STRONGLY EXPOSED POINTS IN $L^{p}(\mu, E)$

JERRY JOHNSON

ABSTRACT. A sufficient condition is given for a function to be a strongly exposed point of the unit ball of $L^{p}(\mu, E)$ for any Banach space $E, 1 . It is then shown that the unit ball of <math>L^{p}(\mu, E)$ is the closed convex hull of the "simple strongly exposed points" if E has the Radon-Nikodym property.

Sundaresan [3] (see also Turett and Uhl [6]) showed that if E is a Banach space with the Radon-Nikodym property (RNP) then the space $L^{p}(\Omega, \Sigma, \mu, E) \equiv L^{p}(\mu, E)$ (1) also has RNP. One corollary of this $result is that the unit ball of <math>L^{p}(\mu, E)$ is the closed convex hull of its strongly exposed points. For this reason it was suggested by J. J. Uhl that it would be useful to have available a characterization of these functions.

In [1, 4 and 5] the problem of characterizing the extreme points of the unit ball of $L^p(\mu, E)$ was considered and, with modest restrictions on E and (Ω, Σ, μ) , it was shown that f is an extreme point if and only if $||f||_p = 1$ and for almost all $t \in \{t|f(t) \neq 0\}, f(t)/||f(t)||$ is an extreme point of the unit ball of E. This suggests a similar characterization for strongly exposed points; Theorem 1 gives a sufficient condition for f to be strongly exposed. We were unable to obtain the necessity, but got something a little better in a way (Theorem 2); namely, that the unit ball of $L^p(\mu, E)$ is the closed convex hull of the "simple strongly exposed points" if E has RNP. We assume throughout that (Ω, Σ, μ) is a finite measure space, U denotes the unit ball of E and E^* the dual of E. If $f: \Omega \to E$, |f|(t) = ||f(t)||.

A point $x \in U$ is said to be strongly exposed by $x^* \in E^*$ if $x^*(x) = ||x^*|| = 1$, and any sequence $\{x_n\} \subset U$ for which $x^*(x_n) \to 1$ satisfies $||x_n - x|| \to 0$. We state the following simple modification of the definition for later reference and omit its easy proof:

LEMMA 1. Let $x \in E$ and $x^* \in E^*$ be such that $x^*(x) = ||x|| = ||x^*|| = 1$. Suppose every sequence $\{x_n\} \subset U$ with $x^*(x_n - x) \to 0$ has a subsequence converging to x. Then x^* strongly exposes x.

For any unfamiliar notation or terminology we refer the reader to [0]. THEOREM 1. Let $f \in L^p(\mu, E)$, $1 , and <math>||f||_p = 1$. Put S =

Received by the editors on February 7, 1978.

Copyright © 1980 Rocky Mountain Mathematics Consortium

 $\{t \in \Omega | f(t) \neq 0\}$ and suppose there is a (strongly) measurable function $g_0: \Omega \to E^*$ such that for almost all $t \in S$, $g_0(t)$ has norm 1 and strongly exposes f(t)/||f(t)||. Then f is strongly exposed by $g = |f|^{p-1}g_0$.

PROOF. $g \in L^q(\mu, E^*)$ and $||g||_q = 1$ (1/p + 1/q = 1). Suppose $||h_n||_p \leq 1$ and $\int \langle h_n, g \rangle \to 1$. By Lemma 1 it is enough to find a subsequence of $\{h_n\}$ converging to f. First $\int \langle h_n, g \rangle = \int_S |f|^{p-1} \langle h_n, g_0 \rangle \to 1$, $|f|^{p-1}$ is an L^q function of norm one, and $\langle h_n, g_0 \rangle$ is an L^p function of norm ≤ 1 . Hence, $\langle h_n, g_0 \rangle$ converges to the function in L^p that is strongly exposed by $|f|^{p-1}$, namely |f|. Also $1 \geq \int |h_n||g| \geq \int \langle h_n, g \rangle \to 1$ so $|h_n|$ converges in L^p to the function strongly exposed by $|g| = |f|^{p-1}$, which is |f|again. We conclude that both $\langle h_n, g_0 \rangle$ and $|h_n|$ converge in L^p to |f|. Thus there is a subsequence $\{h_{nk}\}$ so that $\langle h_{nk}, g_0 \rangle$ and $|h_{nk}|$ converge a.e. to |f|. Now, put $\varphi_k(s) = h_{nk}(s)/||h_{nk}(s)|| \to 1$ for $s \in S$. Since $g_0(s)$ strongly exposes f(s)/||f(s)|| a.e. in S, we have $||\varphi_k(s) - f(s)/||f(s)|||| \to 0$ a.e. on S. Since $|h_{nk}| \to |f|$ a.e., we get $||h_{nk}(s) - f(s)|| \to 0$ a.e. on Ω . Since $|h_{nk} - f|$ $\to 0$ a.e. and $|h_{nk}| \to |f|$ in L^p , the dominated convergence theorem gives $\int_{\Omega} ||h_{nk}(s) - f(s)||^p d\mu(s) \to 0$. This completes the proof.

COROLLARY 1. If $f = \sum_{j=1}^{n} x_j \chi_{Aj}$, $||f||_p = 1$ and $x_j / ||x_j||$ is strongly exposed by $x_j^* \in E^*$ for each *j*, then *f* is strongly exposed by

$$\sum_{j=1}^{n} \|x_{j}\|^{p-1} x_{j}^{*} \chi_{Aj}.$$

REMARK. For $\alpha \in (0, 1)$, the "slice map": $x^* \to \{x \in U | x^*(x) \ge 1 - \alpha\}$ is continuous from the set of strongly exposing functionals in E^* to the closed convex subsets of U with the Hausdorff metric. What seems to be needed for a converse to theorem 1 is a judicious application of, say, the Michael selection theorem to this set-valued map. So far I haven't found it.

THEOREM 2. Assume that E has RNP. Let S denote the set of all functions $f \in L^p(\mu, E)$, $1 , such that <math>f = \sum_{j=1}^n x_j \chi_{Aj}$, $||f||_p = 1$ and $x_j/||x_j||$ is strongly exposed in U. Then the unit ball of $L^p(\mu, E)$ is the closed convex hull of S.

PROOF. Let φ be a continuous linear functional on $L^p(\mu, E)$. We will show that $\sup\{\varphi(f)|f \in S\} = \|\varphi\|$. The conclusion of the theorem then follows by a standard application of the separation theorem. If one knew that the dual of $L^p(\mu, E)$ happened to be $L^q(\mu, E^*)$ in the canonical way, the proof would be rather immediate. However, this is true if and only if E^* has RNP (see [0]). Thus, a slightly different approach is necessary. Let $\|\varphi\| = 1$ and $\varepsilon > 0$. There is a simple function $g = \sum_{i=1}^n y_i \chi_{Ai}$ so that $\|g\|_p = 1$ and $\varphi(g) > 1 - \varepsilon/3$. Let B be the *n*-fold product of E with

$$\|(x_1, \ldots, x_n)\| = \|\sum_{i=1}^n x_i \chi_{Ai}\|_p = \left(\sum_{i=1}^n \|x_i\|^p \, \mu A_i\right)^{1/p}.$$

Let $\varphi_0 \in B^*$ be given by

$$\varphi_0(x_1, ..., x_n) = \varphi\left(\sum_{j=1}^n x_j \chi_{Aj}\right)$$

Now, *B* has RNP because *E* does, so the strongly exposing functionals are dense in *B*^{*}. (This is implicit in [2, lemmas 5 and 6].) Hence there is a strongly exposing functional $\psi_0 \in B^*$ with $\|\psi_0 - \varphi_0\| < \varepsilon/3$. Let $\mathbf{z} = (z_1, ..., z_n)$ be the point in *B* of norm one strongly exposed by ψ_0 . We claim $f = \sum_{j=1}^{n} z_j \chi_{Aj} \in S$ and $\varphi(f) > 1 - \varepsilon$. First, $\|f\|_p$ is the norm of $\bar{\mathbf{z}}$ in *B* which is 1. Also, $\varphi(f) = \varphi_0(\mathbf{z}) \ge \psi_0(\mathbf{z}) - \varepsilon/3 = \|\psi_0\| - \varepsilon/3 \ge \|\varphi_0\| - 2\varepsilon/3 \ge \varphi_0(y_1, ..., y_n) - 2\varepsilon/3 = \varphi(g) - 2\varepsilon/3 > 1 - \varepsilon$. Now, observe that z_j is strongly exposed in $\{z \mid \|z\| \le \|z_j\|\}$ as follows: Let $\psi_0 = (e_1^*, ..., e_n^*)$. Suppose $\|w_k\| \le \|z_j\|$, k = 1, 2, ... and $\lim_k e_j^*(w_k - z_j) = 0$. If $\bar{\mathbf{w}}_k$ is $\bar{\mathbf{z}}$ with z_j replaced by w_k , then $\|\bar{\mathbf{w}}_k\| \le \|\bar{\mathbf{z}}\|$ and $\psi_0(\bar{\mathbf{z}} - \bar{\mathbf{w}}_k) = e_j^*(z_j - w_k) \rightarrow 0$. Since ψ_0 strongly exposes $\bar{\mathbf{z}}$, $\|w_k - z_j\| = \|\bar{\mathbf{w}}_k - \bar{\mathbf{z}}\|/\mu Aj \to 0$ as $k \to \infty$. This completes the proof.

We close with the following question: If E has the KreinMil-man property, does $L^{p}(\mu, E)$, 1 ?

REFERENCES

0. J. Diestel and J. J. Uhl, Vector measures, A.M.S. Surveys, No. 15. 1977.

1. J. A. Johnson, Extreme measurable selections, Proc. A.M.S., (44) 1974, 107-111.

2. R. R. Phelps, Dentability and extreme points in Banach spaces, J. of Funct. Anal., 16 (1974), 78–90.

3. K. Sundaresan, *The Radon-Nikodym Theorem for Lebesgue Bochner function spaces*, (preprint)

4. ——, Extreme points of the unit cell in Lebesgue-Bochner function spaces. I, Proc. A.M.S. 23 (1969), 179–184.

5. ——, Extreme points of the unit cell in Lebesgue-Bochner function spaces, Colloq. Math. 22 (1970), 111–119.

6. B. Turret and J. J. Uhl, $Lp(\mu, X)$ (1 has the Radon-Nikodym property if X does by martingales, Proc. A.M.S., 61 (1976), 347–350.

DEPARTMENT OF MATHEMATICS, OKLAHOMA STATE UNIVERSITY, STILLWATER OK 74074.