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STRONGLY EXPOSED POINTS IN L?(y, E)

JERRY JOHNSON

ABSTRACT. A sufficient condition is given for a function to be a
strongly exposed point of the unit ball of L?(¢, E) for any Banach
space E, 1 < p < oo, It is then shown that the unit ball of L?(x, E)
is the closed convex hull of the “simple strongly exposed points”
if E has the Radon-Nikodym property.

Sundaresan [3] (see also Turett and Uhl [6]) showed that if E is a Banach
space with the Radon-Nikodym property (RNP) then the space LA((Q,
2, u, E) = L¥(y, E) (1 < p < ) also has RNP. One corollary of this
result is that the unit ball of L#(y, E) is the closed convex hull of its
strongly exposed points. For this reason it was suggested by J. J. Uhl
that it would be useful to have available a characterization of these
functions.

In [1, 4 and 5] the problem of characterizing the extreme points of the
unit balt of L#(u, E) was considered and, with modest restrictions on
E and (Q, 2, p), it was shown that f is an extreme point if and only if
Ifll, = 1 and for almostall ¢ € {¢|f(¢) # 0}, f(2)/]f(¢)] is an extreme point
of the unit ball of E. This suggests a similar characterization for strongly
exposed points; Theorem 1 gives a sufficient condition for f'to be strongly
exposed. We were unable to obtain the necessity, but got something a
little better in a way (Theorem 2); namely, that the unit ball of L#(y, E)
is the closed convex hull of the “simple strongly exposed points™ if E has
RNP. We assume throughout that (2, 2, ) is a finite measure space, U
denotes the unit ball of E and E* the dualof E. If f: Q — E, | f|(t) = | f(?)]]-

A point x € U is said to be strongly exposed by x* € E* if x*(x) =
[x*| = 1, and any sequence {x,} = U for which x*(x,) — 1 satisfies
Ix, — x| = 0. We state the following simple modification of the defini-
tion for later reference and omit its easy proof:

LemMmA 1. Let x € E and x* € E* be such that x*(x) = |x| = ||x*|| = 1.
Suppose every sequence {x,} < U with x*(x,, — x) — 0 has a subsequence
converging to x. Then x* strongly exposes x.

For any unfamiliar notation or terminology we refer the reader to [0].

THEOREM 1. Let fe L*(u, E), 1 <p < oo, and |fll,=1. Put S =
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{te Q| f(r) # 0} and suppose there is a (strongly) measurable function
go: 0 — E* such that for almost all te S, gy(t) has norm 1 and strongly
exposes f(t)/|| f()|l. Then f is strongly exposed by g = |f|?~1g,.

Proor. g € Li(y, E*) and ||gll, = 1 (1/p + 1/g = 1). Suppose ||4,[|, < 1
and [<h,, g> —» 1. By Lemma 1 it is enough to find a subsequence of
{h,} converging to f. First (<h,, g> = [s|f |t h,, &> — 1, |f|#71 is an
Ls function of norm one, and {4,, g, is an L? function of norm =< 1.
Hence, {h,, gy converges to the function in L? that is strongly exposed
by | f|#~1, namely |f|. Also 1 2 [|h,|lg| = [<h,, g> — 1 so |h,| converges
in L? to the function strongly exposed by |g| = |f|#~!, which is |f]
again. We conclude that both {4, gy> and |A,| convergein L? to |f|. Thus
there is a subsequence {#,,} so that <{#,,, go> and |A,| converge a.c. to
|f]. Now, put ¢u(s) = h,,(s)/|h, (| if A,(s) # 0 and ¢, = O otherwise.
CoHS), 20(8)) = Kl (s), 80D/ (5)]| — 1 for s € S. Since go(s) strongly
exposes f(s)/|f(s)|| a.e. in S, we have [p,(s) — f(s)/IIf(s)]II| - O a.e. on S.
Since |h,,| — | f] a.e., we get |4, (s) — f(s)| — O a.e. on Q. Since |, — f]
— 0 a.e. and |k, | — |f]in L?, the dominated convergence theorem gives
jollhnk(s) — f(8)||#du(s) — 0. This completes the proof.

CoROLLARY 1. If f= X% x;v4; Ifl, =1 and x;/||x;] is strongly
exposed by x¥ € E* for each j, then f'is strongly exposed by

n
,-Z=:1 (B sy

REMARK. For a € (0, 1), the “slice map”: x* —» {xe€ Ulx*(x) 2 |1 — a}
is continuous from the set of strongly exposing functionals in E* to
the closed convex subsets of U with the Hausdorff metric. What seems
to be needed for a converse to theorem 1 is a judicious application of,
say, the Michael selection theorem to this set-valued map. So far I haven’t
found it.

THEOREM 2. Assume that E has RNP. Let S denote the set of all functions
JSeLiy, E), 1 < p < oo, such that f = 371X xa; |fll, = 1and x;/||x;|| is
strongly exposed in U. Then the unit ball of L2(y, E) is the closed convex
hull of S.

PROOF. Let ¢ be a continuous linear functional on L2(y, E). We will
show that sup{p(f)|fe S} = |¢l. The conclusion of the theorem then
follows by a standard application of the separation theorem. If one knew
that the dual of L2(y, E) happened to be L4(y, E*) in the canonical way,
the proof would be rather immediate. However, this is true if and only
if E* has RNP (see [0]). Thus, a slightly different approach is necessary.
Let [|¢| = 1 and ¢ > 0. There is a simple function g = X% ,y;x4 SO
that [|g|, = 1 and ¢(g) > 1 — ¢/3. Let B be the n-fold product of E with
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n n 1/p
[Go o5l = | S gl = (5 Il o)

Let ¢y € B* be given by

Po(x1s - x,) = §0<Zl ijAj)
=

Now, B has RNP because E does, so the strongly exposing functionals
are dense in B*. (This is implicit in [2, lemmas 5 and 6].) Hence there is
a strongly exposing functional ¢ge B* with |y — @ol < /3. Let z =
(z1, --., z,) be the point in B of norm one strongly exposed by ¢, We
claimf = 3% ,z,x4;€ Sand o(f) > 1 — e. First, | f|, is the norm of Z in
B which is 1. Also, p(f) = ¢o(®) Z ¢o(@) — /3 = ol — ¢/3 Z lpoll —
2¢/3 2 o1, -5 Vu) — 2¢/3 = ¢(g) — 2¢/3 > 1 — e. Now, observe that
z; is strongly exposed in {z| ||z|| < ||z;||} as follows: Let ¢y = (e¥, ..., e}).

Suppose |w,ll < lz;ll, £k =1, 2, ... and lim,e¥(w, — z;) = 0. If W,is
Z with z; replaced by w,, then [|[W,]| < [Z| and ¢o(Z — W) = e¥(z; — wp)
— 0. Since ¢ strongly exposes Z, ||lw, — z,|| = |W, — Z||/udj — 0 as

k — oo. This completes the proof.
We close with the following question: If E has the KreinMil-man
property, does Lo(u, E),1 < p < «?
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