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LYAPUNOV-TYPE FUNCTIONS FOR NTH ORDER 
LINEAR ORDINARY DIFFERENTIAL EQUATIONS 

JERRY RIDENHOUR 

1. Introduction. The purpose of this paper is to introduce and uti­
lize what we shall refer to as Lyapunov-type functions for the nth or­
der real linear ordinary differential equation 

(1.1) 2 Pi(%<*> = 0, tGj 
i=0 

where / is the half-open interval [a, oo), px G ^ ( / ^ R) (i= 0, • • -, n) 
and pn(t) ¥= 0 for t E /. We introduce the concept in § 1 and develop a 
systematic procedure for constructing Lyapunov-type functions in § 2. 
In § 3, we demonstrate how Lyapunov-type functions can be utilized to 
find coefficient criteria for (1.1) which guarantee that certain two-point 
boundary value problems are uniquely solvable. In a later paper, we 
apply Lyapunov-type functions to obtain oscillation results for higher 
order linear differential equations. 

DEFINITIONS. Suppose the functions ai;.(0 ^ i, j ^ n — 1) and 
fc^O ^ i ^ n — 1) from / to R are such that 

i [ % «m*m ] 

1=0 

for all t S / whenever y is a solution of (1.1). Then the function 
4> :-ê\]^ R)-*i<?(/— R) defined by 

(1-3) # / )= 'S V*!/® 
U=o 

is called a Lyapunov-type function for (1.1). 
If / G C*(/-> R) and / , - f\i = 0, • - -, n - 1), then <J> as defined in 

(1.3) can be regarded as a function from / x Rn —* R given by 
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4&U •••>fn-l)= 2 «ij(')/if,-

If the b/s in (1.2) are either all nonnegative or all nonpositive on / and 
solutions of (1.1) are regarded as solutions of an appropriate first order 
system, then <J> is monotone along solution trajectories. For this reason, 
we use the Lyapunov-terminology; of course, <f> is not a Lyapunov func­
tion in the usual sense (cf. [1]) because <K*>/o> ' ' '> fn-i)

 m a v change 
sign. 

The results of § 3 are related to those obtained by Levin [3], Nehari 
[5], Hunt [2], and Ridenhour [6]; in particular, some special cases of 
those results are also special cases of the results obtained here. 

2. Construction of Lyapunov-type Functions. We first illustrate a 
way in which a Lyapunov-type function can be found for the fourth or­
der equation 

(2.1) «/<4> + p(%" + q(t)y = 0. 

We can multiply (2.1) by y and integrate by parts to obtain 

yy'" - y'y" + pyy' - y p V 

= S [ ( - \ P " - i ) t f + p(y')2-(y"f ]• 

If we let 

(2.2) #«/) = yy'" - y'y" + pyy' - i - V'y\ 

then, for solutions y of (2.1), (^(y))' is given by 

(«y))' = ( - \ v " - q ) y 2 + piv'f -(«/'?• 

Hence, if <f>(y) is as in (2.2), <j> qualifies as a Lyapunov-type function for 
(2.1) (with the assumption that p E:4\]'— R)). 

If we had multiplied by another derivative of t/, say tf^ where 
1 ^ t = 4, we could have integrated by parts in the same manner to 
obtain a different Lyapunov-type function. In general, we will denote 
by <>i the Lyapunov-type funtion obtained by multiplying by t/(1) and 
integrating by parts in the above way. 
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As pointed out on pp. 152-153 of [7], the technique of multiplying 
an equation by y and integrating by parts in the above way is an old 
idea which goes back at least as far as the paper of Mammana [4] in 
1931. 

Before carrying out the general derivation of <t>P we establish some 
notation. As usual, ($ denotes a binomial coefficient and [|x|] denotes 
the greatest integer less than or equal to x. If i and / are integers with 
0 Ü S / - 1 and p and y are functions in ^'(/—• R), define fjti(y), 

gj(p> y)> F*(p> y ) > a n d UP> y) b y 

ftfe ») - y [ (-!)W + j [ ( " ^ { ( ' "i * ) 
( 2 4 ) / • i. i \ i 1 

+ \'~k-l )} P0"2^^)2 J ' 

(2.5) Ffay)- 2 P*%M 
fc=0 

and 

(2.6) flp, y) - Jp!f»°>. 

We also define g^p, y), F0(p, y) and I0(j>, y) by 

(2-7) go(p, «/) - P!/2, F o ^ y) - 0, and l„(p, y) - / py2. 

Although Ĵ (p, f/), being an antiderivative, is unique only up to a con­
stant, this will create no difficulty. 

LEMMA 2.1. If p, y G â\J-+ R), tfœn 

(2.8) Ifa y) = F/p, y) + J g,(p, y), / = 0, 1, 2 • • •. 

PROOF. The proof is by induction. From (2.7), we see that (2.8) is 
true when / = 0. Integration by parts gives 

h(p> y) = J pyyf = -%py2 - j \p'y2 

which equals Ft(p, y) + f gt(p, y). 
Assuming that (2.8) is true for / = 0, • • •, m, we need to prove (2.8) 
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is true when / = m + 1. On integrating by parts and using the in­
ductive assumption, we get 

im+i(p> y) = wf - Jm-i(p> v') - UP'' y) 

= pyy"m) - pm-i(p> y') - / g»_i(p. y') 

-Fm(p'> y)- S &»(P'> «/)• 

The proof is completed by showing that 

(2-9) -g»_i(p» y') - g»(p'. y) = a»+i(p. </) 

and 

(2.10) pytf* - F ^ f a , yO - F ^ , «/) = Fm+1(p, y). 

In proving (2.9), it is best to consider cases in which m is even or odd. 
Also, in proving (2.10), one uses that [|fc/(m — i — k)\] — 
[\(k + l)/(m - i - k + 1)|] when 1 ^ k ^ [|(m - f)/2|]. We leave the 
details of these proofs to the reader. 

Simple iterative devices may be used to calculate the magnitude of 
the numerical coefficients in (2.3) and (2.4). To be specific, the magni­
tude of the coefficient of yWytf-*-*-1) in the expression for fjti(y) is the 
;th number down the ith diagonal of Pascal's triangle unless 
k = / — i — k — 1 in which case that number is multiplied by 1/2. For 
example, using this rule, we get 

F6(P, y) = p[«/y<5) - «/Y4) + y"y'"] 

+ p' [ -y«/*4* + W - -f- (y"? ] 

+ P"[yy'" - 3«/'«/"] + p'"[-yy" + 2(y')2] 

+ P(%!/'] + P ( 5 ) [ - Y ! / 2 ] -

To find g,(p, y), we construct an array of numbers as follows (see 
(2.11) below): (1) The number 1/2 is put in the first column of each 
row. (2) An element may be found by adding the element two rows up 
and one to the left to the element directly above (when such elements 
exist). (3) The number 1 is added at the end of even numbered rows af­
ter all possible elements have been inserted using rules (1) and (2). 

To obtain the coefficients for g,(p, y), we use the ;th row of (2.11). 
For example, 
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2 

1 ' 
2 2 

(2.11) J_ 
2 

J_ A A 
2 2 2 

4 - 3 4 - 1 2 2 

fete «/) = y P ( V + J- P'"(«/')2 - \v\y"f 

while 

&>(p> y) = y p<V - 3p<%')2 + yp"(j/")2 - p{y"'f-

Although we will develop general formulas for Lyapunov-type func­
tions, it is easier when given a specific equation to find a Lyapunov-
type function using the above devices than it is to consult the general 
formula. 

Now suppose i is an integer with 0 i i ^ n. If the coefficients pç, 
• -, pn in (1.1) are such that P i e ^ 1 * - ^ — R), define ^ :^n(/— R) — 

€(]-+ R) and Pik :J-* R, k = 0, • • -, [|(f + n)/2|] by 

(2.12) Uy) - 21 F^to ^ ) + 2 F,-«(fc. !/(i))> 



392 J. HIDENHOUR 

(2.13) P ^ -

\ 

(-i)'-*pfc<«-»+ *2 (-i)i+fc { ( ^~* ) 

+ ( fcl*lj )}p/i+'-2*> if 0 Si * =i [|i/2|] < i, 

(-i)'-*pfc(
1-*+ *2 (-i)i+* ( ( ! ~ * ) 

+ ( , ^ r _ 1
1 )}P/4+ '-2*> if[i*/2|]<Kt 

2Pi+ 2 (-îy-V,0-4' tfft=*. 

j=2fc-i V. \ * — t / 

+ (Ì
k~-kiZ\) }p/i+,-2*) if * < *S [|(< + n)/2|]. 

THEOREM 2.1. If i is an integer with 0 ^ i ^ n and p;. E-^,i_i,(J—* R) 
/or ; = 0, • • -, n, tfien ${ is a Lyapunov-type function for (1.1) and, 
when y is a solution of (1.1), 

(2.14) 
, [l(i+»)/2l) 

(*,(y)y=-4- 2 ^ ( Î W . 
2 fc=o 

PROOF. The idea of the proof has already been mentioned; i.e., the 
Lyapunov-type function fy is obtained by multiplying (1.1) by t/*4) and 
systematically integrating by parts through use of Lemma 2.1. We men­
tion a few of the details. 

When we multiply (1.1) by tf® and integrate, we obtain 

*,(») = - .2 f gijp, r) - S go(Pi> ym) 

- . 2 JV,(P,»<«) 
i=i+l 

when y is a solution of (1.1). Then 
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W«/))'=-J-2* (- i) |-V -*(»w)2 

(2.15) 

- I s I (-D—{( -£-* ) 

+ ( * ~ 'jT_*r l ) IP /* - ' - 2 *^^») 2 

- ftOT- -5- 2 (-lM'/'-'W 

T n [IO-i)/2|] r / • • I \ 

+ ( ' ~ fclfei~ * ) }pJ
ö-4-2'c,(!/(i+*,)2• 

With the aid of the facts that, for arbitrary h defined on lattice points, 

i - l CI(i->V2|] i - l [l<i+i)/2|] 

2 2 fctt*)= 2 2 fcftfc-ö 
j=0 fc=l j=0 fc=j+l 

[|i/2|] fc-1 

= 2 2 Kh * - i) 
fc=l j=0 

i - l * - l 

+ 2 2 fc(f,*-fl 
fc=[|i/2|]+l j=2fc- l 

and 
n [ltf-i)/2|] n [l(i+i)/2l] 

2 2 fcft*) = 2 2 Attfc-0 
J=i+1 *=1 i = i + l fc=i+l 

[l(i+n)/2|] n 

2 2 % * - i), 
fc=i+l j=2fc-i 

one can rearrange the right side of (2.15) to obtain (2.14). 

For convenient reference later, we mention that <t>Q(y) is given by 
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ï-*-lV2|] ( - l ) i + f c 

So 1 + [\(k + l)/(/ - i - *)|] 

* + * )p.(*y*)yû'-*-*-i). 

From this point on in the paper, we will as a matter of convenience 
not explicitly mention the smoothness conditions on the coefficients 
when stating results for a differential equation. However, any 
coefficient appearing in the statement of a result is implicitly assumed 
to have continuous derivatives up through the highest order mentioned. 
It always suffices to have pò E^ | i - i l(/—• R) when applying the Lyapu-
nov-type function ^ . 

3. Two-point Boundary-value Problems. In this section, we use 
Lyapunov-type functions to find conditions under which certain two-
point boundary-value problems have a unique solution. The basic idea 
itself is not new and seems to have originated with Mammana [4] (refer 
again to pp. 152-153 of Swanson's book [7]). The following is well 
known and establishes the basic connection between boundary-value 
problems and zeros of solutions. 

LEMMA 3.1. Suppose that il9 • • -, ip are distinct integers in the inter­
val [0, n], that fa, • • •, / are distinct integers in the interval [0, n], that 
p + q = n, and that a, ß E / with a < ß. For each choice of numbers 
Av • • -, Ap, Bv • • -, BQ E R, there is a unique solution of (1.1) satis­
fying the boundary conditions 

(3.1) tf*i\a) = AV--, ^(a) = A„ tfi^ß) = Bv • • -, ^\ß) = BQ 

if and only if no nontrivial solution y of (1.1) satisfies 

Ma) =•••= «/<*.>(«) = 0 = tf>i\ß) = ••• = tfJ(ß). 

PROOF. The proof is by Cramer's rule. 

As terminology, we say that {(fa, • • -, ip) at a; (fa, • -, Q at ß}-prob-
lems for (1.1) are uniquely solvable if for each choice of Av • • -, A^ 
Bt, • • -, Bq E R there is a unique solution y of (1.1) satisfying (3.1). In 
a similar way, we say that {(fa or fa', • • -, ip or ip') at a; (fa or fa', 
U v* iq) at ß]-problems are uniquely solvable provided that all {(fa, 
• • -, ip") at a; (fa", • • -, ;a") at /?}-problems are uniquely solvable when­
ever ih" is a number selected from ik or ik' (k = 1, • • -, p) and \k" is a 
number selected from jk or \k (k = 1, • • •, q). With the interpretation 
being obvious, we will mix these notations and talk, for example, of {(V 

<t>o(y) = 2 2 
i=l i=0 

(2.16) 
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or i{, i2, " -, ip) at a; (jv • • -, Q at ß)-problems. We also adopt the 
convention of using a circumflex to delete a particular number from a 
list of numbers; for example, 1, • • -, 4, • -, 7 denotes 1, 2, 3, 5, 6, 7, 
and 0, • • -, 4 denotes 0, 1, 2, 3. As another convention, we will sup­
press the arguments in inequalities that are meant to hold on /; for ex­
ample, p > 0 means p(t) > 0 for all t E /. 

Lyapunov-type functions can be used to draw numerous conclusions 
about two-point boundary-value problems for (1.1). We intend to illus­
trate this with some theorems; however, stating all possible implications 
of the technique would represent needless repetition which the reader 
could easily produce himself. 

For each i = 0, 1, 2, let (H^ denote the following hypotheses on the 
coefficients of (1.1) (here Pik is as in (2.13)): 

(Hù hi < ° a n d pi,k = 0 for 0 ̂  k ^ [\(i + n)/2|] and k * i. 

The importance of (HJ is that ^(y) is nondecreasing (see (2.14)) when 
(H{) holds and y is a solution of (1.1). 

We distinguish between the cases where n is even or odd in (1.1) by 
considering separately the equations 

2n 

(3.2) 2 vl*)ym = o 

and 

2n+l 
(3.3) 2 Py(%<» = 0. 

THEOREM 3.1. Consider the following various assumptions on the 
coefficients of (3.2) and (3.3). 

(pi) (-mnp'2n-p2n.1]^0 

(P2) ( - l ) > 2 n + l < 0 

(Pa) (-Vn+%n(n + l)p'2n+1 - np>2n + p2n_J ^ 0, ( - l ) > 2 n + 1 < 0 

(p
4) P o ^ O , ( - l ) » - V 2 T O > 0 

(p
5) Po ̂  0 

(pe) Px ^ 0, p0' ^ 0 

(pr) P o ' ^ 0 , ( - l ) » + i p 2 n + 1 < 0 , ^ 0 . 
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The following conclusions are valid. 
(0) (H0) implies {(0, • • -, n - 1) at a; (0, • -, n - 1) at ß}-prob-

lems for (3.2) are uniquely solvable. 
(1) (H0) and (Px) fmpZf/ {(0, • -, r f ^ l , n) a* a; (0, • • -, n - 1) a* 

ß]-problems for (3.2) are uniquely solvable. 
(2) (H0) and (P2) tmpfy {(0, ? • -, n) a* a; (0, • • -, n - 1) at ß}-

problems for (3.3) are uniquely solvable. 
(3) (tf0) and (P3) impfy {(0, • -, r f ^ ì , n, n + 1) at a; (0, • • -, 

n — 1) at ß}-problems for (3.3) are uniquely solvable. 
(4) (HJ and (P4) tmpfy {(0, • • -, n - 1) at a; (1, • • -, n) af 0}-

problems for (3.2) are uniquely solvable. 
(5) (Hj) and (P5) tmpZt/ {(0, • • -, n) af a; (1, • • -, n) at ß}-problems 

for (3.3) are uniquely solvable. 
(6) (tf2) and (P6) irap/t/ {(0, 1, • • -, n) a* a; (1, • • •, n) a* ß}-prob-

lems for (3.2) are uniquely solvable. 
(7) (if2) and (P7) impfy {(1, • • -, n + 1) at a; (0, 1, • • -, n) at ß}-

problems for (3.3) are uniquely solvable. 

PROOF. Suppose (H0) holds and y is a solution of (3.2) such that 

(3.4) tf>(a) = 0 = tpKß) (i = 0, • - -, n - 1). 

From (2.16) and (3.4) one sees that (4>0(y))(oc) = (<>0(y))(ß) = 0. Since 
(H0) holds, <t>0(y) is monotone nondecreasing and one sees in succession 
that <t>0(y), (<t>o(y)Y> and y are all identically zero on (ayiß). Conclusion 
(0) then follows from Lemma 3.1. 

Now suppose (H0) holds and y is a solution of (3.2) satisfying 

yttya) = 0(i = 0, • • -, n - 1, n) and 
(3.5) 

t/i>(0) = 0 (i = 0, - , n - l ) . 

It follows from (2.16) and (3.5) that 

K(y))(«) - y(- l )n [np 2 n («) - p2n-i(«)](î/(n-1)(«))2 

and (4>0(y))(ß) = 0. If (H0) and (P^ hold, then y is again identically zero 
on (a, /?). Hence, (1) also follows from Lemma 3.1. 

Conclusions (2)-(7) follow similarly. The Lyapunov-type function <J>0 

is used to establish (2) and (3), ^ is used to prove (4) and (5), and <j>2 is 
utilized in the proofs of (6) and (7). 

Conclusion (0) of Theorem 3.1 is not a new result—it follows from 
Theorem 1 of [6]. We could have drawn several other implications 
about two-point boundary value functions but have chosen not to do so; 



LYAPUNOV-TYPE FUNCTIONS 397 

to be specific, </>x and </>2 can be used to draw implications similar to (2) 
and (3) in Theorem 3.1. Also, if (H0) holds and the direction of the in­
equality in (Px) is reversed, then {(0, • • -, n — 1) at ô  (0, • • -, n — 1, 
n) at /?} -problems for (3.2) are uniquely solvable; and we have omitted 
conclusions such as this in the statement of Theorem 3.1. In total, the 
author has been able to draw twenty-seven distinct conclusions which 
follow by applying <j>0, <̂ x and </>2 to equations (3.2) and (3.3) in the 
above way. 

Only the Lyapunov-type functions </>Q, ^ and <j>2 were used in Theo­
rem 3.1. For the general equations (3.2) and (3.3), the same technique 
does not yield any results using fy with i ^ 3 because one needs to as­
sign too many zeros (more than the order of the equation) to y at a 
and ß in order to determine the sign of ^(y) at a and ß. However, 
such Lyapunov-type functions can be used to obtain results for equa­
tions where some of the coefficients are identically zero. We will illus­
trate this fact later. 

In general, if some coefficients are identically zero, one can obtain 
more information with fewer hypotheses. At one extreme are equations 
(3.2) and (3.3) where none of the coefficients is assumed to be identi­
cally zero. At the other extreme, are the two-term equations 

(3.6) «/<*•> + p(t)y = 0 

and 

(3.7) »»•+» + My = o 

for which we give the following theorem. 

THEOREM 3.2. The following are valid: 
(1) 1/ ( - l ) n p > 0, then {(0 or In - 1, • • -, n - 1 or n) at a; (0 or 

2n — 1, • • -, n — 1 or n) at ß}-problems for (3.6) are uniquely solvable. 
(2) If ( - l ) n p > 0, then {(0 or 2n, • • -, n - 1 or n + 1, n) at a; (0 

or 2n, • • -, n — 1 or n +1) at ß)-problems for (3.7) are uniquely sol­
vable. 

(3) / / ( - l )wp < 0, then {(0 or 2n, • -, n - 1 or n + 1) at a; (0 or 
2n, • • -, n — 1 or n + 1, n) at ß}-problems for (3.7) are uniquely sol­
vable. 

PROOF. If y is a solution, of (3.6), then 4>0(y) and (<t>0(y))' reduce to 

<t>o(y) = ^2 n-1 } - </V2n-2) + • • • + ( - î r y - v 0 

and 

(*o(!/))'=-P«/2 + (-l)B+1(«/n,)2. 
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If y is a solution of (3.6) such that 

^(^n-l-i)^) = o = t/^t/tfn-l-i)^) (J = 0 , • • - , n - 1), 

then (^0(y))(a) = (4>0(y))(ß) = 0. Conclusion (1) follows from Lemma 3.1; 
the other conclusions follow similarly. 

Note that Theorem 3.2 specifies 22n different kinds of boundary-value 
problems which are uniquely solvable for (3.6) when ( — l)np > 0. 
Lyapunov-type functions other than <f>0 could be used to study (3.6) and 
(3.7) and equations intermediate between the two-term equations and 
(1.1) could be systematically investigated but we leave this to the inter­
ested reader. 

We now make use of <f>4 to study the equation 

(3.8) tf™ + P4(t)^ + Po(t)y = 0 

in order to illustrate the use of a Lyapunov-type function other than 
<t>Q, <t>v or <j>2 and also to illustrate a restriction on coefficients which 
arises when non-identically zero coefficients, p0 and p4 in this case, are 
"widely separated" (as opposed to adjacent coefficients pi and p i+1). 

If y is a solution of (3.8), <t>4(y) and (<>4(*/))' are given by 

Uy) = s W - </5Y8) + t'y™ + p0lyy'" - y'y"\ 

+ Poi-yy" + (y'f] + PÓ'W - !/2p0"Y 
and 

W</))' = - y P o < V + 2po"(!/')2 

- Po(y")2 - P^f + (</7')2-

For monotonicity purposes, we assume the inequalities p0
(4) = 0, 

p0" ^ 0 , Po = ° a n d PA = ° h o l d - However, p0
(4) ̂  0, p0" ^ 0 and 

p0 = 0 restrict p0 to being a linear function for sufficiently large t. We 
assume therefore that p0 is a linear function which is negative on /. Ar­
guing as before, we obtain the following theorem. 

THEOREM 3.3. / / p4 ^ 0 and p0 is a negative linear function on /, 
then {(0, 1, 4 or 9, 5 or 8, 6 or 7) af a; (0, 1, 4 or 9, 5 or 8, 6 or 7) a* 
ß}-problems, {(0, 1, 4 or 9, 5 or 8, 6 or 7) a* a; (0, 2, 4 or 9, 5 or 8, 6 
or 7) at ß}-problems, and {(0, 1, 4 or 9, 5 or 8, 6 or 7) at a; (2, 3, 4 or 
9, 5 or 8, 6 or 7) at ß}-problems for (3.8) are uniquely solvable. 

Some of the strict inequalities in hypotheses of theorems in this sec­
tion can be weakened. For example, in Theorem 3.1(0), it is assumed 
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that P00 < 0 and P0k ^ 0 for k = 1, • • •, n; the same conclusion fol­
lows if it is only assumed that P0 k ^ 0 for k = 0, • • •, n. Proving the 
stronger result usually involves ruling out the existence of certain poly­
nomial solutions. Even so, simple examples show that certain in­
equalities need to be strict. For instance, in n = 2 and p > 0, Theorem 
3.2(1) implies that {(2,3) at a; (2,3) at ß)-problems for (3.6) are 
uniquely solvable. The same is not true if p = 0 on / (linear functions 
are counter examples). For the same equation, however, {(0,1) at a; 
(0, 1) at /?}-problems are uniquely solvable assuming only p ^ 0. When 
we assume a strict inequality, it always suffices to assume it is strict at 
some point y between a and ß. 
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