CHOICE SETS AND MEASURABLE SETS

F. S. CATER

Call two real numbers *equivalent* if their difference is rational. Call $S \subset R$ a *choice set* if S is a set of representatives of the equivalence classes of R. J. A. Andrews [1] observed that the set $\{\lambda S \colon S \in \mathscr{F}\}$ is dense in the unit interval [0, 1] where λ denotes Lebesgue outer measure and \mathscr{F} denotes the family of all choice sets $\subset [0, 1]$. In this note we prove that in fact $\{\lambda S \colon S \in \mathscr{F}\} = \{0, 1\}$. More generally we prove the following theorem.

Theorem 1. There exists a set $E \subset R$ such that

- (i) $\lambda(E \cap A) = \lambda(A)$ where A is any Lebesgue measurable set, and
- (ii) $E \cap (r + E) = \emptyset$ where r is any nonzero rational number. Moreover, if I is any interval in R, and S is any extension of the set $E \cap I$ to a choice set $S \subset I$, then $\lambda S = \lambda I$.

PROOF. Let Q be the field of rational numbers. Say that $x, y \in R \setminus Q$ are Q-equivalent if $y \in Qx + Q$. This divides $R \setminus Q$ into Q-equivalence classes. Let $W \subset (0, 1)$ be a set of representatives of the Q-equivalence classes. Now $R \setminus Q \subset \bigcup_{a,b \in Q} (aW + b)$ and $\lambda(aW + b) = a \lambda W$. It follows that $0 < \lambda W \le 1$.

We use the Vitali covering theorem to a.e. cover W with countably many pairwise disjoint closed intervals I_j with rational endpoints such that $\lambda I_j < 2^{-1}\lambda W$ for each j and $\sum_j \lambda(I_j) < (1 + 2^{-1}) \lambda W$. For some index j, $\lambda(I_j) < (1 + 2^{-1})\lambda(I_j \cap W)$. Let K_1 be this I_j . Then

$$\lambda(W \setminus K_1) \ge \lambda W - \lambda K_1 \ge \lambda W - 2^{-1} \lambda W > 0.$$

We use the Vitali covering theorem to a.e. cover $W \setminus K_1$ with countably many pairwise disjoint closed intervals J_j with rational endpoints, and disjoint from K_1 , such that $\lambda J_j < 2^{-1}(\lambda(W \setminus K_1))$ for each j and $\sum_j \lambda(J_j) < (1 + 2^{-2})\lambda(W \setminus K_1)$. For some index j, $\lambda(J_j) < (1 + 2^{-2})\lambda(J_j \cap W)$. Let K_2 be this interval J_j . Then

$$\lambda(W\backslash K_1\backslash K_2) \geq \lambda(W\backslash K_1) - \lambda K_2 > 2^{-1}\lambda(W\backslash K_1) > 0.$$

We use the Vitali covering theorem to a.e. cover $W \setminus K_1 \setminus K_2$ with countably many pairwise disjoin closed intervals L_j with rational endpoints, and disjoint from $K_1 \cup K_2$, such that $\lambda L_j < 2^{-1}\lambda(W \setminus K_1 \setminus K_2)$ for each j and

500 F.S. CATER

 $\sum_{j} \lambda L_{j} < (1 + 2^{-3}) \lambda (W \setminus K_{1} \setminus K_{2})$. Then for some index j, $\lambda L_{j} < (1 + 2^{-3}) \lambda (L_{j} \cap W)$. Let K_{3} be this interval L_{j} . Also

$$\lambda(W\backslash K_1\backslash K_2\backslash K_3) \geq \lambda(W\backslash K_1\backslash K_2) - \lambda K_3 > 2^{-1}\lambda(W\backslash K_1\backslash K_2) > 0.$$

We continue by induction on n to produce a sequence of pairwise disjoint closed intervals (K_n) with rational endpoints such that $\lambda K_n < (1 + 2^{-n})$ $\lambda(K_n \cap W)$ for each n.

Now let (I_n) be a sequence of closed intervals with rational endpoints such that if I is any closed interval with rational endpoints, $I = I_n$ for infinitely many indices n. Then for each n there is a unique increasing surjective linear function f_n : $K_n \to I_n$ of the form $f_n(x) = a_n x + b_n$ $(a_n, b_n \in Q, a_n \neq 0)$. Let $E = \bigcup_{n=1}^{\infty} f_n(K_n \cap W)$.

Suppose $f_n(x)$, $f_m(y) \in E$ where $x \in K_n \cap W$, $y \in K_m \cap W$, and $f_n(x) \neq f_m(y)$; then clearly $x \neq y$. If n = m, then $f_n(x) - f_m(y) = a_n(x - y) \notin Q$ since $x, y \in W$. If $n \neq m$, then $f_n(x) - f_m(y) = a_nx - a_my + b_n - b_m \notin Q$ since $x, y \in W$. In either case, $f_n(x) - f_m(y) \notin Q$. Thus E satisfies (ii).

Now let I be any closed interval with rational endpoints. Say $I = I_n$. Then

$$\lambda(E \cap I)/\lambda I \ge \lambda f_n(K_n \cap W)/\lambda I_n = \lambda(K_n \cap W)/\lambda K_n > (1 + 2^{-n})^{-1}.$$

Since $I = I_n$ for infinitely many indices n, we have $\lambda(E \cap I) = \lambda I$. It follows that if J is any open interval, $\lambda(E \cap J) = \lambda J$. (Just express J as the union of an expanding sequence of closed intervals with rational endpoints.) So if U is any open set, $\lambda(E \cap U) = \lambda U$.

Finally, let $A \subset R$ be any Lebesgue measurable set with $\lambda A < \infty$. There is an open set $U \supset A$ such that $\lambda(U \setminus A) < 1$. Then $\lambda(E \cap U) = \lambda U$. Since A is measurable, we obtain

 $\lambda(E \cap U) = \lambda(E \cap A) + \lambda(E \cap (U \setminus A)) = \lambda U = \lambda A + \lambda(U \setminus A) < \infty$. It follows that $\lambda(E \cap (U \setminus A)) = \lambda(U \setminus A)$ and $\lambda(E \cap A) = \lambda A$. Thus E satisfies (i).

If I is any interval in R, we extend the set $E \cap I$ to a choice set $S \subset I$, and then $\lambda I = \lambda(E \cap I) = \lambda S$. This completes the proof.

E. Hewitt and K. Stromberg, J. Australia Math. Society **18** (1974), 236–238, presented a set that can be shown to satisfy (i) but not (ii). H. W. Pu also presented a set satisfying (i) in the same journal, **13** (1972), 267–270.

It is easy to see that no two elements in E are Q-equivalent. The field Q can be replaced by a larger subfield F of R provided only that $\lambda W > 0$. The problem can be generalized to R^n , where $E \cap (r + E) = \emptyset$ for any nonzero vector $r \in R^n$, all of whose coordinates are rational. The proof, however, is more awkward.

REFERENCE

1. J. A. Andrews, *Problem E* 2710, American Mathematical Monthly 85 (1978), 276.

DEPARTMENT OF MATHEMATICS, PORTLAND STATE UNIVERSITY, PORTLAND, OR 97207.