
ROCKY MOUNTAIN 
JOURNAL OF MATHEMATICS 
Volume 10, Number 4, Fall 1980 

LOCAL PROPAGATOR THEORY 

STANLEY STEINBERG 

ABSTRACT. A survey of abstract propagator theory (Ovcyannikov 
or Ovsjannikov Theorem) is given. This theory is reminiscent of 
semigroup theory. However, while semigroup theory is appropriate 
to the study of well posed initial value problems, abstract propaga­
tor theory is most appropriate to the study of (so called) ill posed 
initial value problems. A list of elementary ill posed problems is 
presented and references to deeper and more difficult problems 
are given. 

Next, an exposition of the basic abstract structure and elementary 
linear theory along with some elementary examples in given. This is 
followed by a survey of the most recent linear theory, nonlinear 
theory, and applications. 
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I. Elementary Theory. 0. Introduction. In this paper we shall describe 
an abstract theory which is useful in studying various initial value prob­
lems for partial differential equations. The theory involves the solvability 
of an abstract initial value problem in a continuous family (usually called 
a scale) or sequence of Banach spaces. The results are usually referred to 
as the Ovcyannikov (or Ovsjannikov) theory or as an Abstract Cauchy-
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768 S. STEINBERG 

Kowalewski theorem. We prefer to call these results "abstract propagator 
theory", where by a propagator we mean an operator that maps the initial 
data of an initial value problem into a solution of the problem at some 
positive time. 

The first appearance of a version of this theorem that used the concept 
of a scale or a sequence of Banach spaces is in Gel'fand and Shilov [12], 
V.3 page 94, in 1958 and later, but independently, by T. Yamanaka 
[46], 1960, L.V. Ovcyannikov [26], 1965 and F. Treves [43], 1968. There 
are currently many versions of these results including those in Ovcyan­
nikov [25], Du Chateau [8], Nirenberg [22], Yamagata [45], Steinberg 
[34] and Baouendi and Goulaouic [3]. The cited literature shows that this 
abstract theory has many deep and important consequences in the theory 
of the initial value problem in partial differential equations. In order to 
give the reader an idea of the types of applications, we give the follow­
ing list of elementary examples. The cited literature gives applications 
to much more general problems. 

A. Cauchy-Kowalewski and Holmgren's Theorems. We note that these 
techniques can be used to obtain the most general nonlinear form of the 
Cauchy-Kowalewski Theorem, that is, where the data is analytic in the 
space variables and only continuous in the time variable; see Nirenberg 
[22]. It appears that any existence and uniqueness results for initial 
value problems that can be obtained using power series techniques can 
be obtained more easily using abstract propagator techniques. Also the 
dual theory can be used to obtain Holmgren's uniqueness theorem (see 
[33, 7, 31]). 

B. The parametric osillator equation. The parametric oscillator equation 
is given by 

dp _ _ i (d*p _ d*p\ ,xdP_dP p _ p( , 

P(x,y,0)= P0(x,y) 

for (x, y, t) e R2 x [0, 7]. This equation belongs to a class of equations 

(0.2) dP/dt = Q(x, y, 3/3x, 3/3y)P 

where Q is a quadratic expression in x, y, 3/3x, did y and where no sym­
metry assumptions are placed on Q. Note that the right hand side of 
the parametric oscillator equations has principal part which is the wave 
equation and consequently the parametric oscillator equation in not of 
classical type. For an extensive discussion of these equations, see Stein­
berg and Treves [38], where there are also references to many discussions 
of equations of this type in the physics literature. However, we will make 
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a few comments on the solutions of this problem. First, the solutions 
bear some resemblance to the solutions of the backwards heat equation 
(explicit solutions of the parametric oscillator equation can be found). 
For the initial data exp( — a(x2 -f y2)), there exists a classical solution of 
the parametric oscillator equation for a finite interval of time. If one 
allows the solution to be an analytic functional, then there exists a solu­
tion global in time. This may at first seem inconvenient, but the quantities 
of physical interest are the moments of the solution (not the values at a 
point) and analytic functional possess well behaved moments, so this 
type of solvability is appropriate to this situation. 

C. Shot-put noise. The equations that appear in shot-put noise are 
of infinite order; for instance, 

djldt = F(t,didx)f9 f = f(x,t) 

(0.3) Ax,0)=Mx) 
oo 

Fit, 0 = 2 a„(t)^. 
»=0 

In some elementary cases some insight can be gained into the solvability 
of these equations by the use of the Fourier transform. For a more 
extensive treatment see Steinberg [37]. In some applications the equations 
are truncated to second order and it is still unknown under what condi­
tions this approximation is valid. 

D. The Cauchy-Goursat problems. An elementary problem of this type is 

m t2, x) = An* x), t2^o 
f(rÌ909x)=f2(tÌ9x)9 h^O 

where P is some partial differential operator. For an extensive discussion 
of this type of problem see DuChateau [8]. 

E. Degenerate equations or equations with regular singular points. A sim­
ple problem of this type is 

t]{ 4- AU U jx)f =g9 f = f(x9 t)9 g = g(x9 t) 
(0.4) 

Kx9 0) = ? 

where A is a regular partial differential operator and g is a given function. 
For a discussion of higher order cases and a discussion of what initial 
data is to be specified see Baouendi and Gaoulaouic [1, 2]. 
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F. Hydrodynamics. Let us consider the following simple problem. 

(0.5) 
£-4+*¥+* '-*'•'> 

f(d,0)=f0(d) 
where/(0, 0 and/o(0) are to be periodic of period 2% in d and a, b, c are 
real constants. Here d/dr is a shorthand notation for the following opera­
tor. Let u(r, d, t) be harmonic in the unit disc with w(l, 0, /) = / ( 0 , 0 
and then set 

(0 6) 9/(g' ° = du(r> 6' ° 
3r 3r 

Using the Poisson kernel one can find an explicit expression for dfjdr 
and then one can easily verify that this operator is a non-local pseudo-
differential operator of order 1. It is also possible to solve this problem 
explicitly, using Fourier series and see that the problem is not classically 
well posed, that is, the equation has a non-real characteristic. 

This equation is a simple prototype for the equations describing the 
movement of a bubble in a fluid. The equation corresponds to the bound­
ary condition on the surface of the bubble in Lagrangian coordinates. 
For further discussions of these problems see Ovcyannikov [25, 26]. We 
note that there are many problems in hydrodynamics to which these 
techniques should apply. 

G. Hyperbolic equations with multiple characteristics. A simple example 
of this type of equation is 

(0.7) 

dV=K f=f(x ,) 

Ax90)=Mx)9 -§£(*, 0)=/i(x). 

Note that this problem corresponds to a physical problem where one 
measures the temperature and flux at one point for all time and then 
attempts to find the heat distribution. Also note that the principal part 
of our operator is 32/3*2 which is hyperbolic with respect to t = 0 and 
has a double characteristic and also that the problem is easily solved 
using the Fourier transform. Using this explicit formula it is easily seen 
that the problem is not classically well posed. Our techniques can be 
used to study the initial value problem for higher order equations or 
systems of equations that are linear but may have multiple characteristics. 
The main hypothesis on the equations studied is that the characteristics 
be real and smooth functions of the space and time variables. We also 
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note that solvability is obtained in spaces of Gevrey functions, or their 
duals, which can be seen to be a natural choice by looking at examples 
similar to the one above. 

Equations of this type appear in magnetohydrodynamics [6]. For a 
discussion of these problems see Steinberg [34]. It should be possible to 
extend these techniques to nonlinear problems. Also we note that there 
is a relationship between the techniques in [38] and those of Beals [5] and 
Leray and Ohya [18] for studying problems with multiple characteristics. 

We note that in all the previous examples the abstract propagator 
technique produces solvability results in spaces of functions which are 
subspaces of the infinitely differentiable functions, such as analytic 
functions, entire functions, or Gevrey functions, or in the duals of such 
spaces. We wish to contrast this with the semi-group, energy or other 
methods used to study strictly hyperbolic, parabolic or Schroedinger 
type equations and which give solvability in spaces of functions which 
are not subspaces of the infinitely differentiable functions. Also, the 
abstract propagator technique always gives existence, uniqueness and 
continuous dependence on the parameters of the problem. The continuous 
dependence is given in either very strong or very weak topologies. In 
general, the dependence on the time variable need only be continuous or 
integrable. We can obtain both local and global existence in the time 
variable; however, the technique is basically local in the time variable. 

In general we use the notation of modern P.D.E. theory [15]. Re­
ferences [1-4, 7-10, 12, 22, 23, 25, 26, 28, 30-38, 41-43, 45-47] are 
to papers that use local propagator theory directly, while references 
[5, 6, 11, 13, 16-18, 20, 24, 27, 29, 39, 40] are to papers that do not 
use local propagators but whose results have been obtained (or should 
be able to be obtained) by using these techniques, and references 
[14, 15, 19, 21, 44] are in neither of the above categories. This paper is 
broken into two parts; the first gives an elementary version of the theory 
while the second gives the general results. 

These notes were developed in a seminar given in the Department of 
Mathematics and Statistics, University of New Mexico. I wish to thank 
the participants and, in particular, Professor Reuben Hersh for many 
helpful suggestions. 1 would also like to thank the referee for several 
helpful suggestions. 

1. The abstract set up. We begin by setting up an abstract structure. 

DEFINITION 1.1. Let / be an open interval of real numbers. For each 
s G /, let Xs be a Banach space with norm || • ||5. If for all s, a e I we have 

i) Xs g Xa for a ^ s, and 
ii) ||*||, £ \\x\\sforxeXs, 
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then S = {Xs, /} is called a scale of Banach spaces on /. 

DEFINITION 1.2. We will say that A is a bounded operator on S if for 
every s, a e /, a < s, A is a bounded mapping of Xs into A ,̂ i.e., A e 

ux„ xay 
REMARK. L(XS, Xa) is given the usual norm topology, that is, the uni­

form operator topology. 

DEFINITION 1.3. If 0 < d < oo, and A is a bounded operator on the 
scale S, then A is of type don S if there is a constant C such that 

\\Ax\\9 S C(s - a)-ä\\X\\s 

for all s, a e /, a < s and all x e Xs. 

REMARK. The anove can be stated somewhat more precisely by sup­
posing there are injection maps 

(1.1) 
0 S 

is<<7: Xs -> Xfffor<r ^ s9 

that is, / is a 1-1 linear map with dense range and 

(1.2) iStff o iaiS, = isy for s' ^ G ^ s. 

Also, the mapping 

A = As a'- Xs —> A ^ for Ö" ^ 51 

5,S r 

depends on s and <7. We will usually suppress the iStff map and the de­
pendence of A on s and a because no confusion is likely to result. 

EXAMPLE. Let / = (0, oo) and Xs = {/: / is analytic for \z\ < s, f is 
bounded and continuous for \z\ ^ s], 

U/H, = sup \f(z)\ = sup |/(z)|. 
Izl^s lzl=s 

I f / e Xs, then /e Xa for <r < s and 

(1.5) sup \f(z)\ ^ sup |/(z)| or | | / | | , ^ l l /L 
lzl^7 Izl^S 

Also note that the polynomials are dense in Xs, so Xs is dense in Xff. Finally 

ÉL\ < (, - n\-l\\ 
(1.6) II dz 

Ugh ^ ll/IUIsL. 
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The first inequality is called the Schwarz-Pick lemma and the second is 
trivial. We will return to this example. 

PROPOSITION 1.1. If for i = 1,2, A{ is of type dt- in Xs, then Axo A2 is of 
type dx + d2. 

PROPOSITION 1.2. If fis a continuously differ entiable mapping of the in­
terval J into the interval I with / ' ^ 0 and Xs is a scale on I, then S' = 
{Ys, J}, Ys = Xf(s), is a scale on J. Moreover, if there exists a constant 
M > 0 such thatf è M and A is of type d on S, then A is of type d on S". 

The proofs of Propositions 1.1 and 1.2 are left to the reader. 

EXAMPLE. Let us now study the following simple situation. Let A be of 
type donS = {Xs, I}. We wish to define the operator 

(1.7) eAt 

operating on Xs. First note that A being of type d implies that 

(1.8) \\Ax\\a^C(s-a)-"\\x\\s,xeXs. 

We now show by induction that 

(1.9) \\A»x\\a ^ C»(n/(s - a)Yd\\x\\s. 

A A» 

G G S 

If we choosey' such that a < a' < s, then 

(1.10) M»+1*||, ^ C(a' - oYdC«{nl(s - a)Yd\\x\\s. 

Choose o' — G = e(s — G) and e = l/(n 4- 1) so that 

(1 11) M " + 1 * t ^ O+i [e-Kl - e)-»Y(s - <7)-<"+1>' 
g Cn+l(n + \Yn+l)d{s - G)-(n+1)d. 

Next, let a e I and x e Xa and define 

0 0 in An 

(1.12) ^ = 2 ^ -

Now this series is dominated in Xs term-by-term by the series 

00 fn 

(1.13) 2 l~y CifiHa - s)Y*\\x\\, 
«=o n] 

for s < a, that is, 
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Note that 

(1.15) n»/n\ ^ en. 

Consequently, if d < 1, then the above series converges for all complex 
/. If d — 1, then the series converges for 

(1.16) \t\ <{a- s)/Ce. 

lfd> 1, the dominating series diverges. 

When the dominating series converges, eAtx is an analytic function and 
consequently we have 

(1.17) 4~eAtx = AeAtx 

that is, x(t) = eAtx is an analytic Zs-valued function satisfying 

x\t) = Ax(t), 
(1.18) 

x(0) = x. 

Moreover, if y(t) is a continuous Za-valued function, then 

(1.19) x(t) = e*x + f e^-^y(z)dT 
Jo 

provides an J^-valued solution of 

x\t) = Ax(t) + y(t) 
(1.20) 

x(0) = x 

for sufficiently small t. The verification of this last formula is left to the 
reader. 

2. A linear theorem. Let us assume we have a scale S on some interval 
/ and that ô is some positive number. Let us also assume that for each 
t ^ [0, 5], A(t) is bounded operator on the scale S. We wish to consider 
the problem of finding x(t) satisfying 

* ' (0 = A(t)x(t) + y(t) 

x(0) = xQ, 

where A{t), y(t), x0 satisfy the following conditions: 
(I) There exists a constant C such that if a, sel, a < s, te [0, 5], and 

x e X,, then 
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\\A(t)x\\a g CO - <JY1\\X\\S. 

(II) If a, sel, a < s, then A(t) is a continuous map of [0, ö] into 
L(XS9 Xa\ i.e., A(t) 6 C[[0,5], L(XS, Xj\. 

(III) JC0 e Xa andXO e C[[0,5], Xa\ 

THEOREM 2.1. Assume (I) aw/ (II) Ao/rf. For some 50, 0 < <50 ^ <5, fl«rf 
every pair of data x0, y(t) such that (III) holds and for every s e /, s < a, 
/Aere fr a function x(t) e C[[0, <500z — s)]9 Xs] satisfying (2.1). 

THEOREM 2.2. Assume (I) ««of (II) hold. For every 50, 0 < d0 g 5, tf«d 
every pair of data x0,f(t) satisfying (III), for every se I, s g a, fAere fr <zr 
mastf one function x(t) e [[0, <50], ̂ G] and satisfying (2.1). 

PROOF OF THEOREMS 2.1 AND 2.2. This proof is a generalization of the 
usual Picard iteration technique of ordinary differential equation theory. 
We wish to find a solution of (2.1) in the form 

oo 

(2.2) x(t) = S xk(t) 

where we will define xk inductively by 

*o(0 = *o + J y(T)dz 

(2.3) 

**+i(0 = i A(v)xk(T)dT9 k ^ 0 
Jo 

We will prove inductively that for all s e /, s < a, 
i) xk(t) is a continuous A>valued function, and 

ii) \\xk{t)\\s è M(Cet/(a - s))'. 
For k — 0, this is obvious. If we assume i) and ii) for k = n, then II im­
plies A{v)xk{r) is a continuous A^-valued function. Thus xk+i is well defined. 
Next 

(2.4) ll*n+i(0L ^ £ C(* - ^ H ^ L A 

for any a, s < a < a. We choose 

((7 - s) = e(fl - s) 

(a - 0") = (1 — e){a — s) 

and use the induction hypothesis to obtain 

(2.6) \\xn+l(t)\\s g M(a - s)-»-iC"+ie*{t*+il{n + l ) ) ^ ^ ! - e)~». 

Note that the minimum of l/(e(l — e)n) for 0 ^ e ^ 1 is given by e = 
l/(tf + 1) so that 
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(2.7) \\xn+1(t)\\s ^ M(Cet/(fl - s))^(\ - Vin + \)Y»le. 

Noting that (1 + l/n)n < e completes the induction. 
Thus we have for any s < a, se I and 0 ^ / ^ do(a - s) where do < 

1J Ce that the series 

(2.8) x(t) = £ **(/) 

converges in Xs uniformly in t. Thus x(t) satisfies 

(2.9) x(t) = x0 + P A(z)x(z)dT + P j(r)dr. 
Jo Jo 

This in turn implies that x(0 is C1 and satisfies the differential equation. 
Finally, if there are two solutions Xi(t) and x2(t) of (2.1) then set x(t) = 

Xi(t) — x2(t) and note that x(t) satisfies 

(2.10) x(t) = [* A{z)x(z)dz. 

If x(t) = 0 for 0 ^ t < 7], then by continuity X(T]) = 0. If x(t) = 0 for 
0 ^ t ^ 7], then 

(2.11) x(t) = P yj((r)jc(r)A. 
J?y 

Just as before we can prove that 

(2.12) \\x(t)\\ff ^ M(Ce(t - v)/(s - a)Y 

for any a < s, a e I. Thus x(t) = 0 for t e [0, yj -f e] for some e. Con­
sequently x(0 = 0 wherever x(t) is defined. 

There are many generalizations of the above material. First it is pos­
sible to generalize the continuity in t conditions to integrable in t condi­
tions (this is not recorded in the literature). It is also possible to study 
problems with singularities at / = 0 (see Baouendi and Goulaouic [1]). 
There has also been an extensive study of nonlinear problems (see Baouen­
di and Goulaouic [3] and Nirenberg [22]). 

3. A linear Cauchy-Kowalewski theorem. We shall prove a general ex­
istence and uniqueness theorem for the initial value problem for a first 
order system of partial differential equations. We use the standard multi-
index notation 

(3.1) z = (zl5 z2, ..., zn), etc. 

and all functions will be complex valued. 
We wish to solve the initial value problem 
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Dt At, z) = S A,(t, z)Djf(t, z) + A0(t, z)f(t, z) + g(t, z) 

( 3 '2 ) / (0 ,z )= / 0 (z ) 

for/(f, z) when we are given Aj, G, and/0. 
Here we use the usual vector and matrix notât on for a system of 

P.D.E.'s: 

f(t,z) = (Mt,z),...,fm(t,z)) 

(3.3) g(t, z) = (gl(t, z), ...,gm(f,z)) 

We assume that 

(i) ^,/o> E a r e analytic in z for \z\ < a, and 

(ii) A, g e C[[0, <?] x Jfl, C], Jfl = {z, \z\ < a}. 

Note that assuming continuity and not analyticity in t represents a major 
departure from the classical Cauchy-Kowalewski theorem. We introduce 
As = { / ( z ) ; / i s continuous and bounded for \z\ ^ s, fis analytic for \z\ 
< s}; U/H, = sup l z l^| / (z) | ; and C[[0, 5], As] = {f(t) = / f t z); / i s a 
continuous map of [0, d] into ^ s } . 

Our assumptions imply that for all b < a 

( i ) ^ ) = g ( / , z ) e C [ [ 0 J ] , ^ ] 

(3.6) ( i i ) / 0 = / 0 ( z ) G ^ r 

(iii) Aj(t9 z) G C[[0, Ö], Af\ 

THEOREM 3.1. For some <50, 0 < do ^ d, and every pair of data g and 
/o satisfying (3.5) and for every s e /, s < b, there is a unique function f(t) G 
CWJo(b - s)],As] satisfying (3.2). 

PROPOSITION 3A. If 0 < a < S and/e 4̂S, ?/ze« //zere ex/sta a constant 
C such that 

(3.7) | |D y /L ^ C(5 - a)-Hf\\s. 

If g G /4fl, / G AS and 0 < s ^ a, then 

(3.8) ||g/L ^ HglUI/ll,. 

PROOF. The first estimate is the Schwarz-Pick lemma and the second is 
trivial. 

PROOF OF THEOREM 3.1. We choose any a', b, b < a' < a, and set / = 
(0, a') and 
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(3.9) XS=UAS = A?. 
i = l 

If s < a', then the second estimate of Proposition 3.1 implies that 

(3.10) \\Aj(t, z)f(z)\\s ^ C sup \\AJkAt9z)\\Af\\, 
l<k,/<m 

and 

(3.11) \\(Aj(t, z) - Afa zmz)\\s 

^ C sup \\AJk/(t, z) - AjJr, z)\\a,\\f(z)\\s 

for some constant C. If we set 

(3.12) A(t) = S [Afa z)Dj + AQ(t9 z), 

then the above estimates and the first estimate of Proposition 3.1 imply 
that for all a < s < a' and a l l / e Xs we have 

(3.13) \\A(t)f\\a ^ C(s - tr)'Hf\\s 

and A(t) maps [0, 3] continuously into L(XS9 Xa) for 0 < a < s ^ a. This 
verifies conditions (I) and (II) of Theorems 2.1 and 2.2, while condition 
(III) is given in (i) above. 

4. Functorial remark. In this section we wish to construct new scales 
from old scales by passing to dual spaces. Let 

(4.1) Xf = UX„ C). 

The following diagram is helpful in understanding our results (<r < s). 

C 

4 
(4-2) X,~-*-X, 

Y* A* , Y* 

The definition of A* is 

(4.3) A*(/) = / o A > 

for a l l / e A ^ . 
As before we can think of Xs being injected into Xa for a < s and that 

leads to the following diagram. 

(4.4) s .. ' 
y * , ' y * 
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In order to view /* as an injection, we need /* to be one to one. Thus we 
make the following assumption. 

ASSUMPTION 4.1. AT, is dense in Xa for all a,sel,a^s. 

PROPOSITION 4.1. Using the above definitions we have: 
i) / has dense range o i* is 1-1, 

ii) / is 1-1 o i* has weak* dense range. 
If Xs is reflexive we may replace weak* dense by dense. 

This is a standard application of the Hahn-Banach theorem. 

PROPOSITION 4.2. If{Xs, 1} is a scale, m{s) is a finite valued monotonically 
decreasing function on I and /* = m(/), then {A"*(5), /*} is a scale. If m 
is continuously differentiable with m' ^ — M for some constant M > 0 
and A is of type don {Xs, / } , then A* is of type don {X*(s), / * } . 

PROOF. This is an easy exercise. 

In the following we set Zs = X*{s), I* = ra(/), m(a) = a — s for some 
a. 

THEOREM 4.1. Theorems 2.1 and 2.2 remain valid when x,y, A(t), Xs 

and / are replaced by /x, v, A*(t), Zs = Xm(s) and /* == m(I). That is, we 
can solve 

A*) = ^*(0M0 + KO 

M°) = Mo 

in the dual scale 5*. 

PROOF. This is also easy. 

EXAMPLE. AS in Section 2, let Xs = {/; / is analytic for \z\ < s, f is 
bounded and continuous for \z\ ^ s}. We note that jj, e Xf if and only if 

oo 

(4.6) fi = T,aJiM 

«=o 
with certain conditions on a„. We leave finding these conditions as an 
exercise. Recall that 

<*",/> = (-l)»(<//&)»/(0) = ( - l )» / (« (0 ) 
(4.7) r 

MO) = («!/2JT0 C/(ö/e»+1)rff. 
J kl=s 

It is also true that ß has a Fourier transform 
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#0 = <M*)> *0 
(4.8) 

»=o 

It turns out that /2(f) is an entire function off. What is its order and type? 
We also note that the (ju, z"> are called the moments of ju. Finally, if g 
is an integrable function on \z\ ^ s, then jug defined by 

(4.9) </v/>=f g(z)f(z)dzdz 

belongs to X*. For additional information about this and other types of 
generalized function spaces the book Topological Vector Spaces, Dis­
tributions and Kernels by Francois Treves [44] is an excellent reference. 

5. Holmgren's uniqueness theorem. We present here an elementary uni­
queness theorem of Holmgren type. For more extensive results, see [7, 
33, 47]. We use the notation of section 3 but change condition (3.4) to 

(i) A is analytic in z for \z\ < a9 

(5.1) (ii)/0GC[J f l, C],and 

(ni)A,geC[[0,o] x Jfl, C]. 

Thus we have dropped the condition that/0 and g be analytic. 

THEOREM 5.1. Iff{i\ i = 1,2, satisfy 
(i)/<»(f,z)eCi[R x C , C ] 
(ii) for some b < a and for each t, 0 ̂  t ^ d, i = 1, 2, support 

( / ( ! , M))i4 
(ni) for z ' = l , 2 / ( 0 satisfies (3.2) with conditions (3.4) replaced by (5.1), 

then/<i>(f, z) = /<2>(f, z) for all z and 0 ^ r g 5. 

PROOF. First we note that h = fa) — f{2) satisfies (3.2) with/0 = g = 0. 
Because of (i), (ii), we see that h(t) = h(t, z) G C[[0, <?], JTf ] (see 4.9). The 
Uniqueness Theorem 2.2 implies that h = 0. 

6. More scales of Banach spaces. In this section we wish to give some 
additional examples of scales of Banach spaces. These examples are typical 
of the types of scales in use at the present time. In a later section we will 
introduce more general scales and show that in some sense scales are not 
sensitive to the particulars of their description and that the scales are 
intrinsic to the situation in which they are used. Thus one should take the 
view that in the following we are making convenient and somewhat 
arbitrary choices. We will usually attempt to make our scales consist of 
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Banach algebras or Hilbert spaces. When we introduce a scale, we always 
attempt to do the following: 

(1) Give a classical description of the scale; 
(2) Give a classical description of the dual scale; 
(3) Estimate the operator norm of differentiation acting on the scale; 
(4) Describe the multipliers on the scale. 

In our first example we wish to describe certain scales of entire or analytic 
functions of one complex variable which will depend on two real par­
ameters d, 0 g d g 1, and s, 0 < s < oo. If / i s analytic near z — 0, then 

oo 

(6.1) f(z) = S / ^ / z i ! . 

We define 

\\f\\is = i:(\fnMnid¥ 
(6.2) n=0 

Ed,s = {/, \\f\Us < oo}. 

PROPOSITION 6.1. For d fixed, 0 <; d <; 1, {Ed>s, (0, oo)} is a scale in 
the parameter s. Let 

(6.3) k = 1/(1 -d)90£d<l. 

If0^d< 1 andfe EdtS, thenf(z) is entire and there is a constant C such 
that if t satisfies 

(6.4) tks* > 1, 

then 

(6.5) |/(z)| rgCexpOlzl*). 

Conversely, if 0 ^ d < \, f(z) is entire, and there is a constant C such that 

(6.6) |/(z)| g exp(f|z|*), 

and s satisfies 

(6.7) rifo* < 1, 

then fe EdtS. Ifd = 1 andfe Edt5, then fis analytic for \z\ < s. Conversely, 
iffis analytic for \z\ < t for some t > s,thenfeEdtS. 

PROOF. The proof that EdtS is a scale is straightforward. Note that the 
set {zn, 0 g n < oo} is dense in EdtS. 

We need to know that for all r, t e R+, n,ke N+, we have 

(6.8) min{r-wexp(fr*)} = (tke/n)»" 
r>0 

file:////f/Us
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and 

M~lnn ^ n\enrrl/2 ^ Mnn 

for some constant M > 0. The equality is a calculus exercise and the 
inequality is Stirling's formula. 

I f / e EdtS, and r = \z\, then 

l/(z)l ^ S ^l/.l/«! 

(6.9) g (Sd/J^/zil^y^CS^-^î^-^)2)172 

^ll/llrf.^xp(/r*)(2:((J*tke)-«(fl-/»!)i/*)2)i'2. 
n 

Stirling's formula completes the estimate. On the other hand, if \f(z)\ g C 
exp(^ )andr = \z\, then Cauchy's integral theorem implies 

(6.10) l/J = ( ^ ) " / ( 0 ) | ^ ii!r-exp(fr*). 

If we minimize over r and apply Stirling's formula, we obtain 

\fn\ < C(tke/n)»/knl 
(6.11) " 

^ Cs-nn\d(sktk)n/k(en\/n«y/k. 

Summing this gives the result. 
We leave as an exercise whether or n o t / e E\tS can be characterized by 

its behavior on \z\ = s. 

PROPOSITION 6.2. IfO^d^ 1, 0 < e < 1 and e ^ a < s ^ l/e, then 

WDfh è C(e)(s - <7)-'||/||, 

Ik/L ^ c(fi)(j - ^ - i | | / | | 5 . 

//ere, C(s) is a constant independent of s and a, and || • ||s = || • \\dfS. 

PROOF. First we note that calculus implies that 

(6.13) sup(r»/i<0 ^ (d/e)d(\n(l/r))-d 

for 0 ^ r < 1 and d > 0. Also 

(6.14) l/ln(l/r) £ (1/(1 - r)). 

Now we compute 
oo oo 

(6.15) Z)/ = 2 riffln ! = 2 /„+1z»/n ! 
»=1 »=0 
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II0/L = ( 2 ( I / . + I W ' 9 2 ) 1 / 2 

oo 

= Œ(\f»+i\s»+1l(n + l)H)2)i'2sup{(^»+i)(« + 1)} 

^ a-Ksd/eY(s - <r)-«\\f\\s, 
oo oo 

(6.16) zf = S /Bz«+V«! = 2 «/„-xz»/«!, 

oo 

Ik/L = Q>l/„-ilM"!rf)2)1/2 

= ( 2 (IZ-il**-1/^ - 1)M)2)1/2 sup {(ff»/^-i)«i-rf} 

g ^ O - ^ ) / e ) l - ^ - ^ - l | | / | | s . 

It is not known whether or not there exist nontrivial functions g{z) 
such that 

(6.17) \\gf\\s ^ Cll/L, 

that is; are there multipliers of type zero. 
We are now left with the problems of describing the dual scale Ef)S. 

To motivate our descriptions we note that if 

(6.18) f=Zfn*"lnl 

and fi is a linear functional, then, at least formally, 
oo 

(6.19) rff) = EfnMfr)lnl 

For any analytic functional we define the nth moment of fi by 

(6.20) (in = ifjL^y 

We will also define the Fourier-Borei transform of fi by 

(6.21) ^ ) = M^) = E /«W/"! 
if either expression is well defined. 

PROPOSITION 6.3. I/O g d ^ 1,0 < s < oo, then 

(6.22) MeEtiS 

if and only if 

(6.23) /2(Ç)e£ w > 1 / , 
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Moreover 

(6.24) ^ = £ ( - 1 ) 7 ^ <»>/«! 

ifijy = ju(f) = ZfnMJnl 

PROOF. First we note that i f / e Ed<s, then 

(6.25) f{z) = Efnz»/n\,fn = Z)»/(0) 

in the sense that the series converges t o / i n isrfjS. Thus if /u e E£s, then 

(6.26) ju(f) = 2 / ^ J » ! , Mn = M*")-

If we set 

(6.27) <ju>f> = ZMnfJn\ 

which is a weighted inner product, then we can view the duality between 
EdtS and E%s as a weighted duality between sequences. Thus the 4 
duality implies that ju e E%s if and only if 

(6.28) E(\Mn\s-nn\^y < oo, 

that is if and only if 

(6.29) fieE^dA/s. 

Moreover 

(6.30) 11,4,,,= \\fih-d,1/s. 

This equality implies that the series 

(6.31) E(-l)nJUnö(n)/nl 

converges in E$tS. Finally, we note that if 

(6.32) fi = M-U-l)nMnô^/nU 

then fi(zn) = 0, and because zn is dense in EdtS9 we have p. = 0. 

In our next example we wish to give spaces that correspond to our 
previous spaces when d > 1. For a discussion of these types of spaces 
(called Gevrey spaces) including the fact that these spaces contain com­
pactly supported functions and thus are not quasi-analytic, see Gel'fand 
and Shilov [12 v. 2] or Lions and Magenes [79]. Although we are most 
interested in these spaces when d > 1, we note that the definitions make 
sense for d = 0 and give a slightly different version of the previous spaces 
when d = 1. 

Let d = 0 , 0 < s < o o , ö i i ? a n d / e C°°(ö), and then define 
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Il/Il2 = f \f(xWdx, Lz = {f, 11/11 <cx>} 
Jo 

(6.33) | |/ | |3>s = E(\\D*f\\s"/nW 

<?*. = {/, \\f\Us < 00}. 

PROPOSITION 6.4. If d > Ì and 0 < s < co, f/*e« Grf>5 w tf sca/e in s. 
Moreover, there is a set E of functions such that E is dense in GdySfor all s. 

PROOF. All is straightforward except for the density of E. First note 
that there exists a function g(d9 s, £) such that 

\\f\\h = $\f(S)\2g(d9s9Ç)dÇ9 

If x is the characteristic function of 0, then we can take the Fourier 
transform Ê of E to be Ê = {/(£); /(£) = z(f) * #(£) for all g e Cg°(Ä)} 
where * is convolution. 

Let us consider the problem of multipliers. For this we need Leibniz's 
formula 

oo 

(6.34) D»{gf) = 2 Ö)(Z)*g)(Z)«-y). 

We also need the definitions 

HSU«, = sup l/l, Loo = {gl HgHco < co} 

oo 

(6.35) I l ls l lU. -Zf l ia-Sl Ico*" /» ! - ) 

MG,,S = {g; |||g|L,s < GO}. 

PROPOSITION 6.5. If d > 1, 0 < J < co, fe GdtS and geMGdS9 then 

(6.36) \\gf\\dtS S \\\g\L,s l l /L,, . 

If d^O, 0 < e < Ì, e ^ a < s ^ l/e, and fe GdtS, then there exists a 
constant C(e) such that 

(6.37) \\Df\\a ^ C(e)(s - *)-' | |/H f. 

PROOF. We calculate: 

CO 

Wifh.s è (2G)l|ß»-**z>*/||*»/iiW2 

71=0 

(6.38) ^ ( J ( £ d?)1-"||D»-*g|U5'-*(« - *)!-'||Z>yH**A:!-')2)1/2 

=? III*IL. ,11/11,.,. 

file:////f/Us
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The proof of the inequality for differentiation is given in Proposition 5.3. 

It is not known whether or not we can modify Gdy s so that it becomes a 
Banach algebra. 

II. General theory. 0. Introduction. The purpose of this section is to 
give general versions of the results in the previous section. 

Our first project will be to set up a general linear theory where we re­
place the operator d/dt in Theorem 1.2.1 by a more general operator D, 
which we will call an evolution operator. In the applications, D is generally 
a hyperbolic or parabolic operator. We give an example in Section 2. 
Also this particular version of our results was used to study the initial 
value problem for hyperbolic equations with multiple characteristics, see 
[33]. 

The second project will be to give an account of some nonlinear results. 
Finally we will give a general discussion of how to choose a scale of spaces 
in a given problem. 

1. The linear theorem. In this section we wish to discuss problems of the 
form 

dx(t)/dt - A(t)x(t) = B(t)x(t) + y(t) 

x(0) = z. 

Thus, in terms of the previous material, we have replaced (A(t) by A(t) 4-
B(t). The idea is to assume that the problem 

dx(t)/dt-A(t)x(t) = 0 

x(0) = z 

is well posed in the classical sense and then perturb this well posed 
problem with some operator B(t) so that (1.1) is not well posed in the clas­
sical sense. In the applications we see that ,4(0 and B(t) are differential or 
pseudo-differential operators. For this theory to give better results than 
the previous material, B(t) must be of lower order than A(t). In general 
both A(t) and B(t) are unbounded as operators on any individual space 
Xs. We give our results for systems because the extension to systems is 
not straightforward. 

We introduce the notion of an evolution operator as a way of saying 
that (1.2) is well posed. However, before we do this we need to set up a 
few things. 

DEFINITION 1.1. A real valued function r(t) on the interval 0 ^ / ^ J 
will be called a scale function if it satisfies 

a ) r ( 0 ) = l , r ( r ) > 0 
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b) r(t) is continuously differentiate 
c) r\t) S 0. 

DEFINITION 1.2. Let ô > 0, S = {XS91} be a scale, r(t) be a scale func­
tion on [0, ô], k G N+ and s G /. Then we will say x(t) G C[Ö, XSÌ r] if there 
exists a constant C such that 

x(t)e C[[0, 79], r5r(,)] and WOIU) ^ C 

for all 99, 0 g 97 g 5, such that ^(97) G /. Also x(t) G Ck[ô, Xs, r] if 
(dldtyx(t) G C[<?, JTS, r] for ally, Q è j ^ k. 

PROPOSITION 1.1. lfx(t) e C[<5, Xs, r], then g(t) = W0Lr(*> & # measur­
able function ofx on [0,5]. 

PROOF. For r < t we have 

W O I I sr(t> - WOIIsr ( r ) ^ W O ~ *0)llsr(f) 

which implies that g(f ) is left lower semi-continuous and thus measurable. 

DEFINITION 1.3. Let ô > 0, S = {XSÌ 1} be a scale, r{t) be a scale func­
tion, and for each t G [0, ö] let ,4(0 be a bounded operator on S. If ,4(0 
satisfies: 

(I) There are positive constants C and d such that if o, s G /, <j < s, 
t G F0, 5], x G A;, then 

\\A{t)xh £ C{s - a)-*\\x\\,\ 

(II) For ail a,sel,a < s, A(t) e C[[0, <5], L(XS, Xff)] ; 
(III) There exists C > 0 such that if s G /and XO G Q?7> ŝ» r] for some 

77 ^ <?, then there exists a unique x(f) G C1^, A ,̂ r] for all er G /, a < s, 
satisfying 

dx(t)/dt - A(t)x(t) = y{t) 

x(0) = 0 

and 

M/)| | , r W âcV \\jtT)\\grM<k 
J 0 

forO ^ r g 5, and crr(0 e / ; 
then Z> = 9/9f — A(t) is said to be an evolution operator. 

REMARK. If in Definitions 1.1, 1.2, 1.3, /is replaced by Î' E /, then the 
definitions still hold. 
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We are now in a position to state our initial value problem. We wish 
to solve 

(d/dt - Ait))xlt) = £ Bu(t)xj(t) + y It) 
(1.3) 1=1 

xf<0) = z, 

for *,•(*)> 1 ^ ' ^ - We will need the following conditions (here 5 > 0 
is fixed and 5 = {Xs, 1} is a scale). 

(I) For 1 S i S N, (d/dt — A{(t)) are evolution operators on S with 
common scale function r(t). 

(II) There exists AT numbers p{ and constant Cu such that if a, de I, 
a < s and x e Xs, then 

||2*,.y(0*||, £ C,f,.(j - <7) -W>| |xJ . 

Also *,f/.(0 e C[[0, fl, L(JT„ *„)]. 
(III) There exists ael such that z{ e Xa and for a\\ s e I, s < a, y(t) e 

C[5, Xs, r]. 

REMARK. If 1 + p{ — pj < 0, then Bitj = 0. The concept of type can 
be generalized so as to avoid this restriction. However, we have no ap­
plications for this generalization, so we avoid it here. 

REMARK. The condition III on y(t) is implied by the simpler condition 
y(t)e C[d, Xa, r], which is in turn implied by the even simpler condition 
y(t) e C[[0, <?], Xa]. The stated condition is used because it is most appro­
priate to the methods used to prove the next theorem. 

THEOREM 1.1. We assume system (1.3) satisfies conditions I, II, and 111. 
For every s < a, sel, there exists JJ = 7](s) g ö and functions x{(t) e 
C1[T), XS, r] satisfying (1.3). Conversely, if for some rj ^ ô and sel, x{(t), 
x{(t) e Cl[7], Xs, r] and x{(t), x{( t) satisfy (1.3), then x{(t) = x(t) for t suf­
ficiently small. 

PROOF. We shall show that x{(t) = z{ + 2 ^ o xïn)(t) is the solution of 
our problem where we define xin)(t) inductively by 

(i) (d/dt - AtiWHO = Ht) = yt{t) + yt{t) + At{t)z4 

x,(0) = 0 

(ii) (d/dt - Ai(t))xi»+»(t) = zjr\t) = JtBUt)xf(t) 

jcfi»+«(0) = 0 

for n =: 0. We first note that there are constants Cl5 C2 and K' such that 
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IWOIU) fkK'^\\y{T)\\$rWdt 

provided (d/dt - A,{t))x(t) = y(t), x(0) = 0, for some j , 1 ^ / g N. In 
this and what follows we always have a < a,<?,sel and 0 ^ t ^ ò. Next, 
if sr(t) e /, then y,(t) e C[<?, A",, r] and 

IIWOILw ^ W ) I U > + C2(a - J ) -^ ' | |Z , | | . 

^ tf, + C(a - syqzA. 

where K, is given in the definition of j , e C\ö, Xs, r\. 
If we set 

M' = max (K, + C(a - s)-<><\\Zi\\a)K', 

then because d/dt — A{ is an evolution operator, we have 

xW(t)eCi[d,X„r] 

and 

W0)(0IU> S * ' £ IIWOII^CD * ^ M7 

for all (s, t) such that sr(f ) € /. 
We shall prove by induction that for all (s, t) such that s e I, s < a, 

0 g t S ö and sr(t) e Ithat 
(i) xjn)(t) e Cx[ö, Xs, r] 
(") llVCOlU) k ^ W (« + 1)A(K0(« - s)Y~-**-Pt»" 

where/? = max,!/?,!, M = M' maxf-(fl^0 and AT is to be chosen later. 
The above estimates give the case n = 0; so we now do the induction 

step. Thus we have 

\\zW(t)\\sr(t) g MKnn^d 

• & ( * - s)r(t))-*'+*J{n + l M f l - ff)r(t))-»-*r-P 

for any a, 5 < #• < a. In particular, if (a - s) = (a - s)/(n + 1), (a - a*) 
= (Ä - s)/(l + 1//I), A: = C i ^ A " , then 

(1 + \ln)n+pJ+P S e ¥ 

and 

||zV*>(0ll ^ (K')-lMKn+\r(t){a - j ))-1-^-*-^/! + 1)A-H,«-H. 
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The continuity of Bitj(t) in t and the above estimate imply that z/w)(/) G 
C[<?, XS9 r]. Consequently, there exist x/w+1) satisfying xjH+1)(t) G 
C[Ô, XS9 r] and 

||*/"+1)(0IU è K' P W\z)\\sr{t)dz 
Jo 

Jo 

However r(z) ^ r(f ), so that the integral is estimated by 

(t"+2/(n + 2))r(0-1_,,-*-> 

which gives the desired estimate. 

The above estimate implies that xn
{(t) is summable in Xsp(t) for t/r(t) ^ 

(a — s)jK9 provided sv(t) G I. Because r{t) is decreasing and r(0) = 1, we 
can choose rj = 7](s) depending on s such that 0 ^ t ^ rj implies tjr{t) 
S e(a - s)/K9 sr(0 G /, for any e9 0 < e < 1. Thus, if 0 ^ r g TJ9 then 

||*<»>(0IU> ^ M"(/z + 1)**» 

for some constant M". However, 

W > ( r ) I U , ^ lk}»'(r)||sr(r, g A/"(n + l)"e-, 

which implies that x\n){z) is summable in Xsrit)9 uniformly in r, 0 ^ r 
^ /, that is, x{{t) G C[TJ9 XS9 r]. Next, because of (1.3) we see that for any 

a < s, 0 ^ T ^ t, dx\n){z)ldt is uniformly summable in Xar(t), that is, 
*,-(*) G Cl[rj9 Xff, r]. However, for a sufficiently close to s and 0 ^ t ^ TJ, 
we have t/r(t) ^ £'(^ ~ o)/K f° r a n v £ ' , £ < £ ' < 1. Clearly x{{t) satisfy 
the differential equation (1.3). If we replace a by s9 we have the existence 
part of our result. 

Because of linearity, the problem of uniqueness can be reduced to show­
ing that if Zi = 0, yt(t) = 0 and for some rj ^ ô and s e I9 x{{t) G 
C[TJ9 XS9 r], then x£(t) = 0 for t sufficiently small. 

In essentially the same way we obtain our estimates above, we can ob­
tain the following result. If a < s9a el9t G [0,77], and or(t) G /, 
then 

||xf<0IU> è K*(n + iy<(r(t)(s - a))-"->t-Pt»+\ 

Thus, for all t such that tjr(t) < (s - a)\K9 ar(t)el, for some o G /, we 
obtain x{(t) = 0. For any a < s9 the above inequalities hold for t sufficient­
ly small. This implies the uniqueness. 

2. Example Let us consider a non-skewadjoint perturbation of the 
Schroedinger equation 
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df/dt - id2f/dx2 = cdf/dx + g 

(2.1) / = f(t) - fix, t), g = git) = gix, t) 

fix,0)=Mx). 

Here i2 — — 1, c is a complex number and/0(x) and g(x, 0 are given com­
plex valued functions of x e R, t e [0, 5]. If c were real, then 

(2.2) id2jdx2 + c3/3x 

would be formally skewadjoint and it would be reasonable to use the 
theory of semi-groups to find a solution in L2 (and in fact this has been 
done). If c is not real, then this is not reasonable. In fact, using the Fourier 
transform, one can easily see that the equation does not, in general, pos­
sess L2 solutions for/0 in L^ and g(x, t) = 0 when c is not real. 

We now apply the previous theory to this example. It is easily seen that 
these results agree with the Fourier transform results. However the ab­
stract propagator theory can handle much more general situations and the 
Fourier transform techniques cannot. 

In this elementary situation we can take r(t) — 1, 

D = djdt - id2/dx2, 

(2.3) Xs = GdiS,d= 1, 

/ = (0, 00) 

where Gds was given in (16.34). The classical results for the Schroedinger 
equation imply that if 

Df(t) = g(t)J(t) = J{x, 0 , g(t) = g(x, t) 
(2.4) 

/(0) = 0) 

and g(t) e C[[0,5], L2Ì (is a continuous mapping of [0, d] into L2), then there 
exists/(0 6 Cl[[0, d], L2] such that 

(2.5) ||/(0ll S P Mz)\\dT. 
Jo 

This easily implies that 

(2.6) \\f(t)\\s è P Mv)\\A 
Jo 

provided g e C[[0, <?], Xs]. Note that C[<?, XS9 r] = C[[0, <?], Xs] when r(t) 
= 1. It is now clear that D is an evolution operator on S. Next, Proposi­
tion (16.5) implies that for some constant C > 0 that 

(2.7) WcdJJdxL S C(s - a)-Hf\\s 
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if we make the additional restriction that / = (e, l/e) where 0 < e < 1. 

PROPOSITION 2.1. If for some d > 0, a > 0, g(t) = g(x, t) e C[[0, 5], 
XX /o = /o(*) e ^a> ^Ae/i /or every s, 0 < s < a, there exists 77 = 7](s) 
and a function f(t) e (^[[O, 77], JSTJ satisfying (2.1). Conversely, iff(t), f(t) 
e C![[0, 7;], JTS and satisfy (1.3), thenf(t) = f(t)for t sufficiently small. 

PROOF. This is an immediate consequence of Theorem III. 1 and the 
above remarks. 

REMARK. This result is not a consequence of the classical semigroup 
theore or the Cauchy-Kowalewski theory. As pointed out before, these 
results can be obtained using the Fourier transform. However, if any of 
the coefficients of the problem were to depend on the variable x, then the 
Fourier transform would not help. It is still unknown to which class of 
equations with variable coefficients this version of the abstract propagator 
theory applies. We also note that if d2/dx2 has a coefficient that depends on 
x, then one can no longer take r(t) = 1. For much deeper results in this 
direction see [45]. 

3. Nonlinear theorems. In this seciton we will study a nonlinear Cauchy 
problem of the form 

dx(t)/dt = F(x(t), t) 
(3.1) 

x(0) = 0 

for x(t)e S = {Xs, 1} where S is a scale. 

REMARK. There are several nonlinear versions of Theorem 1.2.1. in the 
literature. In general they assume F(x, t) is Lipschitz continuous in x and 
is globally defined in x. It is a major technical difficulty to weaken these 
conditions and have F(x, t) defined only locally. 

For some fixed TJ > 0 and R > 0, let 

(3.2) B(s,R) = { K I S ) \\X\\,<R}. 

We will always assume the following conditions. 
(I) There exists 7], R > 0 such that for every a, s e I, a < s, (x, t) -> 

F(x, t) is a continuous mapping of B(s, R) x ( — 77, rj) into Xff. 
(II) There exists a constant C such that for every /, |f| < 7], all u and v 

with w, v 6 B(s, R) and all a, s e /with o < s, 

Sup ||F(n, t) - F(y, OL ^ T ^ T Uw " v"-

(III) F(0, t) e C[[- 77,77), Xs] and there exists a constant Ksuch that 

SupSup| |F(0,OL ^ * . 
sei \t\gq 

file:///t/gq
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THEOREM 3.1. (Nishida). Under hypotheses I, II, and III there exists a 
constant a < rj and a unique function x(t) such that for every b9 s e /, s < b9 

x(t) 6 Cl[(-a(b - s), a(b - s))9 Xs], x(t) e B(s, R) and for \t\ < a(b - s)9 

x(t) satisfies (3.1). 

PROOF. The proof is given in [23] if one makes appropriate changes in 
the interval /. 

In [3] Baouendi and Goulaouic give an existence and uniqueness the­
orem for nonlinear singular problems of the form 

**£L - Am. = F{x(t), t) 

where A is a bounded operator. These results contain Theorem 3.1 as a 
special case (A = 0). 

REMARK. Theorem 3.1 is used to derive the most general version of the 
nonlinear Cauchy-Kowalewski Theorem (see [22]). 

We next consider a different nonlinear version of Theorem 1.2.1. because 
of the unusual form of the scale estimate this result uses. This theorem is 
based on the observation that in the linear case the condition 

\\AxL i C(s - a)-Hx\\, 

can be replaced by 

\\Ax\\, ^ C(3/a5)||x||,. 

We need the following conditions. 
(IV) There exists a function G(t) for 0 ^ t < oo such that G ^ 0, 

G' ^ 0, G" Z 0. Moreover, for all x, y e B(s, R), 

\\F(x9 t) - F(y9 OH, £ (l + ls)[G(\\x\\s 4- \\y\\,)\\x - yU 

{V)F(09t)eB(s,R). 
We also need an additional restriction on the scale S. 

(VI) If x e S, then || jc||s is convex downward and for all x, ye S, 

(dlds)\\x + y\\s ^ (d/ds)\\x\\s + (d/ds)\\y\\s. 

THEOREM 3.2 (Ovcyannikov). Under the hypotheses I, IV, V, and VI 
there exists k > 0 and a unique function x(t) such that if s e I and As = 
{t; s + kt < R9 t ^ 0}, then x(t) e Cl[AS9 Xs]9 x(t) e B(s9 R)9 t e AS9 and 
x(t) satisfies (3 A.) 

PROOF. The proof was given in [25] where this result was used to discuss 

file:////AxL
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certain nonlinear problems occurring in hydrodynamics. This result can 
also be obtained from the previous theorem. 

It would also be extremely useful to have a nonlinear version of The­
orem II.l.l. 

4. Lie algebras and scales. In this section we shall point out that the 
scales we have introduced are related to the notion of an analytic vector 
for a Lie algebra. Let A" be a Banach space with || • ||. Let A{, 1 ^ i ^ TV, 
be closed linear operators on X. We assume that the set s& = {2£Li at-Ai9 

a{ e C} is a finite dimensional Lie algebra with 

N 

[A,-, Aj] = AjAj — AjAi = 2 J Pijk^k 
k=i 

for some ßijk e C and the A{ are linearly independent. In this circumstance 
we will define 

11*11. = ll*L.,, = (2M"*ll*l"l/«W/>, 
n 

Xs = XdtPt5 = {xeX, \\x\\s < oo} 

where 0 < s < oo, 1 ^p^co,0^d<oo,n = (ni9 n2, ..., nN), n{ ^ 0, 

An = ApAff ••• Affî, 

\n\ — nx -f- n2 + ••• + nN, d = (dh d2,..., dn), d{ ^ 0, and 

n\d = m\dl ••• nNld", 

(p = oo gives the sup norm). 

PROPOSITION 4.1. S = {Xs, (0, oo)} is a scale. 

PROOF. This is easy. 

REMARK. In general one would expect Xs to consist of the zero element. 
We will now explore when this is not the case. 

In many of the applications the Lie algebra consists of one differential 
operator A in which case n is an integer and d is a real number. The follow­
ing result shows that the scales generated are nontrivial. 

THEOREM 4.1 (Beals). Let stf = {cA, ceC}. Suppose that the spectrum 
of A is contained in a region of the form 

Refe) < a + b \q\ß 

for some constants a, b, ß, 0 ^ ß < 1. Suppose that for q outside this region, 
the resolvent operator satisfies 

life/ - ><)-i|| £ c(\ + \q\r 
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for some constants c, N. Then [j s>0Xdp>s is dense in Xfor any p, 1 ^ p ^ oo, 
andd > 1. 

PROOF. The proof is an elementary modification of the proof of Theorem 
1.1, [5]. 

At this point it is not clear that Lie algebras play any role. The next 
example illustrates that, in fact, Lie algebras do play a role. This example 
has interesting applications in quantum mechanics [28]. 

PROPOSITION 4.2. Let A and B be closed operators on a Banach space X 
with norm || • ||. Let a, ß satisfy 0 < a < l , 0 < / 3 < x , and suppose 

\M\s = MUß,,., = (S( | |Ä^x | |^- (m!) -^! ) -^) i^ 

and Xs = XatßtPtS = {x; \\x\\s < oo}. If [A, B] = /, then 

\\Ax\\,£ C(s - tr)-ß\\x\\S9 a < s, 

and 

\\Bx\\, g C((s - (j)-« + (s - e-y-mxWs, o < s. 

PROOF. We compute 

\\Ax\\, g (a)-hup((n + l)%/*)"+1)IWL ^ C(s - a)-ß\\x\\s. 

By induction we can show that AnB = BAn + nAn~x, and consequently 

l|Ä*L ^ (S(||Ä«+1^JC||((7),,+,,,(llI !)"«(/! 0 - W 1 ^ 

+ ( S (ii||iï,"^,,-1x||(<7)»+w('w!)"flf(i!)"W1^ 
^ (Ö-)-I sup((m + 1)«(Ö-/^)W+1)||X||S 

+ ss\ypn{x~${ß\s)n\x\s 

Ik C((s - a)-* + (5 - (j)A-i)||x||,. 

We are again left with the problem of the non-triviality of the spaces 
Xa,ß,p,s which is answered by the following theorem. 

THEOREM 4.2. Let X = L2 be the space of square integrable functions on 
the real line with the usual norm and for fe X9 Af = df/dx, Bf = xf Let 
Xa,ß,2,s oe defined as in Proposition 4.2. Ifa>0, / 3 > 0 , a + ß > I, then 
Xa,ß,2,s Is dense in X. If a > 0, a 4- ß = 1 aw/s w sufficiently small, then 
Xa,ß,2,s Is dense in X. If a > 0, ß > 09 a + ß < 1, then Xatßt2,s = {0}-

PROOF. This follows from Lemma 5.1 in [14] and a minor extension of 
the proof of Corollary 5.1 in [14]. Here we obtain the density of Xat ßt 2, s in 
A" because X is a (weighted) ZAspace. As Xat ß> 2, s is not a weighted ZAspace, 
it seems impossible to generalize this to prove that Xa% ßt 2, s is dense in 
*a, 8,2,<rfor0 < a < s (see page 236 of [12 v. 2]). 
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EXAMPLE. In the above we can choose a — ß = 1/2 and then we have 
Xs = X1/2JI/2,2,S is dense in Ä'for s small. Also 

\\Ax\\a ^ C(s - s')-1/2IWL 

\\Bx\\a ^ C(s - sT1/2\ML 

and, consequently, and quadratic expression in A and B is of type 1 on Xs. 
We can now apply our theory to examples such as the prarmetric oscillator 
equation, see Section 10. 

REMARK. In the above we have not shown that Xs is dense in Xff for 
a < s. What we have shown is that Xs is a fairly large space. We note that 
much of the previous theory does not depend on the density of Xs in Xa\ 
in fact, just the duality results depend on this density. However, the duality 
results have many important applications in P.D.E.'s and thus we believe 
that the density of Xs in Xa is a most interesting question. 

Because of the complexity of the description of the scales of spaces used 
in these notes, it is difficult to believe that they could be intrinsic. However, 
if we define YdtP= U s>0 Xdt Py S9 then the techniques used in [38] will show 
that YdiP is independent of/?. We claim that if an initial value problem is 
"well posed" in the scale XdjP>s, then the number d measures how far the 
problem is from being classically well posed. Consequently the number d 
is intrinsic to the problem. Clearly the numbers p and s are not intrinsic, 
for more details on this point, see [28]. 

REFERENCES 

I . M. S. Baouendi and C. Goulaouic, Cauchy problems with characteristic initial 
hypersurface, Comm. Pure Appi. Math., 26 (1973), 455-475. 

2. , Singular nonlinear Cauchy problems, J. Diff. Equ. 22 (1976), 268-291. 
3. , Remarks on the abstract form of nonlinear Cauchy-Kovalevsky theorems, 

Comm. Partial Diff. Equ. 2 (11) (1977), 1151-1162. 
4. , Pseudodifferential nonlinear Cauchy problems and applications, To appear. 
5. R. Beals, Hyperbolic equations and systems with multiple characteristics, Arch. Rat. 

Mech. Ana., 48 (1972), 123-152. 
6. Y. Bruhat, Diagonalisation des systèmes quailinéaries et hyper bo licite non stricte, 

J. Math., 45 (1966), 371-386. 
7. P. DuChateau, A Holmgren type theorem for pseudo-differential operators in Gevrey 

classes, J. Diff. Eqns., (1973), 319-328. 
8. , New proofs and generalizations of theorems of existence and uniqueness for 

the Goursat problem, Applicable Analysis, 2 (1972), 61-78. 
9. , The Cauchy-Goursat problem, Memoirs A.M.S., 118 (1972). 
10. P. DuChateau and J. F. Treves, An Abstract Caucy-Kowalewski theorem in scales 

of Gevrey Classes, Symposia Math. 7, Academic Press, New York, 1971. 
I I . A. Friedman, A new proof and generalizations of the Cauchy-Kowalewski theorem, 

Trans. A.M.S., 98 (1961), 1-20. 



PROPAGATOR THEORY 797 

12.1. M. Gel'fand and G. E. Shilov, Generalized Functions, Academic Press, New York, 
Vol. 2, 1968; Vol. 3, 1967. 

13. Gevrey, Sur la nature analytique des solutions des equations aux dirivees partielles, 
Ann. de l'Ecole Norm. Sup. 35 (1917), 129-189. 

14. R. Goodman, Differential operators of infinite order on a Lie Group I, J. Math. 
Mech., 19(1970), 879-894. 

15. L. Hormander, Linear Partial Differential Operators, Springer, Berlin, 1963. 
16. A. Lax, On Cauchy's problem for partial differential equations with multiple charac­

teristics, Comm. Pure Appi., 9 (1956), 135-169. 
17. J. Leray, Equations hyperboliques non-strictes: contre-examples, du type DeGeorgi, 

ano théorèmes d'existence et d'unicité, Math. Annalen 162 (1966), 228-236. 
18. J. Leray and Y. Ohya, Equations et systems non linéaires, hyperboligues non stricts, 

Math. Annalen, 170 (1967), 167-205. 
19. J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and 

Applications, III, Springer-Verlag, New York, 1973. 
20. M. Nagumo, Über das Anfangswertproblem Partieller Differential gleichungen, 

Japan J. Math., 18 (1941), 41-47. 
21. E. Nelson, Analytic vectors, Annals. Math., 70 (1959), 572-615. 
22. L. Nirenberg, An abstract form of the nonlinear Cauchy Kowalewski theorem, J. 

Diff. Geom., 6(1972), 561-576. 
23. T. Nishida, A note on the Nirenberg's theorem as an abstract form of the nonlinear 

Cauchy-Kowalewski theorem in a scale of Banach spaces, To appear in J. Diff. Geometry. 
24. Y. Ohya, Le problème de Cauchy pour les equations hyperboliques a char acter istique 

mutiple, J. Math. Soc. Japan, 16 (1964), 268-286. 
25. L. V. Ovcyannikov, A nonlinear Cauchy problem in a scale of Banach spaces. Dokl. 

Akad. Nauk SSR 200 (1971), 789-792; Soviet Math. Dokl. 12 (1971), 1497-1502. 
26. , Singular operators in Banach scales, Dokl. Akad. Nauk. SSR 163, 819-822; 

Soviety Math. Dokl. 6(1965), 1025-1028. 
27. J. Persson, Global Goursat problems for functions of Gevrey-Lednev type, Ann. 

Sci. Norm. Sup. Pisa, 23 (1969), 387-412. 
28. , Linear characteristic Cauchy problems for partial differential equations 

with variable not only time dependent coefficients, Bullettino U.M.I., 44 (1971), 91-102. 
29. , Linear Goursat problems for entire functions when the coefficients are vari­

able, Ann. Sei. Norm. Sup. Pisa, 23 (1969), 87-98. 
30. , On the local and global non-characteristic Cauchy problem when the solu­

tions are holomorphic functions of analytic functionals in the space variables, Arkiv for 
Mat. 9(1971), 171-180. 

31. , On the supports of solutions of linear partial differential equations with 
analytic coefficients, Annali di Mat. Pura Appi. (IV) 91 (1972), 79-96. 

32. , On uniqueness cones, velocity cones and P-convexity. Annali di Mat. Pura 
Appi., to appear. 

33. S. Steinberg, Applications of linear programming theory to existence and unique­
ness classes for the Cauchy problem, Annali di Mat. Pura Appal. (IV) 64 (1977), 69-85. 

34. , Existence and uniqueness of solutions of hyperbolic equations which are not 
necessarily strictly hyperbolic, J. Diff. Eqn., 17 (1975), 119-153. 

35. , Infinite systems of ordinary differential equations with unbounded coefficients 
and moment problems, J. Math. Anal. Appi. 41 (1973), 685-694. 

36. , Local groups and analytic vectors, Technical Report, Purdue University, 
1971. 

37. , The Cauchy problem for differential equations of infinite order, J. Diff. 
Eqn. 9(1971), 591-607. 



798 S. STEINBERG 

38. S. Steinberg and F. Treves, Pseudo-Fokker Planck equations and hyperdifferential 
operators, J. Diff. Eq. 8 (1970), 333-366. 

39. G. Talenti, Osservazioni sulla nota: Un problema d. Cauchy, Ann. Se. Norm. Sup. 
Pisa, 19 (1965), 179-184. 

40. , Un problema di Cauchy, Ann. Scoula Norm. Sup. Pisa CI. Se , 3,18(1964), 
165-186. 

41. F. Treves, An abstract nonlinear Cauchy-Kowalewski theorem, Trans. Amer. Math. 
Soc , 150 (1970), 77-92. 

42. , On the theory of linear partial differential operators with analytic coeffi­
cients, Trans. Amer. Math. Soc , 137 (1969), 1-20. 

43. — , Ovcyannikov theorem and hyperdifferential operators, Rio de Janeiro, 
I.M.P.A., 1969. 

44. , Topological Vector Spaces, Distributions and Kernels, Academic Press, 
New York, 1967. 

45. H. Yamagata, The nonlinear abstract Cauchy-Kowalewski theorem described in the 
form of ranked spaces, Proc. Japan Acad. 49 (1973), 601604. 

46. T. Yamanaka, Note on KowalewskVs system of partial differential equations, 
Comment. Math. Univ. St. Paul 9 (1960), 7-10. 

47. T. Yamanaka and J.Persson, On an extension of Holmgren s uniqueness theorem, 
Comment. Math. Univ. St. Paul, X X I M (1973), 19-30. 

THE UNIVERSITY OF N E W MEXICO, ALBUQUERQUE, NM 87131. 


