MEROMORPHIC STARLIKE FUNCTIONS

paul J. Eenigenburg \dagger and albert e. LIVINGSton

Abstract

Let $\Lambda^{*}(p)$ the class of functions $f(z)$ univalent and meromorphic in $\Delta=\{z| | z \mid<1\}$ with simple pole at $z=p, 0<p$ $<1, f(0)=1$ and which map Δ onto a domain whose complement is starlike with respect to the origin. We discuss the coefficients of the Taylor series $f(z)=1+\sum_{n=1}^{\infty} a_{n} z^{n},|z|<p$ and the Laurent series $f(z)=\sum_{n=-\infty}^{\infty} b_{n} z^{n}, p<|z|<1$. We also obtain best possible order estimates on $L(r)$, the length of the image of $\{z:|z|=r\}$ for a function in $\Lambda^{*}(p)$. Estimates on the integral means of higher order derivatives are also obtained and in the last section a question of Holland [5] is answered.

1. Introduction. Let $\Sigma(p)$ denote the class of functions $f(z)$ which are meromorphic and univalent in $\Delta=\{z| | z \mid<1\}$ with a simple pole at $z=p, 0<p<1$, and with $f(0)=1$. If, further, there exists $\delta, p<\delta<1$, such that

$$
\begin{equation*}
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}<0 \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{Re} \frac{z f^{\prime}(z)}{f(z)} d \theta=-1 \tag{1.2}
\end{equation*}
$$

for $\delta<|z|<1$ with $z=r e^{i \theta}$, we say that $f(z)$ is in $\Lambda(p)$. Functions in $\Lambda(p)$, which have been discussed in [10, 11], map Δ onto a domain whose complement is starlike with respect to the origin. However, there exist functions with pole at p having this mapping property which do not satisfy (1.1) if $p>1 / 2$. The function

$$
F(z)=\frac{-p(1+z)^{2}}{(z-p)(1-p z)}
$$

maps Δ onto the complement of the interval [$\left.-4 p /(1-p)^{2}, 0\right]$ but does not satisfy (1.1) if $p>1 / 2$ [10].

Let $\Lambda^{*}(p)$ denote the class of functions $f(z)$ which have the representation

[^0]\[

$$
\begin{equation*}
f(z)=\frac{-\operatorname{pzg}(z)}{(z-p)(1-p z)} \tag{1.3}
\end{equation*}
$$

\]

where $g(z)$ is in Σ^{*}, the class of normalized meromorphic starlike functions with pole at the origin. The class $\Lambda^{*}(p)$ contains $\Lambda(p)$ as a dense subset [10].

The following theorem, although obvious, was never explicitly stated in [10] or [11].

Theorem 1. A function f in $\Sigma(p)$ is in $\Lambda^{*}(p)$ if and only if it maps Δ onto a domain whose complement is starlike with respect to the origin.

Proof. If $f \in \Lambda^{*}(p)$, it has the representation (1.3). Using the fact that $-p z /(z-p)(1-p z)$ is real for $|z|=1$, it is easily seen that $f(z)$ has the desired mapping property.

Conversely, suppose that f in $\Sigma(p)$ maps Δ onto a domain whose complement is starlike with respect to the origin. Letting α denote the residue of f at $z=p$, it follows that

$$
h(z)=\frac{1-p^{2}}{\alpha} f\left[\frac{z+p}{1+p z}\right]
$$

belongs to Σ^{*}. Defining $g(z)$ by

$$
\begin{aligned}
g(z) & =\frac{(z-p)(1-p z)}{-p z} f(z) \\
& =\frac{(z-p)(1-p z)}{-p z} \frac{\alpha}{1-p^{2}} h\left[\frac{z-p}{1-p z}\right]
\end{aligned}
$$

and using the fact that $(z-p)(1-p z) /(-p z)$ is real for $|z|=1$, we see that $g \in \Sigma^{*}$, and consequently $f(z)$ has the representation (1.3).

We note that $\Lambda(p)$ is a proper subset of $\Lambda^{*}(p)$ if $p>1 / 2$, while $\Lambda(p)=$ $\Lambda^{*}(p)$ if $p<(3-2 \sqrt{2})^{1 / 2} \quad[10]$.
2. Coefficient bounds. In this section we examine the coefficients in the series representations of $f(z)$ in $\Lambda^{*}(p)$, both the Taylor series $1+\sum_{n=1}^{\infty} a_{n} z^{n}$, $|z|<p$, and the Laurent series $\sum_{n=-\infty}^{\infty} b_{n} z^{n}, p<|z|<1$. With regard to the Taylor series let $\left\{\ell_{n}\right\}$ and $\left\{\mu_{n}\right\}$ denote the coefficient sequences of $-p(1-z)^{2} /(z-p)(1-p z)$ and $-p(1+z)^{2} /(z-p)(1-p z)$, respectively. It is easy to check that

$$
\iota_{n}=\left[\frac{1-p}{1+p}\right]\left[\frac{1-p^{2 n}}{p^{n}}\right], \mu_{n}=\left[\frac{1+p}{1-p}\right]\left[\frac{1-p^{2 n}}{p^{n}}\right]
$$

The second author proved $a_{n} \geqq \ell_{n}$ for all n if $f \in \Lambda^{*}(p)$ and is real on the real axis [11]. He also pointed out that, under the same assumptions, $a_{n} \leqq \mu_{n}$ follows from results of Goodman [3]. Furthermore, the inequality $\left|a_{n}\right| \leqq \mu_{n}, 1 \leqq n \leqq 6$, follows from some work of Jenkins [6] for any $f \in \Lambda^{*}(p)$. We suspect that the inequalities

$$
\iota_{n} \leqq \operatorname{Re} a_{n} \leqq\left|a_{n}\right| \leqq \mu_{n}, n \geqq 1
$$

hold generally for $f \in \Lambda^{*}(p)$. In support of this conjecture we now prove that it holds for $n=1$ and $n=2$. We first require the following lemma concerning \mathscr{P}, the class of functions $P(z)$ having positive real part in Δ, $P(0)=1$.

Lemma 1. If $P(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}$ belongs to \mathscr{P} and $0<p<1$, then

$$
\begin{equation*}
\operatorname{Re}\left(c_{2}+2\left(p+p^{-1}\right) c_{1}\right) \geqq 2-4\left(p+p^{-1}\right) \tag{2.1}
\end{equation*}
$$

Proof. The Herglotz representation of P gives a probability measure μ such that

$$
P(z)=\int_{0}^{2 \pi} \frac{1+z e^{-i t}}{1-z e^{-i t}} d \mu(t),|z|<1
$$

From this we obtain $c_{n}=2 \int_{0}^{2 \pi} e^{-i n t} d \mu(t)$. Consequently,

$$
c_{2}+2\left(p+p^{-1}\right) c_{1}=2 \int_{0}^{2 \pi}\left(e^{-i 2 t}+2\left(p+p^{-1}\right) e^{-i t}\right) d \mu(t)
$$

Since $p+p^{-1}>2$, the function

$$
g(t) \equiv \cos 2 t+2\left(p+p^{-1}\right) \cos t
$$

is decreasing on $[0, \pi]$ and increasing on $[\pi, 2 \pi]$. Thus,

$$
\begin{aligned}
\operatorname{Re}\left(c_{2}+2\left(p+p^{-1}\right) c_{1}\right) & =2 \int_{0}^{2 \pi} g(t) d \mu(t) \\
\geqq 2 g(\pi) & =2-4\left(p+p^{-1}\right)
\end{aligned}
$$

Theorem 2. If $f(z)$ is in $\Lambda^{*}(p)$ and $f(z)=1+\sum_{n=1}^{\infty} a_{n} z^{n},|z|<p$, then

$$
\iota_{n} \leqq \operatorname{Re} a_{n} \leqq\left|a_{n}\right| \leqq \mu_{n}, n=1,2
$$

Proof. From previous remarks we need only show that $\operatorname{Re} a_{n} \geqq \iota_{n}$, $n=1,2$. Since $f(z)$ is in $\Lambda^{*}(p)$, it has the representation (1.3) with $g(z)$ in Σ^{*}. Let $Q(z)=-z g^{\prime}(z) / g(z)$; then $Q \in \mathscr{P}$ and it is easily seen that

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\frac{-p\left(1-z^{2}\right)}{(z-p)(1-p z)}-Q(z),|z|<1 \tag{2.2}
\end{equation*}
$$

If we let $P(z)=1 / Q(z)$, then $P \in \mathscr{P}$ and (2.2) can be rewritten as

$$
\begin{equation*}
f(z)=-\left[\frac{p(1-z)^{2}}{(z-p)(1-p z)} f(z)+z f^{\prime}(z)\right] P(z) \tag{2.3}
\end{equation*}
$$

Letting $P(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}, z<1$, expanding the right hand side of (2.3) as a power series in $|z|<p$, and comparing coefficients, we obtain

$$
\begin{equation*}
a_{1}=c_{1}+\left(p+p^{-1}\right) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
2 a_{2}=c_{2}+\left(p+p^{-1}\right) c_{1}+\left(p+p^{-1}\right) a_{1}+p^{2}+p^{-2} \tag{2.5}
\end{equation*}
$$

Using (2.4), we can rewrite (2.5) as

$$
\begin{equation*}
2 a_{2}=c_{2}+2\left(p+p^{-1}\right) c_{1}+\left(p+p^{-1}\right)^{2}+\left(p^{2}+p^{-2}\right) \tag{2.6}
\end{equation*}
$$

Since $\operatorname{Re} c_{1} \geqq-2$, we obtain from (2.4) that

$$
\operatorname{Re} a_{1} \geqq-2+\left(p+p^{-1}\right)=\iota_{1} .
$$

Using (2.1) we obtain from (2.6) that

$$
2 \operatorname{Re} a_{2} \geqq 2-4\left(p+p^{-1}\right)+\left(p+p^{-1}\right)^{2}+\left(p^{2}+p^{-2}\right)
$$

which gives

$$
\operatorname{Re} a_{2} \geqq \frac{\left(1+p^{2}\right)(1-p)^{2}}{p^{2}}=\iota_{2}
$$

This completes the proof of Theorem 2.
We now discuss the coefficients of the Laurent series $\sum_{n=-\infty}^{\infty} b_{n} z^{n}$, $p<|z|<1$. Libera and the second author pointed out in [10] that

$$
\left|b_{n}\right| \leqq \frac{1}{p^{n}}\left(\frac{1+p}{1-p}\right) \text { for } n=-1,-2, \ldots
$$

that these bounds are sharp, and that $\left|b_{n}\right|=O\left(n^{-1 / 2}\right)$ for $n \geqq 1$. We obtain the order estimate $\left|b_{n}\right|=O\left(n^{-1}\right)$ and prove that this is best possible.

Theorem 3. If $f(z)$ is in $\Lambda^{*}(p)$ and $f(z)=\sum_{n=-\infty}^{\infty} b_{n} z^{n}, p<|z|<1$, then $\left|b_{n}\right|=O\left(n^{-1}\right), n \geqq 1$. Furthermore, there exists $f \in \Lambda^{*}(p)$ with $\lim _{n \rightarrow \infty} \sup n\left|b_{n}\right|>0$.

Proof. There exists $g \in \Sigma^{*}, g(z)=z^{-1}+\sum_{n=0}^{\infty} A_{n} z^{n}, 0<|z|<1$, such that

$$
\begin{equation*}
f(z)=\frac{-p z}{(z-p)(1-p z)} g(z), \quad|z|<1 \tag{2.7}
\end{equation*}
$$

Expanding the right hand side of (2.7) for $p<|z|<1$ and comparing coefficients we obtain

$$
\begin{equation*}
b_{n}= \tag{2.8}
\end{equation*}
$$

$$
\frac{-p}{1-p^{2}}\left[p^{n+1}+p^{n} A_{0}+\cdots+p A_{n-1}+A_{n}+p A_{n+1}+p^{2} A_{n+2}+\cdots\right]
$$

Using the estimate $\left|A_{n}\right| \leqq 2(n+1)^{-1}$, $n \geqq 0$, proven by Clunie [1], we obtain from (2.8)

$$
\begin{aligned}
\left|b_{n}\right| & \leqq \frac{p}{1-p^{2}}\left[p^{n+1}+2 \sum_{k=0}^{n} \frac{1}{n+1-k} p^{k}+\frac{2 p}{n+2} \frac{1}{1-p}\right] \\
& \leqq \frac{p}{1-p^{2}}\left[p^{n+1}+2 \sum_{k=0}^{n} \frac{k+1}{n+1} p^{k}+\frac{2 p}{n+2} \frac{1}{1-p}\right. \\
& <\left[\frac{p}{1-p^{2}}\left[p^{n+1}+\frac{2}{n+1} \frac{1}{(1-p)^{2}}+\frac{2 p}{(n+2)(1-p)}\right]\right. \\
& =\frac{p}{\left(1-p^{2}\right)(1-p)}\left[p^{n+1}(1-p)+\frac{2}{(n+1)(1-p)}+\frac{2 p}{n+2}\right]
\end{aligned}
$$

Since $p^{n+1}(1-p) \leqq(n+1)^{-1}, 0<p<1$, we obtain

$$
\begin{aligned}
\left|b_{n}\right| & \leqq \frac{1}{n+1} \frac{p}{(1-p)^{3}} \max _{0 \leq p \leq 1}\left[\frac{p-2 p^{2}+3}{1+p}\right] \\
& =\frac{3 p}{(1-p)^{3}} \cdot \frac{1}{n+1} .
\end{aligned}
$$

Thus $\left|b_{n}\right|=O\left(n^{-1}\right)$.
To see that this order is best possible we note that Pommerenke [17] has constructed $F(z)=z^{-1}+\sum_{n=0}^{\infty} A_{n} z^{n}$ in Σ^{*} such that $\lim _{n \rightarrow \infty}$ $\sup n\left|A_{n}\right|>0$. For this F we define $f \in \Lambda^{*}(p)$ by

$$
\begin{equation*}
(z-p)(1-p z) f(z)=-p z f(z) \tag{2.9}
\end{equation*}
$$

From (2.9) we obtain for $n \geqq 0$

$$
b_{n+1}-\left(p+p^{-1}\right) b_{n}+b_{n-1}=A_{n}
$$

and so it follows that we must also have $\lim _{n \rightarrow \infty}$ sup $n\left|b_{n}\right|>0$.
3. Arclength. For bounded regular univalent starlike functions Keogh [7] has shown that the arc length $L(r)$ of the image of the circle $|z|=r$ under the mapping $w=f(z)$ satisfies $L(r)=O(-\log (1-r))$. Hayman [4] then proved that O may not be replaced by o. More recently Lewis [8] gave an example of such a function satisfying $\lim _{r \rightarrow \infty} \inf L(r) /(-\log (1-r))$ >0. It is our purpose to establish that as $r \rightarrow 1$ the same results hold for functions in $\Lambda^{*}(p)$. In particular we will show that $L(r)=$ $O\left(|r-p|^{-1} \log 1 /(1-r)\right), r \neq p$.

Miller [14] discussed a class of starlike meromorphic functions having a different normalization than $\Lambda^{*}(p)$. He proved that

$$
\begin{equation*}
L(r)=O\left(\frac{1}{|r-p|} \log \frac{1}{|r-p|(1-r)}\right), r \neq p \tag{3.1}
\end{equation*}
$$

We point out that this estimate comes from an examination of his proof, as the final result is stated incorrectly. For the class $\Lambda^{*}(p)$ we can eliminate the $|r-p|^{-1}$ term within the logarithm in (3.1). We will make use of the following results of Pommerenke [16]. For $0<r<1$,

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{d \theta}{\left|1-r e^{i \theta}\right|^{\mu}} \sim \begin{cases}\frac{2^{-\mu+1} \Gamma(\mu-1)}{[\Gamma(\mu / 2)]^{2}} \frac{1}{(1-r)^{\mu-1}}, & \mu>1 \tag{3.2}\\ \frac{1}{\pi} \log \frac{1}{1-r}, & \mu=1\end{cases}
$$

This implies the existence of a positive constant C_{μ} so that

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{d \theta}{\| 1-\left.r e^{i \theta}\right|^{\mu}} \leqq \begin{cases}C_{\mu}(1-r)^{-(\mu-1)}, & \mu>1 \tag{3.3}\\ C_{1} \log \frac{1}{1-r}, & \mu=1\end{cases}
$$

When $0<\mu<1$ the integral is a bounded function of $r, 0<r<1$.
In what follows C represents a constant independent of $f(z)$ and r, though it may change its value from line to line.

Theorem 4. If $f(z)$ is in $\Lambda^{*}(p)$, then

$$
L(r)=O\left(\frac{1}{|r-p|} \log \frac{1}{1-r}\right), r \neq p
$$

Proof. As observed in [10] the function

$$
P(z)=\left(\frac{-z f^{\prime}(z)}{f(z)}\right) \frac{(z-p)(1-p z)}{z}
$$

has positive real part in Δ, with $P(0)=p f^{\prime}(0)$. Hence

$$
\begin{equation*}
f^{\prime}(z)=\frac{P(z)}{(z-p)^{2}}\left[\frac{-f(z)(z-p)}{1-p z}\right] \tag{3.4}
\end{equation*}
$$

From the representation (1.3) of $f(z)$ there exists $g(z)$ in Σ^{*} so that

$$
\frac{-f(z)(z-p)}{1-p z}=\frac{p z}{(1-p z)^{2}} g(z)
$$

Thus, for $z=r e^{i \theta}$,

$$
\begin{align*}
\left|\frac{-f(z)(z-p)}{1-p z}\right| & \leqq \frac{p r}{(1-p r)^{2}} \cdot \frac{(1+r)^{2}}{r} \tag{3.5}\\
& \leqq \frac{4 p}{(1-p)^{2}}
\end{align*}
$$

Also, from [10] we have

$$
\begin{equation*}
\left|f^{\prime}(0)\right| \leqq \frac{(1+p)^{2}}{p} \tag{3.6}
\end{equation*}
$$

Since $P(z)$ is subordinate to

$$
P(0) \frac{1+z e^{-2 \operatorname{iarg} p(0)}}{1-z}
$$

it follows from Littlewood's subordination theorem, (3.3), and (3.6) that

$$
\begin{align*}
\int_{-\pi}^{\pi}\left|P\left(r e^{i \theta}\right)\right| d \theta & \leqq \int_{-\pi}^{\pi} \frac{|P(0)|\left|1+r e^{i(\theta-2 \operatorname{argg}(0)}\right|}{|1-r e|} d \theta \tag{3.7}\\
& \leqq 2(1+p)^{2} \int_{-\pi}^{\pi} \frac{d \theta}{\left|1-r e^{i \theta}\right|} \\
& \leqq C \log \frac{1}{1-r} .
\end{align*}
$$

Thus, if $(1+p) / 2<|z|<1$, we obtain from (3.4), making use of (3.5) and (3.7),

$$
\begin{align*}
\int_{-\pi}^{\pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right| d \theta & \leqq C \int_{-\pi}^{\pi}\left|P\left(r e^{i \theta}\right)\right| d \theta \tag{3.8}\\
& \leqq \frac{C}{r} \log \frac{1}{1-r}
\end{align*}
$$

Also, for $0<|z| \leqq(1+p) / 2,|z| \neq p$, we obtain

$$
\begin{align*}
\int_{-\pi}^{\pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right| d \theta & \leqq C \int_{-\pi}^{\pi}\left|r e^{i \theta}-p\right|^{-2} d \theta \tag{3.9}\\
& \leqq C /|r-p| .
\end{align*}
$$

We can combine (3.8) and (3.9) in the following way. If $(1+p) / 2<|z|<$ 1 , then $(r-p)^{-1}$ is bounded away from zero. It follows from (3.8) that

$$
\begin{equation*}
\int_{-\pi}^{\pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right| d \theta \leqq \frac{C}{r} \frac{1}{|r-p|} \log \frac{1}{1-r} . \tag{3.10}
\end{equation*}
$$

If $0<|z| \leqq(1+p) / 2, z \neq p$, then $r^{-1} \log (1 /(1-r)) \geqq 1$ and so (3.9) yields

$$
\begin{equation*}
\int_{-\pi}^{\pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right| d \theta \leqq \frac{C}{|r-p|} \frac{1}{r} \log \frac{1}{1-r} . \tag{3.11}
\end{equation*}
$$

Combining (3.10) and (3.11) we have

$$
L(r)=\int_{-\pi}^{\pi} r\left|f^{\prime}\left(r e^{i \theta}\right)\right| d \theta \leqq \frac{C}{|r-p|} \log \frac{1}{1-r}, r \neq p .
$$

This completes the proof of the theorem.
We now use the example of Lewis to prove that the order result of Theorem 4 is best possible in the strongest possible sense. In particular, we find $f(z)$ in $\Lambda^{*}(p)$ such that

$$
\begin{equation*}
\inf _{\substack{r \geq 1 \\ r \neq p}} \frac{|r-p| L(r)}{-\log (1-r)}>0 \tag{3.12}
\end{equation*}
$$

We first note by standard estimates that since every function in $\Lambda^{*}(p)$ has a simple pole at $z=p$, we have

$$
\inf _{\substack{\varepsilon<r<1 \\ r \neq p}}|r-p| L(r)>0
$$

for every $\varepsilon>0$.
Also,

$$
\begin{aligned}
\lim _{r \rightarrow 0} \frac{L(r)}{-\log (1-r)} & =\lim _{r \rightarrow 0} \frac{\int_{-\pi}^{\pi} r\left|f^{\prime}\left(r e^{i \theta}\right)\right| d \theta}{\left[r+r^{2} / 2+r^{3} / 3+\cdots\right]} \\
& =2 \pi\left|f^{\prime}(0)\right|>0
\end{aligned}
$$

by Theorem 2. Thus, (3.12) will be verified after we complete the next theorem.

Theorem 5. There exists $f(z)$ in $\Lambda^{*}(p)$ such that

$$
\lim _{r \rightarrow 1} \inf L(r) / \log \frac{1}{1-r}>0
$$

Proof. Lewis [8] has constructed an analytic bounded starlike function $g(z), g^{\prime}(0)=1$, such that

$$
\int_{-\pi}^{\pi}\left|\frac{g^{\prime}\left(r e^{i \theta}\right)}{g\left(r e^{i \theta}\right)}\right| r d \theta \geqq C \log \frac{1}{1-r}
$$

where C is a positive constant. Defining $F(z)$ in Σ^{*} by $F(z)=g(z)^{-1}$, we have $z F^{\prime}(z) / F(z)=-z g^{\prime}(z) / g(z)$. Also, if M is a bound on $|g(z)|, z \in \Delta$, then $|F(z)| \geqq M^{-1}, z \in \Delta$. Consequently,

$$
\begin{aligned}
\int_{-\pi}^{\pi}\left|F^{\prime}\left(r e^{i \theta}\right)\right| r d \theta & \geqq \frac{1}{M} \int_{-\pi}^{\pi}\left|\frac{F^{\prime}\left(r e^{i \theta}\right)}{F\left(r e^{i \theta}\right)}\right| r d \theta \\
& \geqq \frac{C}{M} \log 1-r
\end{aligned}
$$

Finally, we define $f(z)$ in $\Lambda^{*}(p)$ by $f(z)=G(z) F(z)$ where $G(z)=-p z /$ $(z-p)(1-p z)$. The inequality

$$
\left|f^{\prime}(z)\right| \geqq\left|G(z) F^{\prime}(z)\right|-\left|G^{\prime}(z) F(z)\right|
$$

gives

$$
\begin{aligned}
\lim _{r \rightarrow 1} \inf \frac{L(r)}{-\log (1-r)} & \geqq \frac{p}{(1+p)^{2}} \lim _{r \rightarrow 1} \inf \frac{\int_{-\pi}^{\pi}\left|F^{\prime}\left(r e^{i \theta}\right)\right| r d \theta}{-\log (1-r)} \\
& \geqq \frac{p}{(1+p)^{2}} \frac{C}{M} .
\end{aligned}
$$

This completes the proof of the theorem.
4. Integral means of derivatives. We begin this section by extending Theorem 4 to obtain estimates on $\int_{-\pi}^{\pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{\lambda} d \theta, \lambda>0$, where $f \in \Lambda^{*}(\rho)$. We note that the integral means of $f(z)$ in $\Lambda^{*}(p)$ were discussed in [11] and for $f(z)$ in $\Sigma(p)$ in [12]. In the statement of the next theorem and in its proof, C_{λ} signifies a constant depending on λ but independent of $f(z)$ and r. Its value may change from line to line.

Theorem 6. Let $f(z)$ be in $\Lambda^{*}(p)$, then for $r \neq p$,

$$
\int_{-\pi}^{\pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{2} d \theta \leqq \begin{cases}C_{\lambda} \frac{1}{|r-p|^{2 \lambda-1}(1-r)^{\lambda-1}}, & \lambda>1 \\ C_{1} \frac{1}{r|r-p|} \log \frac{1}{1-r} & , \lambda=1 \\ C_{\lambda} \frac{1}{|r-p|^{2 \lambda-1}} & , 1 / 2<\lambda<1 \\ C_{1 / 2} \log \frac{1}{|r-p|} & , \lambda=1 / 2 \\ C_{\lambda} & , 0<\lambda<1 / 2\end{cases}
$$

Proof. By Theorem 4, we may assume $\lambda \neq 1$. Making use of (3.4) (3.5), (3.7), (3.6) and (3.3) we obtain, for $(1+p) / 2<|z|<1$.

$$
\begin{align*}
\int_{-\pi}^{\pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{\lambda} d \theta & \leqq C_{\lambda} \int_{-\pi}^{\pi} \frac{d \theta}{\left|1-r e^{i \theta}\right|^{\lambda}} \tag{4.1}\\
& \leqq \begin{cases}C_{\lambda} \frac{1}{(1-r)^{\lambda-1}}, & \lambda>1 \\
C_{\lambda} & 0<\lambda<1\end{cases}
\end{align*}
$$

and for $0<|z| \leqq(1+p) / 2$,

$$
\begin{align*}
\int_{-\pi}^{\pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{\lambda} d \theta & \leqq C_{\lambda} \int_{-\pi}^{\pi} \frac{d \theta}{\left|r e^{i \theta}-p\right|^{2 \lambda}} \tag{4.2}\\
& \leqq \begin{cases}C_{\lambda} \frac{1}{|r-p|^{2 \lambda-1}}, & \lambda>1 / 2 \\
C_{1 / 2} \log \frac{1}{|r-p|}, & \lambda=1 / 2 \\
C_{\lambda} & , 0<\lambda<1 / 2\end{cases}
\end{align*}
$$

Combining (4.1) and (4.2) in the same manner as in $\S 3$, the conclusion of the theorem is obtained.

We remark that the sharpness of the case $\lambda=1$ in Theorem 6 has already been discussed. Also, since $f(z)$ has a simple pole at $z=p$, it can be seen that the factors involving $|r-p|$ in Theorem 6 are actually necessary for each function in $\Lambda^{*}(p)$. We will now prove that the exponent
$\lambda-1$ on $(1-r)$ in the case $\lambda>1$ cannot be replaced by a smaller exponent. For this purpose we note that $F(z)=(1-z)^{t}(1-p z) / z, 0 \leqq t \leqq$ 1 , is easily seen to be a member of Σ^{*}. Now, for $0<\delta<\lambda-1$, choose t so that $0<t<(\lambda-1-\delta) \lambda^{-1}$, and define $f \in \Lambda^{*}(p)$ by

$$
\begin{aligned}
f(z) & =\frac{-p z}{(z-p)(1-p z)} F(z) \\
& =-p \frac{(1-z)^{t}}{z-p}
\end{aligned}
$$

Then, for $z=r e^{i \theta}$,

$$
\begin{aligned}
\int_{-\pi}^{\pi}\left|f^{\prime}(z)\right|^{\lambda} d \theta & =\int_{-\pi}^{\pi} \frac{p^{\lambda}|1-t p+(t-1) z|^{\lambda} d \theta}{|z-p|^{2 \lambda}|1-z|^{\lambda-\lambda t}} \\
& \geqq C \int_{-\pi}^{\pi} \frac{d \theta}{\left|1-r e^{i \theta}\right|^{\lambda-\lambda t}} \\
& \geqq C \frac{1}{(1-r)^{\lambda(1-t)-1}}
\end{aligned}
$$

by (3.2). (Here, as before, $C \neq 0$ may change its value from line to line.) Thus,

$$
\lim _{r \rightarrow 1}(1-r)^{\delta} \int_{-\pi}^{\pi}\left|f^{\prime}(z)\right|^{\lambda} d \theta \geqq C \lim _{r \rightarrow 1} \frac{1}{(1-r)^{\lambda(1-t)-1-\delta}}=\infty
$$

by our choice of t. This completes our argument.
We can now obtain estimates on the integral means of higher order derivatives by using a method of Feng and Mac Gregor [2]. For this purpose we need several lemmas, which are extensions of lemmas appearing in [13], to allow for a pole at $z=p$.

Lemma 2. Let $h(z)$ be analytic in Δ, except at $z=p$, and satisfy the inequality

$$
|h(z)| \leqq \frac{A}{(1-r)^{\alpha}|r-p|^{\beta}},|z|=r \neq p
$$

where A, α, and β are positive constants. Then there exists a positive constant B so that

$$
\left|h^{\prime}(z)\right| \leqq \frac{B}{(1-r)^{\alpha+1}|r-p|^{\beta+1}},|z|=r \neq p
$$

Proof. Let $|z|=r, p<r<1$, and let $\rho=(p+r) / 2, \delta=(1+r) / 2$. Then

$$
h^{\prime}(z)=\frac{1}{2 \pi i} \int_{|w|=\delta} \frac{h(w)}{(w-z)^{2}} d w-\frac{1}{2 \pi i} \int_{|w|=o} \frac{h(w)}{(w-z)^{2}} d w
$$

Thus,

$$
\begin{aligned}
\left|h^{\prime}(z)\right| & \leqq \frac{\delta A}{(1-\delta)^{\alpha}(\delta-p)^{\beta}} \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d \theta}{\left|\delta e^{i \theta}-z\right|^{2}} \\
& +\frac{\rho A}{(1-\rho)^{\alpha}(\rho-p)^{\beta}} \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d \theta}{\left|\rho e^{i \theta}-z\right|^{2}}
\end{aligned}
$$

Using Parseval's identity to estimate the two integrals on the right side we obtain

$$
\begin{aligned}
& \left|h^{\prime}(z)\right| \leqq \frac{\delta A}{\left(1-\frac{\delta)^{\alpha}(\delta-p)^{\beta}\left(\delta^{2}-r^{2}\right)}{}+\frac{\rho A}{(1-\rho)^{\alpha}(\rho-p)^{\beta}\left(r^{2}-\rho^{2}\right)}, ~\left(\frac{1}{2}\right)\right.} \\
& =\frac{2^{\alpha+1} 2^{\beta+1} A \delta}{(1-r)^{\alpha+1}(1+r-2 p)^{\beta}(1+3 r)} . \\
& +\frac{2^{\alpha+1} 2^{\beta+1} A \rho}{(r-p)^{\beta+1}(2-r-\rho)^{\alpha}(3 r+p)} \\
& <\frac{2^{\alpha+\beta+2} A}{(1-r)^{\alpha+1}(r-p)^{\beta}}+\frac{2^{\alpha+\beta+2} A}{(r-p)^{\beta+1}(1-r)^{\alpha} p} \\
& <\frac{B}{(1-r)^{\alpha+1}(r-p)^{\beta+1}} .
\end{aligned}
$$

For $|z|=r<p$, we let $\rho=(p+r) / 2$, write

$$
h^{\prime}(z)=\frac{1}{2 \pi i} \int_{|w|=\rho} \frac{h(w)}{(w-z)^{2}} d w
$$

and proceed as before.
Lemma 3. Let $h(z)$ be analytic in Δ, except p, and different from zero. If

$$
\left|\frac{h^{\prime}(z)}{h(z)}\right| \leqq \frac{A_{1}}{(1-r)^{\alpha}|r-p|^{\beta}},|z|=r \neq p
$$

where A_{1}, α, and β are positive constants, then there exist positive constants A_{n} depending on α and β so that

$$
\begin{equation*}
\left|\frac{h^{(n)}(z)}{h(z)}\right| \leqq \frac{A_{n}}{(1-r)^{\alpha+n-1}|r-p|^{\beta+n-1}}, 0<\alpha \leqq 1,0<\beta \leqq 1 \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{h^{(n)}(z)}{h(z)}\right| \leqq \frac{A_{n}}{(1-r)^{n \alpha}|r-p|^{n \beta}}, \beta \geqq 1, \alpha \geqq 1 \tag{4.4}
\end{equation*}
$$

for $|z|=r \neq p$.
Proof. Let $g(z)=h^{(n)}(z) / h(z)$. Then

$$
\frac{h^{(n+1)}(z)}{h(z)}=g^{\prime}(z)+\frac{h^{(n)}(z) h^{\prime}(z)}{h(z)^{2}}
$$

Assume (4.3) holds for some n. By Lemma 2 there exists B_{n} so that

$$
\left|g^{\prime}(z)\right| \leqq \frac{B_{n}}{(1-r)^{\alpha+n}|r-p|^{\beta+n}},|z|=r \neq p
$$

Therefore,

$$
\begin{aligned}
\left|\frac{h^{(n+1)}(z)}{h(z)}\right| & \leqq \frac{B_{n}}{(1-r)^{\alpha+n}|r-p|^{\beta+n}}+\frac{A_{1} A_{n}}{(1-r)^{2 \alpha+n-1}|r-p|^{2 \beta+n-1}} \\
& \leqq \frac{A_{n+1}}{(1-r)^{\alpha+n}|r-p|^{\beta+n}},|z|=r \neq p
\end{aligned}
$$

This proves (4.3) by induction.
Assuming that (4.4) holds for some n, we obtain from Lemma 2 the existence of a constant B_{n} so that

$$
\left|g^{\prime}(z)\right| \leqq \frac{B_{n}}{(1-r)^{n \alpha+1}|r-p|^{n \beta+1}},|z|=r \neq p
$$

Therefore,

$$
\begin{aligned}
\left|\frac{h^{(n+1)}(z)}{h(z)}\right| & \leqq \frac{B_{n}}{(1-r)^{n \alpha+1}|r-p|^{n \beta+1}}+\frac{A_{1} A_{n}}{(1-r)^{(n+1) \alpha}|r-p|^{(n+1) \beta}} \\
& \leqq \frac{A_{n+1}}{(1-r)^{(n+1) \alpha}|r-p|^{(n+1) \beta}},|z|=r \neq p
\end{aligned}
$$

This proves (4.4) by induction.
Lemma 4. Let $f(z)$ be in $\Lambda^{*}(p)$. Then there exists a positive constant A such that

$$
\begin{equation*}
\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leqq \frac{A}{|r-p|(1-r)}, \quad z=r e^{i \theta} \tag{4.5}
\end{equation*}
$$

Proof. Since $f(z)$ is in $\Lambda^{*}(p)$, we have

$$
\frac{(p-z)(1-p z) f^{\prime}(z)}{f(z)}=P(z)
$$

where $\operatorname{Re} P(z)>0, z \in \Delta$, and $P(0)=p f^{\prime}(0)=p a_{1}$. Logarithmic differentiation then yields

$$
\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{P^{\prime}(z)}{P(z)}+\frac{P(z)}{(p-z)(1-p z)}+\frac{1}{p-z}+\frac{p}{1-p z}
$$

An examination of this expression shows that (4.5) holds if both $P(z)$ and $P^{\prime}(z) / P(z)$ are order $(1-r)^{-1}$ as $r \rightarrow 1$. We may write $P(z)=p \operatorname{Re} a_{1}$ $Q(z)+i p \operatorname{Im} a_{1}$, where $Q \in \mathscr{P}$. Thus,

$$
|P(z)| \leqq p\left|a_{1}\right|\left(\frac{1+r}{1-r}+1\right) \leqq \frac{2(1+p)^{2}}{1-r}
$$

Also, Lemma 1 of [9] yields

$$
\left|\frac{P^{\prime}(z)}{P(z)}\right| \leqq \frac{2}{1-r^{2}}
$$

Theorem 7. Let $f(z)$ be in $\Lambda^{*}(p)$. Then for $n \geqq 1$,

$$
\int_{-\pi}^{\pi}\left|f^{(n)}\left(r e^{i \theta}\right)\right|^{\lambda} d \theta \leqq\left\{\begin{array}{l}
\frac{C_{\lambda}}{(1-r)^{n \lambda-1}|r-p|^{(n+1) \lambda-1}}, \lambda>1 \tag{4.6}\\
\frac{C_{1}}{r|r-p|^{n}(1-r)^{n-1}} \log \frac{1}{1-r}, \lambda=1
\end{array}\right.
$$

Proof. Since the case $n=1$ is proven in Theorem 6 we assume that $n \geqq 2$. Applying Lemma 4 to $h(z)=f^{\prime}(z)$ we have

$$
\left|\frac{h^{\prime}(z)}{h(z)}\right| \leqq \frac{A}{(r-p)(1-r)}, \quad z=r e^{i \theta}
$$

By Lemma 3

$$
\left|\frac{f^{(n)}(z)}{f^{\prime}(z)}\right| \leqq \frac{A_{n-1}}{(1-r)^{n-1}|r-p|^{n-1}}
$$

Thus

$$
\int_{-\pi}^{\pi}\left|f^{(n)}\left(r e^{i \theta}\right)\right|^{\lambda} d \theta \leqq \frac{A_{n-1}^{\lambda}}{(1-r)^{(n-1) \lambda \mid r}-\left.p\right|^{(n-1) \lambda}} \int_{-\pi}^{\pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{\lambda} d \theta
$$

An application of Theorem 6 now gives (4.6), and the proof is complete.
We remark that it is possible to include in (4.6) estimates for the range $0<\lambda<1$. However, it is unlikely that our method would give the correct exponent on $(1-r)$ for this case. We now show that for $\lambda \geqq 1$ the exponent $n \lambda-1$ on $(1-r)$ cannot be reduced. The extremal function $f(z)$ is the same as in Theorem 6, namely, $f(z)=-p(1-z)^{t} /(z-p)$, $0<t<1$. The next lemma shows that the integral means of $f^{(n)}(z)$ are of the same order as those of $g^{(n)}(z)$, where $g(z)=(1-z)^{t}$.

Lemma 5. $\operatorname{Let} f(z)=(1-z)^{t} /(z-p)$ and $g(z)=(z-p) f(z)=(1-z)^{t}$, $0<t<1$. Then there exists a positive constant K depending on n and λ such that for $\lambda \geqq 1$ and t sufficiently close to zero

$$
\begin{equation*}
\int_{-\pi}^{\pi}\left|f^{(n)}(z)\right|^{\lambda} d \theta \geqq K \int_{-\pi}^{\pi}\left|g^{(n)}(z)\right|^{\lambda} d \theta \tag{4.7}
\end{equation*}
$$

where $z=r e^{i \theta}$ and $r(t)<r<1$.
Proof. Let $h(z)=(z-p)^{-1}$; then $f(z)=g(z) h(z)$. Using the formula

$$
f^{(n)}(z)=\sum_{k=0}^{n}\binom{n}{k} g^{(k)}(z) h^{(n-k)}(z)
$$

we obtain

$$
\begin{gathered}
f^{(n)}(z)=(-1)^{n} n!(1-z)^{t}(z-p)^{-(n+1)} \\
+\sum_{k=1}^{n}(-1)^{n} \frac{n!}{k!} t(t-1) \ldots(t-k+1)(1-z)^{t-k}(z-p)^{-(n-k+1)} \\
=\frac{(-1)^{n} g^{(n)}(z) P(z)}{t(t-1) \ldots(t-n+1)(z-p)^{n+1}}
\end{gathered}
$$

where

$$
P(z)=(1-z)^{n}+\sum_{k=1}^{n} \frac{n!}{k!} t(t-1) \ldots(t-k+1)(1-z)^{n-k}(z-p)^{k}
$$

Thus, if $(1+p) / 2<|z|<1$, there is a positive constant C so that

$$
\left|f^{(n)}(z)\right| \geqq C\left|P(z) \| g^{(n)}(z)\right|
$$

To prove (4.7) we need only prove the existence of a positive constant D so that $|P(z)| \geqq D$ for t sufficiently close to zero and $|z|$ sufficiently close to one. We note that $P(1)=t(t-1) \ldots(t-n+1)(1-p)^{n} \neq 0$. Thus there exists α so that $P\left(e^{i \theta}\right) \neq 0$ if $|\theta|<\alpha$. If $|\theta| \geqq \alpha$, there exists r so that $\left|1-e^{i \theta}\right|^{n} \geqq r>0$. Also, if $|z|=1$,

$$
\left|P(z)-(1-z)^{n}\right| \leqq \sum_{k=1}^{n} \frac{n!}{k!}|t(t-1) \ldots(t-k+1)| 2^{n-1}(1+p)^{k}
$$

Thus, there exists $\delta>0$ so that for $0<t<\delta$ and $|z|=1$,

$$
\left|P(z)-(1-z)^{n}\right|<\gamma / 2
$$

Therefore if $|\theta| \geqq \alpha,|z|=1$, and $0<t<\delta$, then

$$
|P(z)| \geqq|1-z|^{n}-\gamma / 2 \geqq \gamma / 2>0
$$

Thus, $P(z) \neq 0$ for $|z|=1$ if $0<t<\delta$. Therefore, for fixed $t, 0<t<\delta$ there exists $r(t)>1$ so that $P(z) \neq 0$ for $r(t) \leqq|z| \leqq 1$, and thus there exists a positive constant C so that $|P(z)| \geqq C$ for $r(t) \leqq|z| \leqq 1$. This completes the proof of (4.7).

Since sharpness of the exponent $n \lambda-1$ when $n=1$ was discussed earlier, we restrict our attention to $n \geqq 2$. So, for fixed $n \geqq 2, \lambda \geqq 1$ let $\delta<n \lambda-1$. Then choose t so that $0<t<\min [1, n-(\delta+1) / \lambda]$. Proceeding as in the remarks after Theorem 6, we have that

$$
\lim _{r \rightarrow 1}(1-r)^{\delta} \int_{-\pi}^{\pi}\left|g^{(n)}\left(r e^{i \theta}\right)\right|^{\lambda} d \theta=\infty
$$

If we further restrict t so that (4.7) holds, we obtain

$$
\lim _{r \rightarrow 1}(1-r)^{\delta} \int_{-\pi}^{\pi}\left|f^{(n)}\left(\mathrm{re}^{i \theta}\right)\right|^{\lambda} d \theta=\infty
$$

5. An example. In this final section we settle a question of Holland [5] concerning meromorphic starlike functions $f(z)$ and the area of the complement of $f(\Delta)$.

For $F(z)$ in Σ^{*} there exists a probability measure μ on $|z|=1$ such that

$$
\begin{equation*}
-\frac{z F^{\prime}(z)}{F(z)}=\int_{-\pi}^{\pi} \frac{e^{i t}+z}{e^{i t}-z} d \mu(t) \tag{5.1}
\end{equation*}
$$

We also associate with $F(z)$ the related starlike function $g(z)=F(z)^{-1}$. Let K denote the compact complement of $F(\Delta)$. Holland proved the following theorem and asked whether the converse is true.

Theorem 8. [5]. If the area of K is zero, then
a) the area of $g(4)$ is infinite, and
b) μ is singular with respect to Lebesgue measure.

We now prove by example that the converse of Theorem 8 is false. We first observe that if $g(\Delta)$ is not dense in the plane then the area of K is positive. Integration of 5.1 leads to the formula

$$
\begin{equation*}
g(z)=z \exp \int_{-\pi}^{\pi} \log \left(1-\mathrm{e}^{-i t} z\right)^{-2} d \mu(t) \tag{5.2}
\end{equation*}
$$

We now choose μ as follows.
Let $\sigma(x)$ be the usual Cantor function on [0,1]; that is, to each point $x=. a_{1} a_{2} \ldots$ (ternary) of the Cantor set we define $\sigma(x)=. b_{1} b_{2} \ldots$, where $b_{n}=a_{n} / 2$. Then we extend σ to all of $[0,1]$ by defining σ in each of the intervals complementary to the Cantor set to be the same as at the endpoints. Then, for $-\pi \leqq \theta \leqq \pi$, define

$$
\begin{aligned}
& v(\theta)=\sigma\left(\frac{1}{2}+\frac{\theta}{2 \pi}\right)-\frac{1}{2} \\
& w(\theta)=\left\{\begin{array}{c}
-1 / 2,-\pi \leqq \theta<0 \\
0, \theta=0 \\
1 / 2,0<\theta \leqq \pi
\end{array}\right. \\
& \mu(\theta)=(1 / 2)(v(\theta)+w(\theta))
\end{aligned}
$$

We first observe that μ is singular with respect to Lebesgue measure since this is true for each of v and w. Also, from (5.2) we obtain

$$
\begin{equation*}
g(z)=\frac{z}{1-z}\left[\frac{h(z)}{z}\right]^{1 / 2} \tag{5.3}
\end{equation*}
$$

where

$$
h(z)=z \exp \int_{-\pi}^{\pi} \log \left(1-e^{-i t} z\right)^{-2} d v(t)
$$

Keogh [7] discusses $h(z)$ in another context and proves it to be a bounded starlike function. We now use these facts to prove that $g(\Delta)$ has infinite area but is not dense in the plane.

First we recall [15] that $V(\theta)=\lim _{r \rightarrow 1} \arg g\left(r e^{i \theta}\right)$ exists for each θ; furthermore we must have $V(\theta)=2 \pi \mu(\theta)$ because of the way we have normalized $\mu: \int_{-\pi}^{\pi} \mu(t) d t=0$ and $\mu(t)=(1 / 2)[\mu(t+0)-\mu(t-0)]$. Since μ has a jump discontinuity at $\theta=0$ of magnitude $1 / 2, V$ has a jump discontinuity there of magnitude π. Thus, $g(\Delta)$ contains a half plane and so the area of $g(\Delta)$ is infinite.

We now prove that $g(\Delta)$ is not dense in the plane. Since $h(z)$ is starlike, $h(z) / z$ is subordinate to $1 /(1-z)^{2}$. So there exists $\phi(z)$, bounded and analytic in Δ with $\phi(0)=0$, such that $[h(z) / z]^{1 / 2}=(1-\varphi(z))^{-1}$. Since $h(z)$ is bounded, there exists $\delta>0$ such that $|1-\phi(z)|>\delta, z \in \Delta$. Hence there exists $\varepsilon=\varepsilon(\delta)>0$ such that

$$
\begin{equation*}
\left|\arg [h(z) / z]^{1 / 2}\right| \leqq|\arg (1-\phi(z))| \leqq \pi / 2-\varepsilon \tag{5.3}
\end{equation*}
$$

for $z \in \Delta$. Geometric considerations allow us to choose $\eta>0$ such that if $|z-1|<\eta,|z|<1$, then $|\arg z /(1-z)|<\pi / 2+\varepsilon / 2$. Letting $D=$ $\{z \in \Delta||z-1|<\eta\}$ it follows from (5.1), (5.2), and (5.3) that $|\arg g(z)|<$ $\pi-\varepsilon / 2, z \in D$. Consequently $g(D)$ omits an infinite wedge having central angle ε. Since $g(\Delta / D)$ is bounded, $g(\Delta)$ is not dense in the plane.

References

1. J. Clunie, On meromorphic Schlicht functions, J. London Math. Soc. 34 (1959), 215-216.
2. J. Feng and T. H. Mac Gregor, Estimates on integral means of the derivatives of univalent functions, J. D'Analyse Math. 29 (1976), 203-231.
3. A. W. Goodman, Functions typically real and meromorphic in the unit circle, Trans. Amer. Math. Soc. 81 (1956), 92-105.
4. W. K. Hayman, On functions with positive real part, J. London Math. Soc. 36 (1961), 35-48.
5. F. Holland, On the coefficients of starlike functions, Proc. Amer. Math. Soc. 33 (1972), 463-470.
6. J. A. Jenkins, On a conjecture of Goodman concerning meromorphic univalent functions, Michigan Math. J. 9 (1962), 25-27.
7. F. R. Keogh, Some theorems on conformal mapping of a bounded star-shaped domain, Proc. London Math. Soc 9 (1959), 481-491.
8. J. L. Lewis, Note on an arc length problem, J. London Math. Soc. 12 (1976), 469474.
9. R. J. Libera, Meromorphic close-to-convex functions, Duke Math. J. 32 (1965), 121-128.
10. - and A. E. Livingston, Weakly starlike meromorphic univalent functions, Trans. Amer. Math. Soc. 202 (1975), 181-191.
11. A. E. Livingston, Weakly starlike meromorphic univalent functions II, Proc. Amer. Math. Soc. 62 (1977), 47-53.
12. -, On the integral means of univalent meromorphic functions, Pac. J. Math. 72 (1977), 167-180.
13. T. H. Mac Gregor, Rotations of the range of an analytic function, Math. Ann. 20 (1973), 113-126.
14. J. Miller, Starlike meromorphic functions, Proc. Amer. Math. Soc. 31 (1972), 446-452.
15. Ch. Pommerenke, On starkoke and convex functions, J. London Math. Soc. 37 (1962), 209-224.
16. - On the coefficients of close-to-conves functions, Michigan Math. J. 9 (1962), 259-269.
17. -, On meromorphic starlike functions, Pac. J. Math. 13 (1963), 221-235.

Western Michigan University, Kalamazoo, MI 49008
University of Delaware, Newark, DE 19711

[^0]: \dagger The research of the first author was supported by a Western Michigan University Research Fellowship.

 Received by the editors on June 21, 1979, and in revised form on January 11, 1980.
 Copyright © 1981 Rocky Mountain Mathematics Consortium

