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CONNECTEDNESS IN FUZZY TOPOLOGICAL SPACES 

R. LÖWEN 

1. Two independent "good extensions" of connectedness for fuzzy topolo
gical spaces. X will be an arbitrary set and / = [0, 1] the unit interval. 
By [X, ô] we denote a fuzzy topological space (fts for short) in the termin
ology of [1], i.e., ô is a family of fuzzy subsets on X with the following 
properties : 

(i) for all a constant, a G Ö ; 
(ii) if//, v G 5, then / i A v e J ; and 

(iii) if V/ G / , jjLj G ö, then V/e/j"/ 6 8. 
Several reasons why we have adopted this different notion of fts can be 
found in [1]. Let us however restate the most important one. It is clear 
that topological spaces provide the most natural framework in which one 
can define continuity. Now maps which should always be continuous are 
constant maps. Luckily in topology this is indeed the case. However in 
fuzzy topology this is the case if and only if one adopts this alternative 
definition of fts. 

Let us now define the extensions of connectedness. If ju is a fuzzy set 
on X which is everywhere strictly positive, i.e., /ue Ix and for all x e X, 
fi(x) > 0, then we shall write that fi > 0 (on X). Suppose now first that 
fi > 0. We shall say that the pair (£x, £2) °f ° P e n fuzzy sets is a (c\)-
separation of ft or that they (cl)-separate fi if and only if 

(0 fi # ^ £2 # ^ 

(ii) £i v & = & a n d 

(iii) £i A £2 = 0. 
Second suppose that for some e > 0 we have JJ ^ e. We shall say that the 
pair (£1? £2) of open fuzzy sets is a (c2)-separation of fi or that they (c2)-
separate ^ if and only if there exists some s' G [0, e] such that 

O) £l 7̂  /*, ?2 7e ^> 
(ii) £1 V £2 = /*> a n d 

(iii) £1 A £2 ^ // - e'. 

DEFINITION 1.1. An fts will be called (ci) if and only if no clopen fuzzy set 
/a > 0 can be (cl)-separated. An fts will be called (c2) if and only if no 
clopen fuzzy set fx ^ e > 0 can be (c2)-separated. 
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Let us now first make precise the meaning of "good extension" (see 
also [3]). If (X, 3T) is a topological space, then the family of lower semi-
continuous functions from X to the unit inrerval equipped with the usual 
topology is a fuzzy topology on X which carries exactly the same informa
tion as <?~ itself. We denote this fuzzy topology a)(£ï~). Actually (X, ST) 
and (X, a)(3r)) are the same structured spaces but in the first the structure 
is given by the open sets and in the second by the lower semicontinuous 
functions. The following diagram makes things precise 

Top > œÇTop) 

^ \ ^ ^ r 
Fuz 

where Top and Fuz are respectively the category of topological and of 
fuzzy topological spaces, <p is the inclusion functor and co the isomorphism 
œ(X, $~) = (X9 Ù)(^~)) and if / i s a morphism œ(f) = / . Thus Top is na
turally equivalent with a full subcategory of Fuz. Now we shall say that a 
property P' for the objects of Fuz is a good extension of a property P for 
the objects of Top if and only if for all objects X in Top "X has P if and 
only if <p o œ(X) has P' ". In our case, very simply, this means that for 
(cl) and (c2) to be good extensions a topological space (X, ST) should be 
connected if and only if (X, œ(^~)) is (cl) if and only if it is (c2). 

Before showing that this is indeed the case, we would like to point out 
that there exists a natural strengthening of (cl) and (ci) which however 
turns out not to be a "good extension". Suppose we were to ask that for 
all ju clopen, ju » 0, there exist no £ b £2

 e S such that £2 ^ ju, £2 ^ /u, 
£i v £2 = M a n d £1 A £2(x) < fi(x) for all x e X. Then it is easily seen 
that this condition implies both (cl) and (c2) but, as follows from the 
following counterexample, it is no longer a good extension. 

COUNTEREXAMPLE. Let X = {(0, y): - 1 ^ y ^ 1} U {(*, sinl/x): 
0 < x S 1} equipped with the usual topology of R2. Let ju = 1 and define 
£x and £2 as 

Si:X->I:(x9y)-*l - x, 

£ 2 : X - + / : ( x , j ) - + 
[1 if x 7* 0. 

Then, although X is connected, we have that £x and £2 are lower semi-
continuous, £i # ft, £2 ^ //, £1 V £2 = [i and for all (x9 y) e X £x A 
£2(x,v) < 1. 

PROPOSITION 1.1. (cl) and(cl) are good extensions of connectedness. 

PROOF. Let (X, &~) be a topological space. First we deal with (cl). 
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Suppose (X, <F) is not connected. Then, if (Yh Y2) is an open separation 
of X, (lYv lY2) is a (cl]-separation of 1 so that (X, œ(£~)) is not (cl). 
Conversely, if ft is clopen, ft > 0, and (ft, ft) is a (cl)-separation of //, 
then Yi = ft^JO, 1] and 72 = f^P» 1] a r e a n °P e n separation of X. 

Now consider (c2). Again if (71? 72) is an open separation of X, then 
(lF l , lr2) is a (c2)-separation of 1. Conversely, suppose ft is clopen, 
ft ^ e > 0 and let Çb ft e CÜ(^) be such that ft ^ /*, ft ?* //, ft V ft = /* 
and for some e' G (0, e], ft A ft ^ /* — e'. Put //' = e, £ J = e • ft///, and 
Ç2 = £ ' £2//*- Then, since ft ^ e, these are well defined fuzzy sets, and since 
in the present case open means lower semicontinuous and clopen means 
continuous, we have that ft is clopen and ft, ft 6 o)(5r). Further clearly 
fi # [*\ £2 ^ /*'> 6i V ft = M' a n d fi A ft g £(1 - e'), so that if we put 
e" = (e/2)(2 - e'\ we have that Yx = ft"1]^', 1] and Y2 = ft-i]e", 1] are 
an open separation of X. 

REMARK. Translated into topological terms (c2), for example, says that 
if X is connected, no continuous function to the unit interval can be 
written as the nontrivial supremum of two lower semicontinuous functions 
whose infimum is uniformly bounded away from that continuous function. 

There is no implication between (cl) and (c2) as the following two 
counterexamples show. 

COUNTEREXAMPLES. (A), (cl) => (c2). This is shown putting X = I and 
ö = {constants} (J {ftelx: ft ^ 1/2}. Since the only clopen sets are 
constants, it is easily seen that (X, d) is (cl). However it is not (c2) since if 
we let Yi and Y2 be two nonempty complementary sets, then (1 — (l/2)l r i , 
1 - (l/2)l r2) is a (c2)-separation of 1. 

(B). (c2) => (cl). To show this we put X = /\{0}. Then we define 

ft: X-+I: jc -> JC/2 

ftq = fi A l Q n x 

fty = fL A l^nx 

where J = R\Q, and let ô be the fuzzy topology generated by the subbase 

a = {constants} U {ft, ftc, ftQ, ftjr}, 

Then ft is clopen, ft > 0, and (//Q, //,) are a (cl)-separation of //. Thus 
{X, S) is not (cl). However it is (c2). Indeed it is easily seen that v is clopen 
if and only if either there exist a, ß e [0, 1/2] such that v = (a V ft) A ß 
or there exist a, ß e [1/2, 1] such that v = (a V ftc) A /3. 

Clearly no clopen set of the second type can be (c2)-separated. Therefore 
let a0, j30e [e, 1/2] where e > 0, a0 < ß0 and let v = (a0 V //) A /30 

(if tfo = Ah t n e n v is a constant which is a trivial case). Then let (ft, ft) 
be a (c2)-separation of v. 
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It is tedious but trivial to check that the only open fuzzy sets in ô which 
are smaller than 1/2 are of the following kind, where a, ß and y denote 
constant fuzzy sets (also smaller than 1/2 of course), a V (juQ A ß) V 
(/Us A r)- thus 

È1 = ai V (/*Q A ]8i) V (fij A fi) 

£2 = <*2 V (>Q A /32) V (//, A 7-2). 

Now if a0 = 0, then, even if £1 A £2 = °> t n e r e cannot be an e' e (0, e] 
such that f 1 A f2 < v - £' since in this case \nfx=xv(x) = 0. On the other 
hand if a0 > 0, then either cc2 ̂  cc\ = tfo o r <*i ^ #2 = <*o- Let a2 ^ 
<xi = aro ; then we have 

*V[0,2a0]
 = £l/[0,2a0] = a0 

so that for some e' e (0, s] we must have 

Î2/[0,2a0] = a0 ~~ S'-

On [0, 2a2] this can be so only if a2 è eco — s'> an<3 on [2a2, 2a:0] this can 
be so only if both ß2 ^ a0 — e' and y2 ^ CCQ — e' from which it follows 
that £2 = <*o — s' and consequently £j = // in contradiction with the fact 
that fj and £2 (c2)-separate v. This shows that (X, d) is indeed (c2). 

If (X, 8) is (cl) (resp. (c2)) and d' cz 5 is a coarser fuzzy topology, then 
(X, 5') is also (cl) (resp. (c2)). This follows at once from the definition. 
Combining this with proposition 1 we have that if (X, c(ö)) (see [1]) is 
connected, then (X, 5) is both (cl) and (c2). (Let us recall that if (X, 5) 
is a fuzzy topology, then c(ö) is the smallest topology on X such that 
o)(c(5)) is finer than d. It is also the smallest topology on X making all 
[i G ö lower semicontinuous. The functor c from Fuz to Top associated 
with c is a left inverse of œ). The converse of course is not true. The first 
counterexample gives a space which is (cl) but, since it is not (c2), for 
which (X, c(d)) is not connected. Analogously the second conuterexample 
provides us with a space which is (c2) but for which again (X, c(d)) is not 
connected. 

PROPOSITION 1.2. Iff: (X, 5) -*(X'9 3') is fuzzy continuous and onto, and 
if(X, 3) is (cl) (resp. (c2)), then (X\ <?') is also (cl) (resp. (c2)). 

PROOF. This is straightforward. 

2. An alternative characterization of c(S). The property that if a space 
has a connected dense subspace, then it is connected itself, is particularly 
useful in showing that connectedness is productive. Before we can show 
that (cl) and (c2) are indeed preserved when taking products, we have to 
define fuzzy denseness. 
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DEFINITION 2.1. A subset Y of X is fuzzy dense in (X, 8) if and only if 
for all fi e ö supXŒXfx(x) = supyŒY/x(y). 

Related to this definition is the notion of a closure operator. For nota-
tional reasons let us agree to put supyeY/x(y) = uY{fi) for all Y c X and 
H e Ix. Recall that a subspace of (X, d) is a subset Y c X equipped with 
the fuzzy topology dY = {[AY'- ft G 8}. Now consider the following mapping 
~: 2X-+ 2X: Y -» Y where 7 = largest set Z in ^ for which for all JLL G <5, 
wz(/0 = wy(y")» i-e., (F, dY) is the largest subspace of (X, d) in which Y is 
fuzzy dense. This definition makes sense since, if we put ££Y = {Z c= X: 
V// G 5 Wz(//) = uY(/u)}, then first if r ^ 0 , since Ye £fY, and second it is 
easily seen that any union of subsets in $gY again is in S£y. We can now 
show the following result. 

THEOREM 2.1. The mapping Y -+ Y is a closure operator on X and the 
topology associated with it is exactly c(d). 

PROOF. (A). ~ is a closure operator. 
(i) ^ = (j) since, if x G ̂ , then w^(l) ^ \{x) = 1 > w^(l) = 0. 

(ii) If Y c X, then 7 c^Fby definition. 
(iii) Y1 U 72 = Tî U T* Indeed let ^ c 5 c I and let x e Ä. Then 

putting B = A U (#\^) and // G <î, we have 

= UAUixìifÙ V wß\^) 

= WBU{*}(^)> 

which shows that xe B. Thus ^ U ^2 c ^i U *2- Conversely let 
x G Yi (J r2- Then wri(/z) V wr2(//) ^ //(*) so that, for example, uYl(ft) ^ 
ft(x) and consequently x e T j . 

(iv) Y = F. Let x e f . Then for all // G Ö Uy(ft) = Wf(/*) = uY[j{x}(ju), 
but since 7 is the largest set having this property, we have Y \J {x} = F 
or x G F. 

(B). The topology, ^ ~ , associated with _ , is c(8). As usual let Ir denote 
the unit interval equipped with the topology ZTr = {]e, 1]: eel} [j {I}. 
Then a map to / with the usual topology is lower semicontinuous if and 
only if to Ir it is continuous. Suppose /i G <5; we shall show that ju: (X, 
£T~) -> Ir is continuous thus showing that 3T~ 3 c(8). Let Y <= X. Then 
it suffices to show that ju(Y) c JÄJ). Clearly fi{Y) = [0, wy(»]. Let 
>> G fi(Y). Then there exists an x e Y such that y = /i(x), and since then 
uY{fji) = "nj<*}(/")> w e n a v e t n a t Mx) = UY(V) showing that y e (i{Y). 
Conversely let Y e 3T~ and x e Y. Then, since x $ Yc, there exists some 
ju e ô such that uYC{fj) < ju(x). Choose e such that uYc(/u) < e < fx{x). 
Then clearly x e ju~l[e, 1] a F, which shows that Y e c(d). This proves 
the theorem. 
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3. The product theorem for (cl) and (c2). If (Xj, ôj)jŒj is a family of fts9 

then the product fuzzy topology on Ylj^jXj is defined as the coarsest 
fuzzy topology making all projections fuzzy continuous, ([2], [4]), and 
is denoted Ylj^jdj. 

THEOREM 3.1. If(Xj9 ôj)jŒj is a family of fuzzy topological spaces, then 
(U^JXJ, Tljejdj) is (cl) (resp. (c2)) if and only if for all j e J (Xj9 Ôj) is 
(6-1) (resp. (c2)). 

The only if part follows at once from the fact that the projections are 
fuzzy continuous (see proposition 1.2). To show the if-part we need 
some lemmas. 

LEMMA 3.1. If(X, d) is afts and (Y, dY) is a (cl) (resp. (cl)) subspace, 
then for any Z such that Y c Z c Y we have that (Z, dz) is (cl) (resp. (cl)). 

PROOF. We shall only prove this for (cl). Suppose on the contrary 
that there exists some ju clopen in Z, fx > 0 and a, ß e öz a(cl)-separation 
of z^.Then obviously ju/Y is clopen in 7, a/Y e ôY and ß/Y e ôYi a\Y V ß\Y 

— fil y and al y A ß/Y = 0. Further it follows from the denseness of Y in 
Z that both a/Y # 0 and ß/Y # 0. This shows that (a/Y, ß/Y) is a (cl)-
separation of ju/Y which is in contradiction with the fact that (Y, <5r)is 
(cl). 

LEMMA 3.2. If(ZJ9 dZj)jej is a family of(c\) (resp. (cl)) subspaces of(X9 ö) 
such that Oj^jZj ^ 0 , then, if Z = (JyG/Zy, (Z, 5Z) is (cl) (resp. (c2)). 

PROOF. We shall only show this for (cl). Let x0 e f)jŒjZj. Suppose 
there exists some fx clopen in (Z, dz), ju > 0 (on Z), such that (a, ß) is 
a (cl)-separation of ju. Since ju(x0) > 0, we have, for example, ß(x0) > 0, 
and since a ¥" 0, there exists some j e J such that a\Zj ¥=• 0. Since x0 e Zy, 
ßlzj 7̂  0- Clearly then (a/Zy, ß/z) is a (cl)-separation of ju/z. which 
contradicts the fact that (Zj9 <?Zy) is (cl). 

PROOF OF THEOREM 3.1. We shall again show the if part only for (cl). 
Let x° = (xy)ye/ be some fixed point in X = Ylj^jXj and let Z = {x: 
Xj = x? Vi ^ j}. Let 5 = Tljejoj. It is easily seen that (Z, <?z) is fuzzy 
homeomorphic with (Xj9 <5;) and thus (Z, <?z) is (cl). Suppose now that 
if x° and x differ by at most n — 1 coordinates, they belong to some (cl)-
subspace of (A", 5). Then suppose x° and x differ by n coordinates. Choose 
y such that x° and j ; differ by n — 1 coordinates and 7 and x only by one. 
Then x° and x are in some (cl) subspace (S, ds) and j and x as well in 
(T, dT)9 say. Since ^ e S fi r , it follows from lemma 3.2 that (S U r, 
^sur) is (cl)- This shows that if we put Y = union of all (cl) subspaces 
containing x°, and D = {x: x° and x differ by at most finite coordinates}, 
then Y => D and Y is (cl) from lemma 3.2. 
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Further it is easily seen that D is fuzzy dense in X. Indeed let pt be some 
base element in IT/e/dy, i.e., 

/nil Xj->r 
ye/ 

(*/)/ -+ Pjfrh) A . . . A fijH(xJm), 

where for all / = 1, . . . , n, /ij. e ôjr Then for any x = (x ; ) ; e / e AT put 
* = (*/)/e/ where xy = xj if j$ {jl9 . . . , / „} and xy, = xy, if / = 1, 
. . . , / ? . Then î e D and ju(x) = /i(x) so that uD{p) — ux(ju), which proves 
that D is fuzzy dense. Now since Y z> Z>, we have also F = ^ and it 
follows from lemma 3.1 that (X, ö) is (c\). 
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