version of 
some of Selberg's work in [17]. The Hecke operators for Sp(n, Z) and 
SL(n, Z) are also studied by Andrianov in [1] and [2], 

The Hecke operators (2.1) appear in many calculations involving the 
space ygPn. For example set the function/( Y) = 1 for all Fin <?&>„. Then 
one sees from the formula for Vm that 

(2.2) S Tmf(Y) m-° = Z ( S l)m- = IT Cfr - j). 
m^l m^l AeVm j-0 

This function appears in Minkowski's formula for the volume of the fun
damental domain for y&>JGL(n, Z) (cf. [22, Ch. 4]). Solomon considers 
generalizations of such results in [19]. Such operators as the Tm are also 
very apparent in formulas connecting Eisenstein series like (1.15) defined 
as sums over GL(n, Z) and higher dimensional Mellin transforms of the 
non-singular terms in a theta function. This will be seen in Proposition 1 
of §3. 

The basic facts about Hecke operators for GL(n, Z) are contained in the 
following theorem. 

THEOREM 1.1. The Hecke operator Tm maps automorphic forms v: S?&n 

-> Cfor GL(n, Z) = r as in (1.9) to automorphic forms for GL(n, Z) and 
preserves the eigenvalues ofv under SL(n, R)-invariant differential operators 
on y&>n. 

2) Tm is hermitian with respect to the inner product 

(f,g) = $ f(W)g{W)dW. 

3) The ring of Hecke operators is commutative and thus has a set ofsimul-
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taneous eigenfunctions which span the space of all automorphic forms for 
GL(n, Z). 

4) If(k,m) = 1, then TkTm = Tkm. For GL(3, Z), one has the following 
formula for the formal power series in the indeterminate X: {for prime p) 

2 TprX' = (/ - TPX + [(Tpy - 7>] X* - /Asrs)-i. 

5) Suppose that f: ^^n -+ C w a« automorphic form for GL(n, Z) swcA 
fA<z/ Tmf= umf um e C — 0. TTze« /orm £/?e Dirichlet series Lf(S) = 
Hm^iumm~S' This series converges for Re s > n/4 and can be analytically 
continued to a meromorphic function of s with functional equation 

ASif(Y) = 27T-^+w(w-1)/4 |rp/(70)L /(2^) ft r(s - aj) 

where / * ( W) = / ( W~l) and the aj e C are defined for Lu as in (1.7) by 

M m W ) ) = ( - l ) " { n ( * - a3)} \X\°f(XO), 

X e 8Pm. For GL(3, Z), it follows that Lf(s) has the Euler product 

Lf(s) = n a - upP-° + (,(upy - upi)p-2° - p3-*yi. 
P prime 

PROOF. 1) First note that the Hecke operators clearly commute with all 
the invariant differential operators on £f0>n. To see that Tmf is invariant 
under GL(n, Z), if the function fis invariant, one needs to know that 

Om = (J A GL(n, Z) = (J GL(n, Z) A. 
A^Vm A^Vm 

The inductive proof of the form of the set Vm makes this equality clear. 
Shimura gives another proof in [18, Ch. 3]. 

2) One need only imitate the proof of Petersson for SL(29 Z) (cf. [18]) 
and Maass for Spin, Z) in [16]. Setting F = GL(n, Z), write 

(Tmf,g)= L f AiW[AW)^(W) dW. 
A^omir J y&nir 

If A G Om and we set g(W) = f((W[A])°), then g is fixed by the congruence 
subgroup F(m) = {B e F \ B = /(mod m)}. For B e F(m) and AeOm 

imply that A~lBA e F. To see this note that A~l = (l/m)'(adj A) e 
(l/m)ZnXn. Thus mA-^BA e ZnXn and mA~lBA = mA~lA = 0 (mod m). 

Since the fundamental domain SfgPjFim) consists of [F : F(m)] copies of 
y&jr, one sees that 
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(Tmf,g) = 2 [r: Aw)]"1 f /((f*W>)g(^)^ 

= E I/7: ̂ / W ^ ] - 1 f /(*MAr[^-i])o)dar 

The second equality is seen by making the substitution X = W[A] and 
noting that [T7: r(m)] = [T7: ^-i/XmM]. 

3) This is proved in Shimura's book [18, p. 56] from the existence of the 
anti-automorphism of GL{n) given by X -> 'X. 

4) Here one can follow Shimura [18] or just multiply matrices, as fol
lows. To see that TkTm = Tkm, one need only note that the following equal
ity holds : 

fdxdw- dln\ic1c12 •• • cln\ 
c c2 • • • c2n\l 0 c2 • • • c2n\ 

^Ó Ó ••• dHl\ò Ó . . . c„ 

/ ^ l c l ^1^12 + c2^12 * * * diCin + rfi2C2w + • • • + dinCn\ 
0 ^2^2 ' * ' d2c2n + • • • + d2ncn\ 

Ò Ó . . . d'ncn 

For if 6?;y runs through a complete set of representatives mod d{ and c{j 

runs through a complete set of representatives mod ch then consider for 
i<j 

dfij + diti+i ci+hj + • • • + £/fVCy, 

which is the /, y'-th entry of the product. Inductively we can assume the 
terms dijf withy < jand c{fj with / ' > / to be fixed. Thus what remains is 
dfij + dijCj + a fixed number. This gives a complete set of representa
tives modulo dtC;. 

Next consider the proof of the formula which implies the Euler product 
for L-functions corresponding to eigenforms of Hecke operators for 
GX(3, Z). The proof described below involves only matrix multiplication, 
but clearly becomes more complicated for GL(n, Z), with n > 3. Thus 
Tamagawa's methods (cf. [18] and [21]) seem preferable. Those methods 
show that the /?-part of the Hecke ring has n algebraically independent 
generators Tf coming from the double coset decomposition 

I1'- 0 
GL(n, Z)At GL(n, Z) = \J B GL(n, Z), with A, = 

\° PhJ 
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where Ik is the K x K identity matrix. Tamagawa proves that 

(a) £ Tpr Xr = \ t ( - IV /»><>-»<2 Tf\~\ 

However we need the formula involving Tpj and not TJ. So let us sketch 
the proof for GL(3, Z) that 

(b) 2 7 > * ' = {/ - T̂ AT + [(TPY - 7>] JT2 - ptX*}-h 

Note that b) agrees with a) for n = 3, provided that (Tp)
2 - 7> = /?r2*. 

This formula does not appear to be totally obvious. The corresponding 
result for Sp(3, Z) is due to Shimura and the generalization to Sp(n, Z) 
appears to be open (cf. [2]). 

Note first that TkTmf(Y) = HA^vm HB^vkf(Y[BAf). It will also help to 
set up the following notation. Suppose that S is a subset of Vm and let 
T(S) denote the operator T(S)f(Y) = EAeSf(Y[A]°). 

Formula b) follows from the following two formulas, which are easily 
checked by multiplying the matrix representatives of the operators in
volved. 

(c) 

where 

TpTpr = 7>+i + T(S[) + TOSS), 

(jPe P(<*i m< 
?ï = 0 pf 

l\0 0 

[pe p{ax mod pe) a2 mod pe 

yf+1 a3 mod pf+l 

0 pg 

lpe ax mod pe p(a2 mod pe) 

Sr
2 = {\0 pf p(as mod pf) 

\0 0 ng+l 

e^\;f,g^0;e +f+ g = r 

e ^ l o r / ^ l ; g ^ 0; e+f+g=r\. 

(d) {(TpY - 7>}7> = pZTpr-! + Tpr+lTp ~ Tpr+2, fOT Y £ 1. 

To prove (c) look at the formulas 

jpe aimodpe a2 mod pe\lp bimodp b2modp\ 

0 pf a3modpf\io 1 0 

\0 0 pg / \ 0 0 1 

ipe+1 Cimodpe+l c2modpe+1\ 

0 pf c3 mod pf 

0 0 pg 
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lpe ax mod pe a2 mod Pe\/1 0 0 

0 pf tf3 mod pf 0 p è3 mod/? 

\o 0 p* / \ 0 0 1 

Ipe p(ci mod pe) c2modpe 

0 />/+i c3mod/?/+i|, 

/>* 
//?* ö! modpe a2 mod/?6 \ /1 0 0\ lpe cx mod/?6 p(c2 modpe)\ 

0 pf a3 mod pf \i0 1 0 = 0 pf p(c3 mod pf) ). 

\0 0 p* / \ 0 0 /?/ \0 0 /?*+* 

The first set of matrices gives Tpr+u except the e + 1 = 0 term. The second 
set of matrices gives the e = 0 term of Tpr+i, but not t h e / + 1 = 0 term, 
and it also gives S[. The third set gives the e = f = 0 term of Tpr+i, as well 
asS j . 

To prove (d), use (c) with r = 1 to see that (Tp)
2 - 7> = TiRJ + r(i?2) 

+ r(jR3), where 

IP p(b\ mod /?) b2 mod /? 

^ i = {[ 0 /? £3 mod/? 

0 1 

bi mod /? p(b2 mod /?) 

Ä2 = <l 0 1 0 
0 p 

0 0 

^3 = {( 0 /> p(b3 mod p) 

0 /? 

Then compute the matrix products to find that T(Rj)Tpr = T(Q;), where 

( pe+1 p(ax modpe+1) a2 modpe+1 ' 

0 /?/+i fl3mod/?/+i 

0 0 pe 

ipe+1 aimodpe+l p(a2 modpe+l)\ 

0 pf p(az mod pf) 

0 0 />*+i 

( pe p{ßi mod /?*) /?(# 2 mod pe) 

0 p/+i /?fe mod/?/+i) 

0 0 pg+i 
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Now r ( ß i ) gives T(S[+1) from (c). And T(Q2) gives the e + 1 # 0 part of 
r(6*J+1) in (c). The e = 0 part of T(g3) gives the remainder of T(S%+1). 
The e ^ 1 part of T(Q3) gives psTpr-i, since 

//?ß_1 ^mod/?* ß 2
m ° d ^ 

0 /?/ a 3 mod / ? / + 1 

\0 0 p8 

ÌPe~l bimoàpe~l + pe~1(c1modp) b2modpe~l -{• pe~l{c2modp)\ 

0 pf b3 mod pf + pf(c3 mod p) 

\0 0 />* 

//?e_1 Z^mod/?*-1 b2modpe~l \jì cxmodp c2modp\ 

0 pf b$ mod pf 0 1 c3modp . 

\0 0 />* / \0 0 1 / 

One can also obtain an independent check of formula (b) by setting 
v0(7) = 1 for all Y in &>0>3. Then we know that for GL(3, Z) 

2 rw(vo)m-' = f i CC* -J) = I T ( i - /^-O-Ki - ^ " O - H i - ^ - O " 1 

w^l /'=0 /> prime 

= n {i -p-s{\ +P+P2) +p-Hp+p2+P3)-P3-3S}.-1 

p prime 

On the other hand formula (b) says that 

2 rm(v0)m-* = n {1 - 7 > o ) / r ' + [(Tp¥v0 - Tp2v0]p-* - p^}~K 
w^l p 

Now 7>o = %Vm so that Tpv0 = p2 + p + 1 and (r^)2v0 - 7>v0 = 
p3+ p2 + /?. This completes the check. 

5) In the case of SL(2, Z), this is proved by relating Lf(s) and the Melliti 
transform off minus the constant term in its Fourier expansion. Here one 
cannot exactly do that, but almost. The argument involves the analytic 
continuation of higher dimensional Mellin transforms based on the meth
ods of Maass and Selberg (cf. [15]). First one needs to know a specific 
Mellin transform evaluated by Maass in [15, §7] and giving an analogue of 
the gamma function in higher dimensions, which is attached to / : £ft?m 

-> C, an automorphic form for GL(m, Z). The gamma function is 

(2.3) 
f exp[- Tr(XY-l)]f(X°) \X\s~^+^/2 dX 

where the ay are as defined in 5). 
It follows that, if one defines the theta function for 7 e ^ „ , X e 0>m with 
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1 g m g n by 

m 

6(Y,X) = Z0k(Y,X),y/ith 
(2.4) *~° 

W m ) = L exp[-7cTr(Y[A]X)l 
rk A=k 

then one can use (2.3) to evaluate the following integral 

(2.5) As>f(Y) = f f(X°)Om(Y, X)|jr|.-c*+i>/2dX. 

The result is 

2jc-»**or-w*lf[r(s - ay)} 

E ir[4l-'.A(iW). 
i4eZ»x»/GL(»i,Z) 

Note the similarity with (1.15) except that then we mostly wanted to choose 
m = n — 1, whereas here one wants m = n. 

Next suppose that m = n and that / is an eigenform for all the Hecke 
opeators, i.e., Trf = urf, for all r ^ 1, with ur e C — 0. Form the 
Dirichlet series Lf(S) = S r a wrr~

5. It follows from (2.6) that 

(2.7) y l 5 i / ( n = 27r-^^-^^\Y\-sf(Y^Lf(2s)f\r(s - fly). 
. 7 = 1 

Thus, i f / i s in Ll(y0>JGL(n, Z)), then / ^ / ( F ) and therefore Lf(2s) 
converge for Re s > n/2, as was shown in §1. Riemann's method of an
alytic continuation of the Riemann zeta function using the theta function 
when n = m = 1 can be modified to yield the analytic continuation of 
Lf(s) to all s in C as a meromorphic function with the functional equation 
stated in 5). This can be found in [15], [22], and [24]. The proof used a 
trick involving differential operators which was invented by Selberg. In 
the next section the possibility of doing without Selberg's trick will be 
investigated. 

3. The analytic continuation of zeta functions attached to automorphic 
forms for GL(m, Z). Define the zeta function ZS>X(Y) attached to the 
positive matrix Y in 0>n, the automorphic form v̂  for GL(m, Z) from 
(1.9) and (1.14), and the complex variable s with Re s > n/2, for 1 ^ m 
=Ì n by 

(3.1) Z,,X(Y)= 2 \Y[A]\-'v£Y[A]n 
A^Z»Xt»rkm/GL(m,Z) 

As,f<J) 
(2.6) 



136 A.TERRAS 

This is the Dirichlet series in formula (2.6). Such zeta functions have been 
analytically continued by Maass in [15, §16], using a method beginning 
with formula (2.5) and employing Selberg's trick. This trick uses differ
ential operators to annihilate the integrals which arise from the singular 
terms of theta (the 6k with k < n). In the case m = n = 1 the method 
gives a result of Riemann which evidently motivated Selberg. The idea is 
also discussed in [22] and [24]. The objects to be studied in the present 
section are precisely the terms in the analytic continuation of ZStX(Y) 
which Selberg's trick was designed to eliminate. It turns out that the 
constant terms in the Fourier expansions of the vx with respect to maximal 
parabolic subgroups P(k, m — k) play a starring role in this drama. 

Note that when n = m and vx is an eigenfunction of all the Hecke 
operators for GL(m, Z), then as at the end of the last section 

Zs,x(Y) = vx(Y0)\ Y\->Lvl(2s)9 

where Ln is the L-function defined in 5) of Theorem 1 in §2. Thus, in 
the more special case that m = n, X = 0, v0(W) = 1 for all W in £f£Pn, 
one has 

z5,om = m-sfi«2s-7 +1), 
(cf. (2.2)). The analytic continuation of this function in the form (3.1) 
has been of interest for the computation of the volume of the fundamental 
domain of y&>JGL(n, Z), as well as in the theory of simple algebras, 
since it is the zeta function of the simple algebra of n x n matrices over 
the rationals. 

In the case that 1 ^ m ^ n — 1 and v; is an eigenfunction of all the 
Hecke operators for GL(m, Z), the following proposition describes the 
relation between ZSjX and the Eisenstein series EStx defined by (1.15). The 
formula involves the L-function Ln defined in 5) of Theorem 1 in §2. 

PROPOSITION 1. Suppose that vx is an automorphic form for GL(m, Z) 
which is an eigenfunction of all the Hecke operators, i.e., Trvx = Ux(r)vx, 
for some ux(r) e C — 0. Then 

Z,.x(Y) = Ln(2s)EaY), 

where 

Lvx(s) = 2] W;(r)r~s, for Re s > mj4. 

PROOF. Use the matrix decomposition which says that summing over A 
in ZnXm rk m/GL(m, Z) is the same as summing over A = BC, where 
Be ZnXm, (5*) e GL(n, Z)/P(m, n - m) and C e ZmXmrk m/GL(m, Z). 
Here P(m, n — m) is defined in (1.10). The proof of this decomposition 
is an easy application of elementary divisor theory (cf. [22, Ch. 4]). 
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It follows that 

Zs,i(Y) = 2 \Y[BC]\-*vx((Y[BC])0) 
B,C 

= E I Y[B)\-> 2 r"* Z VMY[B]°)[C]°)) 
B r ^ l \C\=r 

CeZ*x«/GL(w,Z) 

= Lvx(2s)E,,x(Y). 

The analytic continuation of EStx(Y) as a function of s starts with for
mula (2.5) of Maass, which writes 

(3.2) AStf(Y) = 2TU~^^^^\U^(S - *,)}ZStX(Y) 

as a Mellin transform of the non-singular part of a theta function. Then 
split the integral over Jtm in (2.5) into two parts—that over X^Jim 

with \X\ ^ 1 and that over I e J m with \X\ g 1. In the latter make the 
substitution X -> X~l to obtain 

A,(Y)= j " em(Y9X)yx(X^1)\X\'-^^dx 
X^Mm 

1*12=1 

+ j * 0W(7, X-i)vx(X°)\X\-*-o*+»'2dX. 
X^Mm 
lATIäl 

The transformation formula of the theta function, which is easily proved 
by the Poisson summation formula, says that 

m m 

2 « y , I - i ) = \Y\-»n\X\*n^lY-\ X). 

This implies, upon setting vx*(X) = vx{X~l), 
AUY)= J dm(Y,X)vx(X0-i)\X\s-^iu2dX 

X^Jtm 
\X\lz\ 

(3.3) + f dm(Y-\X)\Y\-^v^{X^l)\X\-^--^-^^dX 
X^Mm 

\X\7z\ 
m-1 

+ 2 IJLY, s9 x), 
k=0 

where 

(3.4) x*jtu 

umi 

ilY,S,X)= J {I y|-"/2\x\»/2-° VX(X»MY-\ x) 
Mm 
£ l 

\X\' v^(X°)dk(Y, X)}\X\-<»+U'* dX. 

file:///X/lz/
file:///X/7z/


138 A. TERRAS 

The terms Ik, for 1 :g k ^ m — 1, are the trouble-makers. Koecher 
considered the case that v0 is identically constant in [11] and obtained a 
formula for Ik by introducing a new variable. However, the formula which 
he obtains has only simple poles in s9 while double poles occur in AS>Q(Y), 

when m = n, since 

(m-1 \ 
As,o(Y) = 2\Y\-> *-**»<»-»'* I l r(s - jß)U2s - j). 

v=o ) 
An explanation for the divergence of the Ik{ Y, s, 0) using integral formulas 
for gPn can be found in [23] and [24]. 

Recently Arakawa (cf. [3]) has obtained the analytic continuation of 
similar zeta functions attached to Siegel modular forms, but he does not 
seem to include the case that m — n, when the double poles arise. Arakawa 
uses Klingen's Eisenstein series for Sp(«, Z). This is related to the develop
ment that follows, since the ensuing analytic continuation of Zs> 0 when 
n = 3 and m = 2 involves Eisenstein series for GL(3, Z) in the highest 
dimensional part of the spectrum. That is the analytic continuation of 
Z5j0 is obtained from that of ZStX, 1 = r{r — 1) by analytic continuation 
to r = 0. For the purposes of harmonic analysis on £^ 3 /SL(3, Z), the 
case n = 3 and m = 2 suffices. Therefore we will leave the general result 
for future analysis. One expects that this kind of formula for the analytic 
continuation of Koecher's zeta function must come from that of the high
est dimensional part of the spectrum en(Y, s) by analytic continuation. In 
fact this has been proved by the author (cf. [22]). For the present argument, 
one must also have the explicit Fourier expansion of en__i( Y, r) with respect 
to any maximal parabolic subgroup of GL(n — 1, Z). Thus the proper 
formulation of the induction argument should include the form of the 
constant term in the Fourier expansion of the Eisenstein series (results 
obtained in great generality by Langlands in [13]). 

An adelic version of the analytic continuation of Eisenstein series which 
is related to that which follows can be found in the paper by Jacquet and 
Shalika in Inventiones Math. 38 (1976), 1-16. Another adelic method was 
found by Helen Strassberg in [20]. 

The term I0 is no problem, since one has 

if v̂  is orthogonal to the constants, 

, ifvÀ(W) = 1 for all We ¥&m, 

i.e., I = 0. 

Recall that Epstein's zeta function with the complex variable in the 
critical strip must be orthogonal to the constants from Theorem 2 of [24]. 

To study Ik, for 0 < k < m, one needs a decomposition of the rank 
k matrices^ eZw X w ; 

f0> 

(3.5) IQ(Y,s9X)={ 
n/2 

n/2 — s 
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(3.6) {AeZ»x>»\rkA = k) 

= {B'CIB eZnXkrkk,(C*) eGL(m, Z)/P(k, m - it)}. 

The proof of (3.6) is an exercise in elementary divisor theory. 
It is also necessary to know the Jacobian of the following change of 

variables : 

/ i r - i r 0 
(3.7) W = K J \ 0 uV 

, for u > 0, Te 
1 G] 
P l. 

Vey0>q9QeRP**,p + q = n. 

One finds using the normalization (1.5) and the Jacobian of the partial 
Iwasawa decomposition (cf. [15, pp. 149-150] and [22, Ch. 5, §1]) that 

(3.8) dW = ^a_ u-pq-\ du dT dV. 
n 

It follows from (3.6)-(3.8) that 

m 
•KY,s9X) 

(3-9) r,vL.< 

2k(m - k) 

= f t~*-l(\ Y\-ml2tnl2y^ fl/) £ exp[ _ %Tt(Y-\B\tV-IT^T)] 

- VxiW) S exp[-xTr(Y[B]t-V'»u-iT)]} 
B ) 
.u-k(m-V-\du dt dT dV dQ 

Here the integration is over the set of T ^Sf0>k\GL{k, Z), Ve£f0>m_kl 
GL(m - k, Z), Q e (R/Z)**»-«, u > 0, t ä 1 and Wis formed as in (3.7). 

Suppose next that vx(W) has the Fourier expansion 

(3.10) vx(W)= S AN,x(u-iT, uV) exp[2OTTr(Wß)], 

if W is as in (3.7). Then the integral over Q in (3.9) kills all the terms in 
(3.10) except the TV = 0 term—the so-called constant term of the Fourier 
expansion (even though it is no constant in general). Therefore 

HY, s, X) = lk^m- k) 

f {A0 a(«-ir, uV)t"/2~s\7|-'»/2 2 exp[-TcYr{Y-\B]t^u~^T)] 
(3.11) TA« B 

- A0ti.(u^T, uV)t-> 2 exp[-*Tr(y[*]/-i '"K-ir)]} 
B ) 

.u-kim-k)-lt-\du dt dTdV, 
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where the integration is over the domain T e y^k/GL(k, Z), V e ^^>m_k\ 
GL(m - k, Z), t ^ 1, u > 0. 

One cannot proceed further without a formula for AQX{u~lT, uV). 
Such formulas exist for the general case (cf. [13] and [25]). However, let 
us restrict ourselves, for simplicity to the case of interest for harmonic 
analysis on ^3/GL(3, Z). Thus we will assume that vx{X) = e2(X, r). for 
Xe S?0>2, so that À = r(r - 1). It is easy to show (cf. [22, Ch. 4 §5]) that 
in this case one has 

(3.12) Aoa(u-K u) = ur + c{r)u^9 

with c(r) = A(l - r)IA(r\ A{r) = 27zrr/T(r)£(2r). One can handle the case 
vx = constant (so that X = 0), by taking residues at r = 0, as will be seen. 
And it is clear from (3.11) that Ik = 0 for all cusp forms v̂ . Thus ZStÀ is 
seen to be an entire function of s if vA is a cusp form. That takes care of all 
the possibilities for m = 2 and v̂  in a total orthonormal set of automor-
phic forms for SL(2, Z) as in (1.14). One would expect to do similar 
things for general n, m using Langlands' formulas for the constant term 
in the Fourier expansion of Eisenstein series [13]. 

(3.13) e2(X, r) = e2(X~\ /•), for all X in y&2. 

To see this, one simply needs to write down the Dirichlet series defining 
e2(X9 r). Thus X = A* in this case. 

PROPOSITION 2. In the special case that n = 3, m = 2, vx(X) = e2(X, r), 
with X = r{r — 1), the analytic continuation of ZsX{Y) can be obtained 
from formula (3.3) with IQ(Y, S, X) = 0 and 

(3.14) / l ( r , , , l) = m-WY-W-r) _ MY 1 - r) 
s - 1 — r/2 s + (r - l)/2 

,, c{r)\Y\-lAz(Y-\r) c(r)A3(Y,r) 
^ s + (r- 3)/2 s - r/2 ' 

where Az(Y, r) involves Epstein's zeta function and is defined by 

(3.15) A3(Y, r) = x-'m £ Y[a]r, 
aeZ 3 -0 

/ / 7 e ^ 3 and Re r > 3/2. One may assume A$(Y, r) to be analytically 
continued to all complex numbers r as a meromorphic function with poles 
at r = 0 and 3/2. This is the case that m = 1 in (3.3)—(3.5). Then ZS)x(Y) 
satisfies the functional equation 

A,,X(Y) = m - M a / ^ r - i ) . 
Taking residues at r = 0 will give the analytic continuation of Koecher's 
zeta function ZSt0(Y)—the case v0 = 1. 
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PROOF. From (3.11) and (3.12) one has 

/ ^ r , s9 X) = f (ur + c(r)ui-r)t-4\Y\-W* £ exp(-7cY-i[b]t1/2u~l) 
«>0 

- ZI ^p(-7uY[b]t-1/2u-^)u-^-Adu dt. 
*eZ3-0 ) 

Break the integral over u into that over (0,1) and that over (1, oo). Replace 
u by u~l in the first integral and use the transformation formula of the 
theta function in the second integral to obtain the analytic continuation 
of the integral to all values of r as well as formula (3.14). The functional 
equation follows most easily from (3.4) itself. 

Next note that the formula for the analytic continuation of A(r) and 
A3(Y9 r\ which is just the case m = 1 of (3.3)-(3.5) and is discussed in 
more detail in [23, p. 6], shows that 

l i m { r ( r - 1) A(r) IX{Y9 s, X)} 

_ \Y\-iA3(Y-\l) 4 , (7 ,1) y t ( l ) i m _ A{\) 
s - i s _ 1/2 "*• s - 3/2 s ' 

This combined with (3.3) and (3.5) yields the analytic continuation of 
Koecher's zeta function ZSi0(Y) in the case n = 3 and m = 2. The final 
formula agrees with formula (3.16) in Koecher's paper [11]. One can 
also check that the poles and residues for Z s 0(F), Ye0>3 are correct, 
since it can be shown that in the special case that n = 3 and m = 2, 
Koecher's zeta function is essentially Epstein's; more precisely that 

Zs,o(Y)= Z \Y[A]\s 
A^Z**1rk2/GL(2,Z) 

(3.16) 

where U is the matrix 

= i-m-C(2*-i) £ Y-i[ub\-; 
6eZ3-0 

In order to generalize Proposition 2 to arbitrary m and n, one needs 
the Langlands formulas for the constant term in the Fourier expansion 
of Eisenstein series (cf. [13]). Note that one has to be very careful with 
arguments of the type just given. It appears likely that one must start 
with vx(W) = en__i(W, r), r e Cw_1 to get the analytic continuation of 
Z5)0(y), Ye0>n. Lower dimensional parts of the spectrum 2n_x will not 
work, as one can check by trying Epstein's zeta function instead. 
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We should note as a final remark that harmonic analysis on Sf&J 
SL(n, Z) will differ from that on Sf0>n\GL{n, Z). For example, when n = 
2, Hejhal's tables [7] show that in fact there are odd cusp forms, which 
are thus necessary for harmonic analysis on S^^I^LÇl, Z), but not 
for harmonic analysis on S/>0>

2\GLÇL, Z). One might expect that har
monic analysis on SfgPn\SL{n, Z) is essentially a "product" of that on 
£f0>njGL{n, Z) and that on GL(n, Z)/SL(n, Z). A similar phenomenon 
is apparent for harmonic analysis for fundamental domains modulo con
gruence subgroups (cf. [14]). 
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